説明

溶融炉の炉底監視方法及び装置

【課題】炉底の絶対温度を正確に検出することが困難な場合であっても精度良く炉底異常を検知することができる溶融炉の炉底監視方法及び装置を提供する。
【解決手段】内部に耐火材18、19が配設され、その外側をケーシング17により覆われた炉底部を有する電気式溶融炉10における炉底耐火材の異常を検知する溶融炉の炉底監視装置において、ケーシング17の時系列的な温度変化を計測する温度計30と、計測温度に基づいて炉底の異常を検知する制御装置40とを備え、該制御装置40では、溶融炉における耐火材侵食量とケーシング温度変化量の相関関係からケーシング温度の最大許容変化量を予め設定しておき、温度計40の計測温度からケーシング17の温度変化量を算出し、該温度変化量が前記最大許容変化量を超える場合に炉底耐火材の異常と判定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、炉底ケーシング温度に基づいて炉底耐火材の侵食や損傷等の炉底異常を監視する溶融炉の炉底監視方法及び装置に関する。
【背景技術】
【0002】
廃棄物を溶融処理する溶融炉は、廃棄物の無害化、減容化及び資源化の観点からその必要性が高まりつつある。溶融炉には、重油等を燃料として被処理物を溶融するバーナ式溶融炉や、電気を熱源として被処理物を溶融する電気抵抗式溶融炉及びプラズマ式溶融炉等が知られている。
一例として、プラズマ式溶融炉につき図10を参照して説明する。プラズマ式溶融炉50は、炉頂部から垂下される主電極51と、炉底59に配設される炉底電極52とを有し、これらの両電極間に直流電圧53を印加することによりプラズマアークを発生する。そして、投入ホッパ55より炉本体54内に投下された被処理物をプラズマ熱により加熱して溶融する。被処理物は溶融して溶融スラグ56と、これより比重が大である溶融メタル57が炉本体54内に溜まり、出滓口58より排出される。炉本体54内は高温に維持されるため、その内部は耐火材60により形成され、この耐火材60を鋼板製のケーシング63により被覆した構造となっている。炉底の耐火構造は、溶融メタルに接触する内側は侵食に強いアーチ状レンガ61を配設し、このレンガ61とケーシング63の間に耐火レンガ62を配設した構成などがある。
【0003】
このような溶融炉においては、炉内から溶融メタルや溶融スラグが漏れ出す可能性があり、水蒸気爆発等の危険性があることから炉底は水冷却しない場合が多い。しかし、自然空冷の場合は冷却が弱く、水冷構造を有していない炉底耐火物はメタルやスラグによって侵食されてしまう。一般に、侵食の進行は、耐火物同士を固着させる目地から発生し、目地の侵食が進むと耐火レンガの固定が劣弱となりメタルより比重の小さい耐火レンガが剥離してメタル中に浮き上がる。耐火レンガは剥離部を中心として徐々に拡大し、該剥離部近傍の炉底ケーシングの温度は上昇する。ケーシングは、耐熱温度以上(350℃程度)まで昇温すると変形、抜け落ち等の不具合が発生してしまう惧れがある。従って、炉底の鉄皮温度を監視する必要がある。
【0004】
炉体温度の測定には、特許文献1(特開平11−218320号公報)に記載されるように、炉本体底部から耐火物に貫通するごとく熱電対65(図10参照)を設置し、耐火物の温度を測定したり、炉底ケーシングに温度センサを設置して炉底表面の温度を測定する方法が一般的であった。温度センサとしては、熱電対やサーモグラフィ装置が用いられることが多い。
また、特許文献2(特開2001−4283号公報)には、測定した温度情報に基づいて耐火材層の検査を行う方法が開示されている。これは、ロータリーキルンのレンガ壁の壁中及び壁外に温度センサを設け、得られた温度検出信号に基づいて耐火材層の厚さ若しくは内部状況を監視するものである。
【0005】
【特許文献1】特開平11−218320号公報
【特許文献2】特開2001−4283号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
上記したように、電気式溶融炉において水冷構造を備えない炉底耐火材は侵食、崩壊し易く、炉底耐火物が侵食や崩壊で消失すると炉内の溶融物が炉底ケーシングまで到達し、溶融物が漏れ出す状況に発展しかねない。
そこで、特許文献2に記載されるように温度計により測定した温度に基づいて炉耐火物の損耗状態を監視する方法があるが、これは温度測定の精度に問題があった。
【0007】
炉体の温度測定は、特許文献1や特許文献2に記載される熱電対を用いた方法や、放射温度計を用いる方法が一般に用いられている。
しかし、熱電対を耐火材に埋めこむ場合、腐食や熱により断線してしまうという問題があった。また、熱電対によりケーシング表面温度を計測する場合は、耐火材の断熱性のために計測温度の変化が小さく、また図11に示すように、スラグ温度など運転条件の変動による影響が定常運転時でも±20℃程度存在し、精度のよい温度計測は困難であった。
一方、放射温度計を用いる場合は、表面放射率が計測面の状況で大きく変化するため正確な値が把握できず、また計測面内に放射率分布が発生することから、温度の絶対値評価が難しいという問題があった。
【0008】
このように従来の技術では、運転条件の変動や計測誤差を考慮すると計測温度の絶対値評価では、炉底耐火物の異常を検知できなかった。
従って、本発明は上記従来技術の問題点に鑑み、炉底の絶対温度を正確に検出することが困難な場合であっても精度良く炉底異常を検知することができる溶融炉の炉底監視方法及び装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
そこで、本発明はかかる課題を解決するために、内部に耐火材が配設され、その外側を鋼板製ケーシングにより覆われた炉底部を有する電気式溶融炉における炉底耐火材の異常を検知する溶融炉の炉底監視方法において、
前記溶融炉における耐火材侵食量とケーシング温度変化量の相関関係からケーシング温度の最大許容変化量を予め設定しておき、
前記ケーシングの温度を計測し、該ケーシングの時系列的な計測温度から温度変化量を算出し、該温度変化量と前記最大許容変化量とを比較し、前記温度変化量が前記最大許容変化量を超える場合に炉底耐火材の異常と判定することを特徴とする。
【0010】
本発明は、ケーシングの相対温度変化に基づいて炉底異常を検知する構成としたため、ケーシング計測温度の絶対値精度とは関係なく精度の高い検出結果を得ることができる。また本発明によれば、炉底耐火材の侵食状況とその位置まで把握することができ、異常が検出された場合に炉の緊急停止により溶融物とケーシングの直接接触を事前に防止でき、ケーシングの溶損、損傷による溶融物の漏れ出しトラブルを防止できる。
尚、定常運転時でもスラグ温度は変動しており、ケーシング温度は±20℃程度の変動を示すが、計測温度の時間平均処理をすることにより耐火材侵食による正確な温度上昇を検知できる。
【0011】
また、前記溶融炉内のスラグ温度を検出し、該検出したスラグ温度と予め設定された標準運転時におけるスラグ温度との差分を算出し、スラグ温度変化量とケーシング温度変化量の相関関係から前記差分に相当する温度補正値を前記ケーシングの計測温度に加えることを特徴とする。
上記したように、定常運転時にもスラグ温度は変動し、これに伴いケーシング温度も変動する。従って、温度変化量を検出する間にスラグ温度が大幅に変動すると正確な温度変化量を求められない場合がある。従って本発明では、スラグ温度のケーシング温度への影響を予め熱伝導解析で予測しておき、これに基づいてケーシングの計測温度を補正することで、標準運転時に相当する計測温度を得ることができ、運転状況の変動に関わらず精度のよい異常検出が可能となる。
尚、スラグ温度の検出は、炉内のスラグ温度を直接計測する方法や、入出熱量のバランスから算出する方法などが挙げられ、何れの方法を用いてもよい。
【0012】
さらに、内部に耐火材が配設され、その外側をケーシングにより覆われた炉底部を有する電気式溶融炉における炉底耐火材の異常を検知する溶融炉の炉底監視方法において、
前記ケーシングの材料強度低下温度である基準温度を予め設定しておき、
前記ケーシングの温度分布を検出し、該温度分布のうち前記基準温度を超える領域を高温領域とし、該高温領域の半径若しくは長径が、ケーシングにかかる荷重、ケーシング厚さ及びケーシング温度から設定された最大許容半径若しくは最大許容長径を超える場合に炉底耐火材の異常と判定することを特徴とする。
【0013】
炉底耐火物が消失して溶融物がケーシングに近づくと、ケーシング温度が上昇する。さらにその高温領域が広範囲の場合、溶融物がケーシングに到達する前にケーシング強度の低下と発生応力によってケーシングが損傷するという問題があった。また、高温化することで材料の許容応力も低下するので、炉体耐火物や溶融物の重量によってケーシングに亀裂が発生する。
そこで、本発明にように、溶融炉ごとにケーシングにかかる荷重、ケーシング厚さ及びケーシング温度から求めた最大許容半径若しくは最大許容長径を予め設定し、運転時における高温領域の半径若しくは長径との比較からケーシング強度の合否判定を行うことによって、局所的な高温部位のみでなく、広範囲に亘って温度上昇がおこり材料強度が低下した場合においても的確に異常を検知することができる。
【0014】
また、内部に耐火材が配設され、その外側を鋼板製ケーシングにより覆われた炉底部を有する電気式溶融炉における炉底耐火材の異常を検知する溶融炉の炉底監視装置において、
前記ケーシングの温度を計測する温度計と、該計測した温度に基づいて炉底の異常を検知する制御装置と、を備え、
前記温度計が、前記ケーシングの時系列的な温度変化を検出する手段であり、
前記制御装置は、耐火材侵食量とケーシング温度変化量の相関関係に基づき予め設定されたケーシング温度の最大許容変化量が格納された格納手段と、前記温度計により得られた温度変化量と前記最大許容変化量とを比較し、前記温度変化量が前記最大許容変化量を超える場合に炉底耐火材の異常と判定する比較判定手段と、を備えることを特徴とする。
【0015】
さらに、前記溶融炉内のスラグ温度を検出するスラグ温度検出手段を備え、
前記制御装置は、前記スラグ温度検出手段により検出したスラグ温度と、予め設定された標準運転時におけるスラグ温度との差分を算出し、スラグ温度変化量とケーシング温度変化量の相関関係から前記差分に相当する温度補正値を前記ケーシングの計測温度に加える補正手段を備えることを特徴とする。
【0016】
さらにまた、内部に耐火材が配設され、その外側をケーシングにより覆われた炉底部を有する電気式溶融炉における炉底耐火材の異常を検知する溶融炉の炉底監視装置において、
前記ケーシングの温度を計測する温度計と、該計測した温度に基づいて炉底の異常を検知する制御装置と、を備え、
前記温度計が、前記炉底ケーシングの温度分布を検出する手段であり、
前記制御装置は、ケーシングの材料強度低下温度である基準温度が設定された格納手段と、前記温度計により得られた温度分布のうち前記基準温度を超える高温領域を検出する高温領域検出手段と、該検出した高温領域の半径若しくは長径が、ケーシングにかかる荷重、ケーシング厚さ及びケーシング温度から設定された最大許容半径若しくは最大許容長径を超える場合に炉底耐火材の異常と判定する比較判定手段と、を備えることを特徴とする。
【発明の効果】
【0017】
以上記載のごとく本発明によれば、ケーシングの相対温度変化に基づいて炉底異常を検知する構成としたため、ケーシング計測温度の絶対値精度とは関係なく精度の高い検出結果を得ることができる。
また、スラグ温度のケーシング温度への影響を予め熱伝導解析で予測しておき、これに基づいてケーシングの計測温度を補正することで、標準運転時に相当する計測温度を得ることができ、運転状況の変動に関わらず精度のよい異常検出が可能となる。
また、本発明によれば、ケーシングの高温領域と最大許容半径若しくは最大許容長径との比較からケーシング強度の合否判定を行うようにしたため、局所的な高温部位のみでなく、広範囲に亘って温度上昇がおこり材料強度が低下した場合においても的確に異常を検知することができる。
【発明を実施するための最良の形態】
【0018】
以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
本実施例では炉底監視対象である溶融炉として、一例としてプラズマ式溶融炉につき説明するが、被処理物を溶融処理する溶融炉であれば特にこれに限定されるものではない。
図1〜図6は実施例1を説明するための図で、図7〜図9は実施例2を説明するための図である。
図1及び図2は本実施例1に係る炉底監視装置を備えた溶融炉の側断面図、図3は本実施例1に係る炉底監視方法のフロー図、図4は炉底耐火レンガの侵食量とケーシング温度の相関関係を示すグラフ、図5は最大許容温度差を説明する図、図6は計測温度の補正方法を説明する図である。
図7は本実施例2に係る炉底監視装置を備えた溶融炉の概略図、図8は最大許容半径を説明する図、図9は本実施例2に係る炉底監視方法のフロー図である。
【実施例1】
【0019】
まず、図1を参照して、本実施例に係る炉底監視装置が設置されるプラズマ式溶融炉10につき説明する。プラズマ式溶融炉10は、炉本体14の炉蓋から主電極11が垂下され、これに対向して炉底から炉底電極12が挿設されている。プラズマ式灰溶融炉10では、これらの電極間に直流電源13により直流電流を通流して炉内にプラズマアーク24を発生させる。投入ホッパ21より投入された被処理物は、炉壁に設けられた被処理物投入口20より炉内に投下され、プラズマアーク熱及び前記電極間を流れる電流のジュール熱により溶融処理され、溶融スラグ22として炉底に溜まる。また溶融スラグ22の下部には比重差により溶融メタル23が形成されている。溶融後は、適宜出滓口25より排出される。
炉本体14の側壁及び蓋部の内側は不定形耐火材15で形成され、炉底には、侵食に強いアーチ状の耐火レンガ18が内側に配設され、その下に耐火レンガ19が配設される。これらの耐火物の外表面は鋼板製のケーシング16で被覆されている。
【0020】
本実施例では、炉底ケーシング17の温度を計測するための温度計を一または複数備えている。温度計の種類は限定されないが、熱電対30若しくはサーモグラフィ装置31などが挙げられる。
熱電対30を用いる場合は、炉底ケーシング表面に設置するか、若しくは耐火物に浅く埋設してあり、図1に示すように炉底の略全面に亘って温度測定できるように複数設けられている。複数の熱電対30を設置し、温度t〜tまでの炉底温度分布を計測できるようにすることが好ましい。
サーモグラフィ装置31を用いる場合は、図2に示すように、炉底の略全面が視野範囲となるように、一又は数台設けられる。尚、サーモグラフィ装置30は、測定対象から放出される放射エネルギ量を非接触で検出して該放射エネルギ量から測定対象の温度を求める周知の装置である。
【0021】
熱電対30若しくはサーモグラフィ装置31は制御装置40に接続され、計測した温度信号は該制御装置40に送られる。制御装置40には、炉底ケーシング17の温度変化量と炉底耐火物の侵食量の相関関係に基づいて設定された炉底ケーシング温度の最大許容変化量が格納された格納手段と、熱電対30により計測された温度変化量と前記最大許容変化量とを比較して、温度変化量が最大許容変化量を超える場合に炉底耐火材の異常と判定する比較判定手段と、該比較判定手段により炉底耐火材の異常と判定された場合に異常警報を発する出力手段と、を備える。
【0022】
炉底ケーシング17の温度変化量と炉底耐火物の侵食量の相関関係は、熱伝導解析により導き出す方法、実測値から求める方法などがある。この相関関係を図4に示す。同図に示すように、炉底ケーシング温度がΔT℃上昇すると耐火レンガの侵食量はdmmであることが導かれる。例えば、アーチ状レンガ18が消失し、その下の耐火レンガ19が100mm侵食すると、炉底ケーシング温度は約60℃上昇する。従って、熱電対30により時系列的な温度を計測し、この測定温度の変化量が60℃となったら耐火レンガ19の侵食量が100mmであることがわかる。耐火レンガ19の許容侵食量は装置によって設定されており、これに対応する温度変化量が許容温度変化量となる。
一方、定常運転時でもスラグ温度は変動しており、炉底ケーシング温度は±20℃程度の変動を示すが、計測データの時間平均処理をすれば耐火材侵食による温度上昇を検知できる。
【0023】
図5(a)に、例として正常運転時と異常運転時におけるケーシング温度を夫々示す。正常運転時には、炉の中心より出滓口側に僅かにずれた位置が最も温度が高く、出滓口及び灰投入口側は低くなっている。これに対して、異常運転時はいずれの位置においても正常運転時よりも温度が高く、且つ灰投入口側に最も高い温度が現れている。(b)は炉底ケーシング位置と温度変化量の関係を示すグラフで、(a)における異常運転時と正常運転時の温度差分を示したものである。これによれば、最大許容温度差を超える部分が灰投入口側に現れていることがわかる。このように、現運転における温度変化量を求めることで、異常運転か否かを容易に判定でき、且つその位置も特定することができる。
【0024】
また、前記制御装置40は、運転条件の変動による温度計測値の誤差を補正する補正手段を備えることが好ましい。
炉底耐火材18、19は侵食していなくても、運転スラグ温度が高いと炉底ケーシング温度が上昇することがある。図6に示すように、標準運転時のスラグ温度と現運転時のスラグ温度が異なると、これに伴い炉底ケーシング温度もΔTだけ異なる。
補正手段は、現運転におけるスラグ温度を検出し、該検出したスラグ温度と予め設定された標準運転時におけるスラグ温度との差分を算出し、スラグ温度変化量とケーシング温度変化量の相関関係から前記差分に相当する温度補正値をケーシングの計測温度に加える補正を行う手段である。スラグ温度の検出は、炉内のスラグ温度を直接計測する方法や、入出熱量のバランスから算出する方法などが挙げられる。
例えば、炉内のスラグ温度のケーシング温度への影響を予め熱伝導解析により予測しておき、ケーシング温度の計測値を修正することで、標準運転時(例えば1600℃運転)のケーシング温度分布と比較することができる。
このように、スラグ温度が炉底ケーシング温度へ与える影響の予測結果から、現運転と標準運転との炉底ケーシング温度の変化分を計算し、これを用いて現運転でのケーシング計測温度を修正し、標準運転相当の炉底ケーシング温度を求めることで補正を行うことにより、運転条件に変動があってもこの変動を排除した精度の高い測定が可能となる。
【0025】
次に、図3を参照して本実施例1に係る炉底監視方法のフローにつき説明する。
まず、温度変化量−侵食量の相関関係から温度変化の最大許容変化量を求め、制御装置40に予め設定しておく(S1)。プラズマ式溶融炉10の通常運転を開始したら、温度計により連続的に若しくは間欠的に炉底ケーシング温度を計測する(S2)。
このとき、炉内のスラグ温度を計測し、計測したスラグ温度に基づいて現在の運転状態を判定する(S3)。これは、炉内スラグ温度が標準運転の範囲内であるかを否かを判断し(S4)、標準運転でない場合には、上記した補正手段により計測温度の補正を行う(S5)。
【0026】
運転状態が標準運転である場合は、計測温度よりケーシング温度の時系列的な変化量を算出する(S6)。標準以外の運転の場合も補正後に同様の処理を行う。そして、この算出した温度変化量と、予め設定しておいた最大許容変化量とを比較する(S7)。温度変化量が最大許容変化量を超えた場合は(S8)、制御装置40により炉底の耐火物に異常ありと判定し(S9)、温度変化量が最大許容変化量以下である場合は異常なしと判定する(S10)。尚、異常ありと判定された場合は、炉の運転を停止し、耐火レンガ19の補修・交換を行う。
【0027】
このように、本実施例によれば、炉底ケーシング17の計測温度の絶対値の精度が低くても、相対温度変化は比較的精度良く計測できるので、予め求めた最大許容温度差と計測温度変化値を比較することで、炉底耐火材の侵食状況とその位置(領域)を把握でき、炉の緊急停止により、溶融物とケーシングの直接接触を事前に防止でき、ケーシングの溶損、損傷による溶融物の漏れ出しトラブルを防止できる。
【実施例2】
【0028】
図7を参照して本実施例2に係る炉底監視装置及び方法につき説明する。
炉底耐火物18、19が消失し溶融物が炉底ケーシング17に近づくと、炉底ケーシング温度は上昇するが、この高温領域が広範囲の場合、溶融物が炉底ケーシング17に到達する前に、ケーシングの材料強度の低下と発生応力によって、炉底ケーシング17が損傷する。本実施例は、このように広範囲に亘る炉底耐火物の異常を検知するものである。
【0029】
本実施例2の詳細な装置構成は、図1及び図2に示すプラズマ式溶融炉10と同様である。尚、本実施例2において、上記した実施例1と同一の構成についてはその詳細な説明を省略する。
図7(a)に示されるように、電気式溶融炉(プラズマ式溶融炉)10は、温度計(熱電対)30と、制御装置40と、を備える。
温度計として熱電対30を用いる場合は、炉底17の温度分布を測定できるように熱電対30を炉底全面に亘って複数個所設置する。好ましくは、熱電対30を出滓口25へ向けたスラグ流れ方向に沿って設置するとよい。サーモグラフィ装置31を用いる場合は、炉底の略全面が視野範囲となるように一又は複数台設置する。図7(b)は、炉底ケーシングの高温領域35を示す。
【0030】
制御装置40は、高温領域の閾値となる基準温度Tと、荷重p、ケーシング厚さd、ケーシング温度tから求めたケーシングの高温強度限界を示す最大許容半径rmax(若しくは長径Rmax)とが格納された格納手段と、炉底温度分布内の基準温度Tを超える高温領域35を検出する高温領域検出手段と、高温領域35の半径rと最大許容半径rmaxとを比較し、半径rが最大許容半径rmaxを超える場合に異常と判定する比較判定手段と、異常時に警報を発する出力手段と、を備える。
この制御装置40では、熱電対30若しくはサーモグラフィ装置31で測定した温度分布に基づいて、各計測点での温度が基準温度Tを超えた領域を高温領域と定義し、その半径r若しくは長辺Rが予めケーシングの高温強度限界から予測された最大値rmax若しくはRmaxを超えたかどうかで、ケーシングの強度合否を判断し、異常を検知する装置である。
【0031】
炉底ケーシング17の温度分布に現れる高温領域35は、正円状、長円状、若しくは変形円状となることが多い。
高温領域35が正円状の場合は、炉底ケーシング17に発生する最大応力は円の半径の2乗に比例する。また、高温化することで材料の許容応力も低下するので、炉内の耐火物、溶融物の重量によって炉底ケーシング17に亀裂が発生する。
そこで、溶融炉ごとに荷重p、ケーシング厚さd、ケーシング温度tから求めた最大許容半径rmaxを予め設定し、運転時の高温領域半径rとの比較からケーシング強度の合否判定を行い、異常を検知する。
【0032】
図8(a)に、例として炉底ケーシング17に高温領域35が現れた場合のケーシング位置に対応した温度を示す。出滓口よりに基準温度Tを超える温度領域が出現しており、これを高温領域35と定義する。図8(b)に、ケーシング温度tに対する最大許容半径rmaxを示す。最大許容半径rmaxは、ケーシング温度tが高くなる程小さくなる。即ち、ケーシング温度tが高いほど材料強度が低下し、小さい荷重でケーシングが損傷するため耐えうる半径が小さくなることを表す。本実施例では、基準温度T以上の温度範囲から、温度tに対応する最大許容半径rmaxを一段階若しくは複数段階設けておき、計測された炉底熱分布がこの最大許容半径rmaxを超えたら異常ありと判定する。
【0033】
また、高温領域35の面積から異常検知することもできる。これは、炉底ケーシング17の温度分布から基準温度Tを超える高温領域35の面積を算出し、該面積を等価円に換算してこの等価円の半径rを求める。半径rから上記した正円状高温領域の場合と同様に異常検知を行う。
一方、高温領域35が長円状若しくは変形円状である場合には、その長径Rから異常検知を行う。これは、溶融炉ごとに荷重P、炉底ケーシング厚さt、炉底ケーシング温度Tから求めた最大許容長径Rmaxを予め設定しておき、運転時の高温領域長辺Rとの比較からケーシング強度の合否判定を行い、異常を検知する。
【0034】
次に、図3を参照して本実施例2に係る炉底監視方法のフローにつき説明する。
まず、炉底ケーシング17における高温領域35の閾値となる基準温度Tと、荷重p、ケーシング厚さd、ケーシング温度tから求めた最大許容半径rmax(若しくは長径Rmax)とを制御装置40に予め設定しておく(S11)。プラズマ式溶融炉10の通常運転を開始したら、熱電対31により炉底ケーシング17の温度を計測し(S12)、ここから炉底ケーシング17の温度分布を算出する(S13)。次いで、この温度分布から基準温度Tに基づき高温領域35の有無を判定する(S14)。基準温度Tより高い温度を示す高温領域35が存在するか否かの判定において(S15)、存在しない場合には通常運転を続行する。高温領域35が存在する場合にはその半径rと最大許容半径rmaxとを比較し(S16)、半径rが最大許容半径rmaxを超えるか否かを判断する(S17)。半径rが最大許容半径rmaxを超える場合には、炉底耐火物が広範囲に亘って侵食され炉底ケーシング17の強度が低下して危険な状態であるため異常ありと判定し(S18)、警報手段により警報を発する。尚、異常ありと判定された場合は、炉の運転を停止し、炉底耐火物18、19の補修・交換を行う。一方、高温領域の半径rが最大許容半径rmaxを超えていない場合には、異常なしと判定する(S19)。
【0035】
本実施例によれば、温度計により計測された炉底温度が、実施例1のように炉底ケーシング17を直接損傷する温度まで上昇していなくても、高温領域が広範囲に亘って出現した場合に、溶融炉内容物の自重などによって炉底ケーシング17が損傷することを防止できる。
【0036】
尚、本実施例では、実施例1と実施例2を組み合わせた構成としてもよい。例えば、図3に示したフローを第1ステップとし、図9に示したフローを第2ステップとし、第1ステップで異常なしと判定された場合に、第2ステップを行うようにする。これにより、より高精度の異常検出を行うことが可能となり、安定運転を保障することができる。
【産業上の利用可能性】
【0037】
本発明は、炉底の絶対温度を高精度で検出できない場合であっても炉底耐火物の異常を的確に検出することができるため、プラズマ式溶融炉を始めとして、電気抵抗式溶融炉、バーナ式溶融炉、旋回式溶融炉、反射式溶融炉等の何れの溶融炉にも適用可能である。
【図面の簡単な説明】
【0038】
【図1】本実施例1に係る炉底監視装置を備えた溶融炉の側断面図である。
【図2】図1の応用例を示す炉底監視装置を備えた溶融炉の側断面図である。
【図3】本実施例1に係る炉底監視方法のフロー図である。
【図4】炉底耐火レンガの侵食量とケーシング温度の相関関係を示すグラフである。
【図5】最大許容温度差を説明する図で、(a)は異常時と正常時における温度分布の比較を示すグラフ、(b)は炉底ケーシング位置と温度変化量の関係を示すグラフである。
【図6】計測温度の補正方法を説明する図である。
【図7】本実施例2に係る炉底監視装置を備えた溶融炉の概略図で、(a)は側断面図、(b)は底面図である。
【図8】最大許容半径を説明する図で、(a)は炉底ケーシング位置と温度の関係を示すグラフ、(b)はケーシング温度と許容半径を示すグラフである。
【図9】本実施例2に係る炉底監視方法のフロー図である。
【図10】従来の溶融炉の断面を示す全体構成図である。
【図11】従来の温度計により測定した炉底温度の測定値である。
【符号の説明】
【0039】
10 プラズマ式溶融炉
11 主電極
12 炉底電極
13 直流電源
14 炉本体
17 炉底ケーシング
18 アーチ状レンガ
19 耐火レンガ
21 投入ホッパ
22 溶融スラグ(スラグ層)
23 溶融メタル(メタル層)
25 スラグ出滓口
30 熱電対
31 サーモグラフィ装置
40 制御装置

【特許請求の範囲】
【請求項1】
内側に耐火材が配設され、その外側を鋼板製ケーシングにより覆われた炉底部を有する電気式溶融炉における炉底耐火材の異常を検知する溶融炉の炉底監視方法において、
前記溶融炉における耐火材侵食量とケーシング温度変化量の相関関係からケーシング温度の最大許容変化量を予め設定しておき、
前記ケーシングの温度を計測し、該ケーシングの時系列的な計測温度から温度変化量を算出し、該温度変化量と前記最大許容変化量とを比較し、前記温度変化量が前記最大許容変化量を超える場合に炉底耐火材の異常と判定することを特徴とする溶融炉の炉底監視方法。
【請求項2】
前記溶融炉内のスラグ温度を検出し、該検出したスラグ温度と予め設定された標準運転時におけるスラグ温度との差分を算出し、スラグ温度変化量とケーシング温度変化量の相関関係から前記差分に相当する温度補正値を前記ケーシングの計測温度に加えることを特徴とする請求項1記載の溶融炉の炉底監視方法。
【請求項3】
内部に耐火材が配設され、その外側を鋼板製ケーシングにより覆われた炉底部を有する電気式溶融炉における炉底耐火材の異常を検知する溶融炉の炉底監視方法において、
前記ケーシングの材料強度低下温度である基準温度を予め設定しておき、
前記ケーシングの温度分布を検出し、該温度分布のうち前記基準温度を超える領域を高温領域とし、該高温領域の半径若しくは長径が、ケーシングにかかる荷重、ケーシング厚さ及びケーシング温度から設定された最大許容半径若しくは最大許容長径を超える場合に炉底耐火材の異常と判定することを特徴とする溶融炉の炉底監視方法。
【請求項4】
内部に耐火材が配設され、その外側をケーシングにより覆われた炉底部を有する電気式溶融炉における炉底耐火材の異常を検知する溶融炉の炉底監視装置において、
前記ケーシングの温度を計測する温度計と、該計測した温度に基づいて炉底の異常を検知する制御装置と、を備え、
前記温度計が、前記ケーシングの時系列的な温度変化を検出する手段であり、
前記制御装置は、耐火材侵食量とケーシング温度変化量の相関関係に基づき予め設定されたケーシング温度の最大許容変化量が格納された格納手段と、前記温度計により得られた温度変化量と前記最大許容変化量とを比較し、前記温度変化量が前記最大許容変化量を超える場合に炉底耐火材の異常と判定する比較判定手段と、を備えることを特徴とする溶融炉の炉底監視装置。
【請求項5】
前記溶融炉内のスラグ温度を検出するスラグ温度検出手段を備え、
前記制御装置は、前記スラグ温度検出手段により検出したスラグ温度と、予め設定された標準運転時におけるスラグ温度との差分を算出し、スラグ温度変化量とケーシング温度変化量の相関関係から前記差分に相当する温度補正値を前記ケーシングの計測温度に加える補正手段を備えることを特徴とする請求項1記載の溶融炉の炉底監視装置。
【請求項6】
内部に耐火材が配設され、その外側をケーシングにより覆われた炉底部を有する電気式溶融炉における炉底耐火材の異常を検知する溶融炉の炉底監視装置において、
前記ケーシングの温度を計測する温度計と、該計測した温度に基づいて炉底の異常を検知する制御装置と、を備え、
前記温度計が、前記炉底ケーシングの温度分布を検出する手段であり、
前記制御装置は、ケーシングの材料強度低下温度である基準温度が設定された格納手段と、前記温度計により得られた温度分布のうち前記基準温度を超える高温領域を検出する高温領域検出手段と、該検出した高温領域の半径若しくは長径が、ケーシングにかかる荷重、ケーシング厚さ及びケーシング温度から設定された最大許容半径若しくは最大許容長径を超える場合に炉底耐火材の異常と判定する比較判定手段と、を備えることを特徴とする溶融炉の炉底監視装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2008−70061(P2008−70061A)
【公開日】平成20年3月27日(2008.3.27)
【国際特許分類】
【出願番号】特願2006−249976(P2006−249976)
【出願日】平成18年9月14日(2006.9.14)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】