説明

熱処理装置

【課題】エネルギーロスを抑制しつつ、被処理物の上方における蒸発ガスの結露と被処理物への滴下の防止が実現できる熱処理装置を提供する。
【解決手段】被処理物11が搬入口13を通過直後に通る予備ゾーン26内部の、被処理物11の搬送路の下方に、ガス吸込口27と、水冷管29と、排水ユニット30とを備え、予備ゾーン26と炉外との差圧、および予備ゾーン26と隣接する熱処理ゾーン19との差圧がそれぞれ所定の条件を満たすようにガス吸込口27の配置や個数、またガス吸込口27から吸込むガス流量を設定し、蒸発ガスを含んだ炉内雰囲気を被処理物11の搬送路の下方で蒸発ガスの露点温度以下まで冷却して結露させ、液体として炉外へ排出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、炉体内部において連続的に搬送される被処理物に熱処理を行う熱処理装置に関するものである。
【背景技術】
【0002】
従来から、被処理物からの蒸発ガスの発生を伴う熱処理は広く行われている。例えば、液晶パネル、プラズマディスプレイパネル、太陽電池パネル等のガラス基板にペーストを塗布して乾燥または焼成させる熱処理、金属箔や樹脂フィルム等のウエブ状の基材にペーストを塗布して乾燥させる熱処理、あるいは金属材料や無機材料で構成される粉体を焼成させる熱処理などがある。
【0003】
少量の被処理物を実験室規模で熱処理する装置には、バッチ式の小型炉が広く用いられている。一方、大量の被処理物を連続的に熱処理する装置には、連続搬送式の大型炉が広く用いられている。連続搬送式の装置は、被処理物の搬送方法によっていくつかに分類される。
【0004】
被処理物はそのまま載置されて直接搬送される場合もあるが、板状または箱型の積載部材に積載して搬送される場合も多い。たとえば被処理物がガラス基板等の場合は、基板の割れやキズを防止するためガラスと同程度の硬度を持つ板状の積載部材が広く用いられ、被処理物が粉体の場合は、炉の構成部材への粉体の付着を防止しつつ、流動性の高い粉体でも積載量を確保するため箱型の積載部材が広く用いられる。被処理物および積載部材の搬送媒体としては、油圧プッシャー(プッシャー炉)、セラミックローラのコンベヤ(ローラハース炉)、金属メッシュベルトのコンベヤ(メッシュベルト炉)などが用いられる。
【0005】
被処理物であるペーストや粉体からは、乾燥または焼成などの熱処理によって溶剤または水などが蒸発し、蒸発ガスとなって炉体内部に浮遊する。蒸発ガスは、多くの場合に所望の熱処理には不要であるため、蒸発ガスを含む炉内雰囲気を炉外に排出するダクトなどの排気機構を有する熱処理装置が広く用いられる。
【0006】
近年、生産性の向上に伴って連続的に熱処理を行うことで処理量が増加し、炉体内部における蒸発ガスの濃度も増加している。そのため、炉体内部において気流の流速あるいは温度が低下しやすい部分、または炉外の排気ダクト内など特に蒸発ガス濃度が高く温度も低下しやすい部分に、結露が発生する可能性が指摘されるようになっている。被処理物の上方で結露が発生して被処理物に滴下すると、多くの場合に不良品となり歩留りが低下するので、特に被処理物の上方における蒸発ガスの結露を防止する必要がある。
【0007】
大流量の排気を行えば、炉内に滞留する蒸発ガスの濃度を低減して結露を抑制することは可能である。しかしながら、炉内の圧力バランスを保つために、排気したガスと同程度の流量の雰囲気ガスを供給する必要が生じ、雰囲気ガスを炉内で加熱するエネルギーコストが増大する。また、雰囲気ガスに大気以外の種々のガスを使用している場合は、そのガスの購入または生成にかかるコストも増大する。したがって、被処理物の熱処理においては、排気流量の増加を伴わずに結露を防止することが望ましい。
【0008】
従来、被処理物の上方における蒸発ガスの結露を防止する方法としては、排気フードを被処理物の搬送路の上方に設け、排気フードを加熱することで、排気フード内を蒸発ガスの露点温度以上に保温する方法がある(例えば、特許文献1参照)。この排気フードは、被処理物から立ち上がる蒸発ガスを所定の排気ダクトに導くためのものである。
【0009】
図6は特許文献1に記載された従来の熱処理装置の構成を示す図であり、図6(a)は特許文献1における熱処理装置の搬入口近傍を示す概略斜視図を、図6(b)は特許文献1における熱処理装置の搬入口近傍を示す概略断面図をそれぞれ示している。
【0010】
図6(b)に示すように、従来の熱処理装置には、被処理物1が炉体2の内部に搬入される際に通過する搬入口3が設けられている。そして、搬入口3の上方には、被処理物1から立ち上がる蒸発ガスを排気ダクト4に導くための排気フード5が設けられている。また、排気フード5には加熱器6が備えられている。また搬入口3の上部内周面には、防滴板部材7が設けられ、防滴板部材7には加熱器8が備えられている。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2004−44985号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
しかしながら、前記従来の熱処理装置では、炉外の雰囲気や常温で搬入される被処理物1の影響を受けて、排気フード5の末端部など局所的に温度の低い箇所が存在する可能性が高く、完全には蒸発ガスの結露を防止することができない。対策としては、温度の低い箇所が存在しなくなるまで排気フード5や搬入口3とその周辺部材を充分に加熱する方法が挙げられる。しかしながら、搬入口3の近傍の温度を過度に上昇させると、被処理物1が炉体2の中に搬入される前に加熱されてしまうことで蒸発が起こり、蒸発ガスが炉外に漏れ出して周辺環境を汚染するなど多大な悪影響を及ぼす場合がある。
【0013】
また、前記従来の熱処理装置で行われる、排気フード5や搬入口3とその周辺部材および蒸発ガスの加熱は、被処理物1の熱処理に本来は要しない余分なエネルギーを消費する行為であり、搬入口3の近傍は一般に常温なので加熱するためのエネルギーロスも大きい。さらに、生産性の向上に伴って連続的に熱処理を行う処理量が増加すると、蒸発ガスの発生量が増加して露点温度も上昇するので、結露防止のために必要な加熱量、すなわちエネルギーロスも増大していく。
【0014】
上記のような問題から、従来の熱処理装置では、エネルギーロスを抑制しつつ、蒸発ガスの結露と被処理物への滴下を防止することが困難であるという課題を有している。
【0015】
本発明は、上記従来の問題に鑑み、エネルギーロスを抑制しつつ、蒸発ガスの結露と被処理物への滴下の防止を実現できる熱処理装置を提供することを目的とする。
【課題を解決するための手段】
【0016】
上記目的を達成するために、本発明の請求項1に記載の熱処理装置は、少なくとも第1ゾーンおよび第2ゾーンを備える炉体内部において被処理物から蒸発ガスの発生を伴う熱処理を行う熱処理装置であって、前記被処理物の搬送方向に沿って前記炉体の内部空間を前記第1ゾーンおよび前記第2ゾーンに区切る位置に隔壁が配置され、前記炉体の搬入口を備える前記第1ゾーンの内部において、前記蒸発ガスを含む炉内雰囲気を吸い込むガス吸込口と、前記蒸発ガスの露点温度以下まで前記ガス吸込口で吸込まれた前記炉内雰囲気を冷却する冷却器と、前記冷却器での冷却により結露した前記蒸発ガスの液化物を前記炉体の外へ排出する排水機構とが、前記第1ゾーン内部の前記被処理物の搬送路の下方に配置され、前記第1ゾーンと連通する前記第2ゾーンの内部に前記熱処理用のヒータが配置されたことを特徴とする。
【発明の効果】
【0017】
本発明の熱処理装置によれば、エネルギーロスを抑制しつつ、蒸発ガスの結露と被処理物への滴下の防止を実現できる。
【図面の簡単な説明】
【0018】
【図1】本発明の実施の形態1における熱処理装置の概略斜視図
【図2】本発明の実施の形態1における熱処理装置の搬送方向に平行で鉛直な概略断面図
【図3】本発明の実施の形態1における熱処理装置の熱処理ゾーンの搬送方向に垂直な概略断面図
【図4】本発明の実施の形態1における熱処理装置のブロック図
【図5】本発明の実施の形態1における熱処理装置の予備ゾーンの搬送方向に垂直な概略断面図
【図6】(a)特許文献1における熱処理装置の搬入口近傍を示す概略斜視図、(b)特許文献1における熱処理装置の搬入口近傍を示す概略断面図
【発明を実施するための形態】
【0019】
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の説明において、同じ構成には同じ符号を付して、適宜説明を省略している。
【0020】
(実施の形態1)
図1は、本発明の実施の形態1における熱処理装置10の概略斜視図である。また、図2は本発明の実施の形態1における熱処理装置10の搬送方向に平行で鉛直な概略断面図である。図2は、被処理物11が炉体12の内部に搬入される際に通過する搬入口13の近傍において、被処理物11の搬送方向に平行で鉛直な面で炉体12を切断した断面図を示している。
【0021】
この熱処理装置10は、粉体状の被処理物11を積載した箱型の積載部材14を炉体12内に搬送し、この炉体12の内部空間で被処理物11を熱処理する装置である。本実施の形態1では、図2に示すように、搬送方向(図2の紙面左右方向)に沿って複数個設置された搬送ローラ15(搬送路)の回転によって、積載部材14が搬送方向に搬送される。すなわち、積載部材14は、図1に矢印で示す搬送方向16に沿って、図2の紙面の左から右へ向かって搬送される。
【0022】
図2に示すように、積載部材14は搬送方向16に沿って列をなして並べられており、それらを連続的に搬送することで、積載部材14に積載されている被処理物11を連続的に熱処理することができる。積載部材14は、積載部材同士の衝突を避けるために一定の間隔を空けて並べることも、隙間なく並べることも可能である。
【0023】
搬送ローラ15には、被処理物11を積載した積載部材14の荷重に耐えうる太さ(強度)のものを用いる。また、積載部材14の落下が生じないように、積載部材14の搬送方向16に沿った長さよりも充分に短いピッチで搬送ローラ15を並べる。搬送ローラ15が太すぎるか、または並べるピッチが短すぎると、後述する搬送路の下部からの伝熱および搬送路の上下間の気流を阻害するため、適正なローラの太さとピッチを設定することが望ましい。なお、無論、搬送方法は搬送ローラ15の回転によって積載部材14を搬送する方法に限定されるものではなく、例えばローラ上の積載部材を油圧プッシャーで押す方法や、メッシュベルトのコンベヤで搬送する方法などを用いることができる。なお、図4に示すように、搬送ローラ15は、その制御装置である搬送コントローラ38により制御されている。
【0024】
本実施の形態1では、炉体12の寸法は、鉛直方向の高さHを800[mm]、後述する各ゾーンの搬送方向16に沿った長さL1,L2をそれぞれ1000[mm]とする。また搬送方向16に直交する水平方向の横幅L3を1800[mm]とする。なお、無論、寸法はこれに限定されるものではなく、被処理物11の処理量に応じて適切な大きさに設定する。
【0025】
また、本実施の形態1では、粉体状の被処理物11を箱型の積載部材14に積載して熱処理する例を示しているが、無論、被処理物11および積載部材14の形態はこれに限定されるものではなく、例えばペーストを塗布したガラス基板で構成される被処理物を板状の積載部材に積載するなどに対しても、適宜設定することで対応できる。
【0026】
続いて、熱処理装置10のゾーン構成について説明する。熱処理装置10の炉体12は、その内部空間を搬送方向16に沿って熱処理プロセスに応じた複数のゾーン(処理空間)に分割している。図2には、それらのうち搬入口13を通過後の2つのゾーンの断面を示している。各ゾーンはゾーン隔壁17で区切られており、ゾーン隔壁17には、被処理物11と積載部材14が通過可能な通過口18が設けられている。
【0027】
本実施の形態1では、図2において被処理物11が搬入口13から搬入された後に通る順に、図2の紙面左側から第1ゾーン(予備ゾーン26)、第2ゾーン(熱処理ゾーン19)としている。図2の紙面右側の第2ゾーン(熱処理ゾーン19)は、被処理物11からの蒸発ガスの発生を伴う熱処理を行うための加熱器を備えており、熱処理ゾーン19と呼称する。なお、図2では第2ゾーン以降は記載を省略しているが、以降の複数のゾーン(第3ゾーン、第4ゾーン、・・・)は、基本的に第2ゾーンと同様の構成をもつ熱処理ゾーンである。
【0028】
図3は、熱処理ゾーン19を被処理物11の搬送方向に垂直な面で切断した断面図を示している。熱処理ゾーン19には、炉体12の上壁として上部断熱壁12aが、炉体12の下壁として下部断熱壁12bが、炉体12の水平方向に対向する側壁として側部断熱壁12cが、それぞれ設けられている。
【0029】
図3を用いて、積載部材14の搬送方法について追加で説明する。積載部材14は図3の紙面手前から奥に向かって搬送され、ここでは、搬送方向と直交する横方向(図3の紙面左右方向)に3個の積載部材14が並置されている場合を示している。このように横方向(搬送方向に垂直で水平な方向)に3個の積載部材14を並置して、それらを同時に搬送することで、横方向に並置された3個の積載部材14に積載されている各被処理物11を同時に熱処理することができる。前述したように、積載部材14は搬送方向に沿っても列をなして並べられているので、ここでは3本の列をなす積載部材14が同時に連続して搬送される。なお、無論、横方向に並置する積載部材14の個数はこれに限定されるものではない。しかしながら、横方向に並置する数が増えるほど生産性が向上するが、装置の設置スペースが増大し、搬送の難易度や、横方向に均一な熱処理を行う難易度も高くなる。
【0030】
図3において横方向に3個並置された積載部材14間の隙間は、それぞれ水平距離50[mm]で、また、積載部材14と側部断熱壁12cの内壁面との隙間は、左右とも水平距離150[mm]である。なお、無論、隙間の寸法はこれに限定されるものではないが、後述する搬送路の上下間の気流を阻害することのないよう、適正な隙間を設定することが望ましい。
【0031】
続いて、被処理物11からの蒸発ガスの発生を伴う熱処理を行うための加熱器について説明する。本実施の形態1では、加熱器として、積載部材14の搬送路を挟んで上下方向に、上部ヒータ20および下部ヒータ21をそれぞれ複数個ずつ設けている。詳しくは、搬送ローラ15の上方(上部断熱壁12a側)にパイプ状の上部ヒータ20が搬送方向16に沿って4個配置されており、同様に搬送ローラ15の下方(下部断熱壁12b側)にパイプ状の下部ヒータ21が搬送方向16に沿って4個配置されている。また、上部ヒータ20および下部ヒータ21は、長手方向が搬送方向16に直交する横方向(図3の紙面左右方向)と平行になるように配置されている。また、上部ヒータ20と下部ヒータ21は、積載部材14の上下方向(表面と裏面)での均熱化を図るため、積載部材14との間の垂直方向(図2の紙面上下方向)の距離が等しくなるようにそれぞれ配置されている。
【0032】
図4は、本発明の実施の形態1における熱処理ゾーン19のブロック図である。なお、ここでは、第2ゾーン(熱処理ゾーン19)以降については省略して図示しているが、これらは第2ゾーン(熱処理ゾーン19)と同様の構成である。
【0033】
上部ヒータ20と下部ヒータ21は、それぞれ上部ヒータ用温度コントローラ20aと下部ヒータ用温度コントローラ21aに接続されており、それらの温度コントローラは、上部ヒータ20と下部ヒータ21の出力、つまり温度を個別に制御する。なお、ここでは、上部ヒータ20および下部ヒータ21として同形状のものを用いたが、上下の温度制御が複雑になることが考慮されれば、異なる形状であってもよい。また、上部ヒータ20と下部ヒータ21は、例えば炉体12を構成する上部断熱壁12aおよび下部断熱壁12bに埋め込んでもよい。これらを埋め込んだ場合は、熱効率は落ちるが、熱処理装置10を小型化することが可能である。
【0034】
また、ここでは、上部ヒータ20および下部ヒータ21の種類として、パイプ状のセラミックケース内に抵抗体を収納して成る電気ヒータを用いるが、加熱器(上部ヒータ20、下部ヒータ21)の種類はこれに限定されるものではなく、例えばパネル型の電気ヒータや、ガス燃焼式のヒータなど、種々のヒータを用いることができる。
【0035】
続いて、熱処理ゾーン19のガス供給機構について説明する。被処理物11に行う熱処理が化学反応を伴う場合は、所望の化学反応に必要な種類の雰囲気ガスを炉体12の内部に供給する必要がある。また、化学反応を伴わなくても、蒸発ガスの発生を伴う熱処理(例えば被処理物11が含有する溶媒および水の乾燥)の場合は、蒸発ガスを含む炉内雰囲気を炉外に排出するガス排気機構が必要であり、炉内の圧力バランスを保つためには排気した流量と同程度の流量の雰囲気ガスを炉体12の内部に供給する必要がある。ここでは、被処理物11には化学反応と蒸発ガスの発生の両方を伴う熱処理を施すので、化学反応の促進と、炉内の圧力バランスの確保という2つの目的で雰囲気ガスの供給を行い、雰囲気ガスの種類には酸素(O)を用いる。
【0036】
この熱処理装置10のガス供給機構は、炉体12の内部に設置されたガス噴出口22へ炉体12の外部から雰囲気ガスを供給する機構であり、ここでは、ガス噴出口22が設けられた給気管23と、給気管23へ雰囲気ガスを供給する雰囲気ガス供給源32と、雰囲気ガス供給源から給気管23へ供給される雰囲気ガスの流量を制御するガス流量調整部33とからなる。ガス流量調整部33には、例えばレギュレータやダンパー、ファン等を用いることができる。
【0037】
炉体12の内部へ所望の熱処理に必要な雰囲気ガスを供給するガス供給機構の一部である円筒状の給気管23は、炉体12を横方向(搬送方向に垂直で水平な方向)から貫通する。この給気管23は、ガス供給機構の一部である雰囲気ガス供給源32に炉体12の外部で接続している。また、給気管23には、炉体12の外部において、ガス供給機構の一部であるガス流量調整部33が介装されている。また、給気管23の炉体12の内部における位置は、積載部材14の搬送路(搬送ローラ15)の上方である。
【0038】
給気管23の炉体12の内部における側面には、複数個のガス噴出口22が設けられている。したがって、炉体12の外部から給気管23を通じてガス噴出口22に供給された雰囲気ガスは、ガス噴出口22から被処理物11へ向けて噴出される。なお、無論、ガス供給機構の構成はこれに限定されるものではなく、ガス噴出口22および給気管23の形状、配置、個数は、被処理物11に施す熱処理の種類に応じて、また被処理物11および積載部材14の形状、配置、個数に応じて適宜設定する。
【0039】
続いて、熱処理ゾーン19のガス排気機構について説明する。被処理物11の熱処理は、上部ヒータ20および下部ヒータ21からの熱の供給、ならびにガス噴出口22から噴出された雰囲気ガスと被処理物11との接触によって進行するが、その熱処理中に、被処理物11に含有される成分の蒸発や化学反応によって被処理物11から蒸発ガスが発生する。この蒸発ガスが炉体12の内部に滞留すると、被処理物11に所望の化学反応とは逆の反応が起こる可能性がある。したがって、この蒸発ガスは、雰囲気ガスとともに炉外に排出する必要がある。
【0040】
この熱処理装置のガス排気機構は、炉体12の内部に設置されたガス吸込口24に吸込まれたガスを炉体12の外部へ排出する機構であり、ここでは、ガス吸込口24が設けられた排気管25と、排気管25を通じてガス吸込口24へガスを吸込ませる排気流量調整部(排気ファンとその制御部)34とからなる。
【0041】
蒸発ガスを炉体12の内部から外部へ排出するガス排気機構の一部である円筒状の排気管25は、炉体12を横方向(搬送方向に垂直で水平な方向)から貫通する。この排気管25は、ガス排気機構の一部である排気流量調整部34に炉体12の外部で接続している。また、排気管25の炉体12の内部における位置は、積載部材14の搬送路の上方である。
【0042】
排気管25の炉体12の内部における側面には、複数個のガス吸込口24が設けられている。したがって、熱処理により被処理物11から発生した蒸発ガスは、周囲の雰囲気とともにガス吸込口24から吸込まれ、排気管25を通じて炉体12の外部へ排出される。
【0043】
なお、無論、ガス排気機構の構成はこれに限定されるものではなく、ガス吸込口24および排気管25の形状、配置、個数は、被処理物11に施す熱処理の種類に応じて、また被処理物11および積載部材14の形状、配置、個数に応じて適宜設定する。
【0044】
給気管23および排気管25の材質として、ここでは、耐熱性を有し、被処理物11や雰囲気ガス、蒸発ガスへの耐食性を有するアルミナ質のセラミックスを用いる。なお、無論、使用温度条件を満たし、被処理物や雰囲気ガス、蒸発ガスへの耐食性を持つものであれば他の材質を用いることもでき、被処理物や雰囲気ガス、蒸発ガスの種類に応じて適宜設定する。
【0045】
上記の構成により、熱処理ゾーン19で被処理物11から発生する蒸発ガスを炉外に排出することが可能となるが、各ゾーンで発生する蒸発ガスを全て当該ゾーンのガス排出機構を通じて炉外に排出することは困難である。これは、蒸発ガスの一部は、雰囲気ガスの流路外にも拡散し、ゾーンを仕切る隔壁には必然的に被処理物の通過口が備えられているので、隣接するゾーンにも一部拡散するためである(なお、各ゾーンの排気を大流量にすればこれを防げるが、省エネの点で実用的でない。)。そのため、発生した蒸発ガスの一部は炉内に滞留し、また隣接するゾーン間を浮遊する。炉の搬入口13の近傍など、特に温度の低下しやすい領域に蒸発ガスが滞留して濃度が上昇すると、その領域において蒸発ガスの結露が発生し、それが被処理物11の上方である場合には被処理物11に滴下する可能性が生じる。
【0046】
この熱処理装置10は、図2に示すように、搬入口13と熱処理ゾーン19との間に、熱処理ゾーン19とは構成の異なるゾーンを1つ設けている。このゾーン(図2の紙面左側で、被処理物11が搬入口13を通過直後に通る第1ゾーン)は、蒸発ガスの発生を伴う熱処理を行わないゾーンであり、予備ゾーン26と呼称する。この予備ゾーン26の以下に説明する構成が、被処理物11の上方における結露の発生を防止する役割を果たす。
【0047】
図5は予備ゾーン26を被処理物11の搬送方向に垂直な面で切断した断面図を示している。予備ゾーン26には、熱処理ゾーン19と同様に、炉体12の上壁として上部断熱壁12aが、炉体12の下壁として下部断熱壁12bが、炉体12の水平方向に対向する側壁として側部断熱壁12cがそれぞれ設けられている。また、予備ゾーン26は、被処理物11の搬送路(搬送ローラ15)の下方に、蒸発ガスを含んだ炉内雰囲気を誘引するガス吸込口27と、蒸発ガスの露点温度以下まで炉内雰囲気を冷却して蒸発ガスを結露させる冷却器(水冷管)29と、結露した液体を炉外へ排出する排水機構(排水ユニット)30とをそれぞれ備えている。
【0048】
予備ゾーン26のガス排気機構について説明する。予備ゾーン26のガス排気機構は、熱処理ゾーン19のガス排気機構と同様に、炉体12の内部に設置されたガス吸込口27に吸込まれたガスを炉体12の外部へ排出する機構であり、ここでは、ガス吸込口27が設けられた排気管28と、排気管28を通じてガス吸込口27へガスを吸込ませる排気流量調整部(排気ファンとその制御部)35とからなる。
【0049】
円筒状の排気管28は、炉体12を横方向(搬送方向に垂直で水平な方向)から貫通する。この排気管28は、ガス排気機構の一部である排気量調整部(排気ファンとその制御部)35に炉体12の外部で接続している。また、排気管28の炉体12の内部における位置は、図5に示すように、積載部材14の搬送路の下方であり、かつガス吸込口27が(後述する)冷却器29の下端面よりも下方に配置する。
【0050】
排気管28の炉体12の内部における側面には、4個のガス吸込口27が設けられている。4個のガス吸込口27の位置は、被処理物11が搬送時に通過する範囲の直下ではない箇所であり、詳細には、図5の横方向に並置された積載部材14間の隙間の中点直下にガス吸込口27の中心があり、また積載部材14と側部断熱壁12cの内壁面との隙間の中点直下にガス吸込口27の中心があるように、それぞれ設定されている。なお、無論、ガス吸込口27の個数はこれに限定されるものではなく、横方向に並置する積載部材14の個数に応じて適宜設定する。また積載部材14間の隙間の直下には配置せず、積載部材14と側部断熱壁12cの内壁面との隙間の直下のみに配置しても構わない。
【0051】
これにより、予備ゾーン26の内部において搬送路の上方から下方へと向かう気流が形成される。図2において熱処理ゾーン19で発生した蒸発ガスのうち、熱処理ゾーン19のガス吸込口24から排気されずに通過口18を通じて予備ゾーン26に浮遊してきた分は、図5の紙面横方向に並置された積載部材14間の隙間、および積載部材14と側部断熱壁12cの内壁面との隙間を通り、また搬送方向に沿って並置された搬送ローラ15間の隙間を通って、搬送路の下方に誘引される。
【0052】
なお、上記の気流を形成するには、予備ゾーン26のガス吸込口27から一定量以上の流量のガスを吸込む必要があるが、過度の吸込み流量を予備ゾーン26のガス吸込口27に設定すると、搬入口13から過度の外気が予備ゾーン26に流入する可能性や、隣接する熱処理ゾーン19から必要以上に蒸発ガスを含む炉内雰囲気が予備ゾーン26に流入する可能性が生じる。
【0053】
これを防止するため、ここでは、予備ゾーン26内部と炉外との差圧が−5[Pa]の負圧となり、かつ予備ゾーン26内部と隣接する熱処理ゾーン19内部との差圧が−1[Pa]となるように、それぞれの流量調整部において、予備ゾーン26のガス吸込口27および熱処理ゾーン19のガス吸込口24からの吸込み流量を設定している。ゾーン間の圧力バランスはこれに限定されるものではないが、予備ゾーン26内部と炉外との差圧が−10[Pa]〜0[Pa]の範囲の負圧であり、予備ゾーン26内部と隣接する熱処理ゾーン19内部との差圧が0[Pa]以上の正圧であるか、または−5[Pa]〜0[Pa]の範囲の負圧となるように、各ガス吸込口から吸込むガス流量を設定することが望ましい。ここで、差圧の基準となる圧力については、熱処理ゾーン19の圧力を用いることが好ましい。すなわち、熱処理ゾーン19の圧力に基づいて、予備ゾーン26の圧力を調整する事が好ましい。
【0054】
上記の条件は、発明者による様々な条件での数値解析により、ガス吸込口の配置と個数、各ガス吸込口から吸込むガス流量を様々に変更し、ゾーン間の圧力バランスと、予備ゾーン26に流入する蒸発ガスおよび炉外雰囲気の量との間の関係を求めることによって見出した数値である。上記の条件を用いることにより、予備ゾーン26のガス吸込口から一定量以上の流量のガスを吸込むことができ、望ましい気流を形成することが可能となる。逆に、上記の条件を満たさない場合(差圧が下限または上限を超える場合)は、望ましくない気流が発生して、搬入口13から過度の外気が予備ゾーン26に流入する可能性や、隣接する熱処理ゾーン19から必要以上に蒸発ガスを含む炉内雰囲気が予備ゾーン26に流入する可能性が発生する。
【0055】
続いて、予備ゾーン26内部で搬送路の下方において蒸発ガスの露点温度以下まで炉内雰囲気を冷却して蒸発ガスを結露させるための冷却器について説明する。ここでは、冷却器29として、積載部材14の搬送路の下方に、水冷管(冷却器)29を複数個設けた。詳しくは、搬送ローラ15の下方(下部断熱壁12b側)に角パイプ状の水冷管(冷却器)29が図1の搬送方向16に沿って3個配置されている。また、水冷管(冷却器)29は、長手方向が搬送方向16に直交する横方向(図5の紙面左右方向)と平行になるように配置されている。
【0056】
角パイプ状の水冷管(冷却器)29は、炉体12を横方向から貫通する。この水冷管29は、冷媒供給源36に炉体12の外部で接続している。冷媒には常温の工業用水を用い、冷却器用温度コントローラ37を用いて、水冷管(冷却器)29の管内に絶えず冷媒を循環させることで、炉体12の内部で水冷管(冷却器)29およびその周囲の雰囲気が冷却される。
【0057】
これにより、予備ゾーン26内部でガス吸込口27によって搬送路の下方に誘引された蒸発ガスを含む雰囲気ガスは、水冷管(冷却器)29の周囲で蒸発ガスの露点温度以下にまで冷却され、搬送路の下方に位置する水冷管(冷却器)29の表面で蒸発ガスを結露させることができる。
【0058】
なお、予備ゾーン26内部に浮遊する蒸発ガスの濃度が低く、露点温度が常温よりも低い場合は、水冷管(冷却器)29の周囲を常温まで冷却しても、水冷管(冷却器)29の表面での結露は発生しない。この場合は、予備ゾーン26内部における他の部位、例えば常温付近である搬入口13の近傍などを含めて、被処理物11の上方で結露が発生する危険性がそもそも無いことになるので、問題にはならない。ただし、装置全体として過度に排気を行っている結果として浮遊する蒸発ガスの濃度が低くなっている場合は、多大なエネルギーロスを生じている可能性があるので、排気流量の低減を検討する必要がある。
【0059】
水冷管(冷却器)29と被処理物11との垂直方向(図2の紙面上下方向)の距離については、被処理物11の底面と水冷管(冷却器)29の上端面との垂直距離が160mmとなるように配置されている。水冷管(冷却器)29と被処理物11との垂直距離が近すぎると、被処理物11や積載部材14および搬送ローラ15までが冷却され、被処理物11の上方の雰囲気が蒸発ガスの露点温度以下に達してしまう可能性が生じる。これを防ぐには、冷却器29の冷媒として水や空気など常温付近のものを用いる場合に、被処理物11の底面と冷却器の上端面との間の垂直距離が100[mm]以上であり、より好ましくは、150[mm]以上であることが望ましい。
【0060】
なお、ここでは、冷却器29の種類として、角パイプ状の管内に冷媒である常温の工業用水を循環させる水冷管を用いて説明しているが、冷却器29の種類はこれに限定されるものではなく、例えば管内に常温の空気を循環させる空冷管など、種々の冷却器を用いることができる。ただし、冷媒に常温以下のものを用いる場合には、被処理物の近傍の過冷却を防ぐため、被処理物の底面と冷却器の上端面との間の垂直距離を前述した距離よりも長くとる必要がある。
【0061】
続いて、予備ゾーン26の内部で結露した液体を炉外へ排出する排水機構について説明する。ここでは、排水機構として、積載部材14の搬送路の下方に、排水ユニット30を設けた。詳しくは、搬送ローラ15の下方の下部断熱壁12bを貫通する排水管31を設け、下部断熱壁12bの一部を、排水管31に向かって傾斜させる形状とした。この排水管31は、排水回収部(図示せず)に炉体12の外部で接続させた。
【0062】
これにより、水冷管29の表面で結露した蒸発ガス成分は、排水ユニット30に滴下し、液体の状態で炉外に排出される。
【0063】
予備ゾーン26の排気管28、水冷管29、排水ユニット30それぞれの材質として、本実施の形態1では、防錆性を有するステンレス鋼を用いる。これは、本実施の形態1での蒸発ガスの主成分は水蒸気であるためである。なお、使用温度条件を満たし、被処理物や雰囲気ガス、蒸発ガスおよびその液化物への耐食性を持つものであれば他の材質を用いることもでき、被処理物や雰囲気ガス、蒸発ガスの種類に応じて適宜設定する。
【0064】
以上の構成により、熱処理ゾーン19において被処理物11から発生した蒸発ガスのうち隣接するゾーン間を浮遊する分は、予備ゾーン26において被処理物11の搬送路の下方で結露し、液体として炉外に排出される。よって、搬入口13の付近で炉の構成部材および排気ガスを加熱するようなエネルギーロスを伴うことなく、被処理物11の上方における蒸発ガスの結露と被処理物11への滴下を防止することが可能となる。
【0065】
また、従来は全て気体として排出していた蒸発ガスの一部を液体として排出することにより、装置全体として従来より少ない排気流量でも炉内の蒸発ガスを排出できる。ここでは、被処理物11から発生する蒸発ガス全体の30%を液体として排出するので、排気流量を約30%削減できる。排気流量を削減すると、同時に雰囲気ガスの供給流量を削減できることになり、雰囲気ガスを炉内で加熱するエネルギーコストと、雰囲気ガスの購入コストをそれぞれ約30%削減し、装置のランニングコストの低減が可能となる。
【0066】
なお、被処理物11の搬送が行われていることを検知する検知手段としてたとえばセンサーを設け、被処理物11の搬送が行われていないとき、そのセンサーからの信号により、各ゾーンの排気管25および28から排気するガス流量を制御する制御部や、各ゾーンの給気管23へ供給するガス流量を制御する制御部が、それぞれのガス流量を低減するよう構成することが望ましい。このようにすれば、生産が行われていないときの熱処理装置の消費エネルギーを低減し、熱処理装置のランニングコストをさらに低減することが可能となる。
【産業上の利用可能性】
【0067】
本発明の熱処理装置によれば、エネルギーロスを抑制しつつ、被処理物の上方における蒸発ガスの結露と被処理物への滴下の防止を実現し、さらに雰囲気ガスの供給量も削減できるため、装置のランニングコストの大幅な低減が可能となり、炉体内部において連続的に搬送される被処理物からの蒸発ガスの発生を伴う熱処理工程を持つ各分野において有用である。
【符号の説明】
【0068】
1、11 被処理物
2、12 炉体
3、13 搬入口
10 熱処理装置
14 積載部材
15 搬送ローラ
16 搬送方向
17 ゾーン隔壁
18 通過口
19 熱処理ゾーン
20 上部ヒータ
20a 上部ヒータ用温度コントローラ
21 下部ヒータ
21a 下部ヒータ用温度コントローラ
22 ガス噴出口
23 給気管
24、27 ガス吸込口
25、28 排気管
26 予備ゾーン
29 冷却器
30 排水ユニット
31 排水管
32 雰囲気ガス供給源
33 ガス流量調整部
34、35 排気流量調整部
36 冷媒供給源
37 冷却器用温度コントローラ
38 搬送コントローラ
39 制御装置

【特許請求の範囲】
【請求項1】
少なくとも第1ゾーンおよび第2ゾーンを備える炉体内部において被処理物から蒸発ガスの発生を伴う熱処理を行う熱処理装置であって、
前記被処理物の搬送方向に沿って前記炉体の内部空間を前記第1ゾーンおよび前記第2ゾーンに区切る位置に隔壁が配置され、
前記炉体の搬入口を備える前記第1ゾーンの内部において、前記蒸発ガスを含む炉内雰囲気を吸い込むガス吸込口と、前記蒸発ガスの露点温度以下まで前記ガス吸込口で吸込まれた前記炉内雰囲気を冷却する冷却器と、前記冷却器での冷却により結露した前記蒸発ガスの液化物を前記炉体の外へ排出する排水機構とが、前記第1ゾーン内部の前記被処理物の搬送路の下方に配置され、
前記第1ゾーンと連通する前記第2ゾーンの内部に前記熱処理用のヒータが配置された、
熱処理装置。
【請求項2】
前記第1ゾーン内部以外に、前記熱処理用のヒータが配置された、
請求項1に記載の熱処理装置。
【請求項3】
前記第1ゾーンと前記第2ゾーンは、吸込むガス流量を制御するガス吸込み流量調整部をそれぞれ個別に備え、
前記ガス吸込み流量調整部は、前記第2ゾーン内部の圧力に基づいて、前記第1ゾーン内部と前記炉体外との差圧が−10[Pa]〜0[Pa]の範囲で、かつ、前記第1ゾーン内部と前記第2ゾーン内部との差圧が−5[Pa]以上となるように、それぞれのゾーンで吸込むガス流量を調整する調整部である、
請求項1または2に記載の熱処理装置。
【請求項4】
前記第1ゾーン内部における前記冷却器が、前記搬送路の前記被処理物の載置面と前記冷却器の上端面との間の距離が100[mm]以上となるように配置された、
請求項1〜3のいずれかに記載の熱処理装置。
【請求項5】
前記第1ゾーン内部におけるガスを吸込むガス吸込口の位置が、前記冷却器の下端面よりも下方であり、前記搬送路の直下以外に配置された、
請求項1〜4のいずれかに記載の熱処理装置。
【請求項6】
前記第1ゾーン内部の前記冷却器の表面、前記排水機構の表面、および前記排水機構からの液体を炉体外へ排出する排出機構の表面が、前記蒸発ガスの液化物への耐食性を有する部材で構成された、
請求項1〜5のいずれかに記載の熱処理装置。
【請求項7】
前記被処理物の搬送の有無を検知する検知手段と、
前記被処理物の搬送が行われていない時に、前記ガス吸込口から吸込むガス流量を低減させ、同時に装置内への雰囲気ガスの供給流量を低減させる制御部と、
を備えた、
請求項1〜6のいずれかに記載の熱処理装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−64423(P2011−64423A)
【公開日】平成23年3月31日(2011.3.31)
【国際特許分類】
【出願番号】特願2009−216639(P2009−216639)
【出願日】平成21年9月18日(2009.9.18)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】