説明

物体の誘導・抵抗加熱用装置

流動性材料を加熱する装置は、コアであって、このコアの中に形成されている、流動性材料の輸送用の通路を有しているものと、螺旋パターンにおいて、コアに凭れるようにして、多数のターン数でコイル状にされている電気素子とを具備している。電気素子は、使用時において、コアを抵抗加熱及び誘導加熱の両方で加熱する。電気素子は、補助冷却能力を有していない。電気素子は、コアの外面に組み込まれ得、この場合、任意の強磁性ヨークが、それの上に組み込まれ、又は、それは、耐磨耗ライナ内に埋設された状態で、コアの内側に組み込まれ得る。ヨーク及びライナは、例えばホットスプレ技術によって付着させられる金属材料であり得ると共に、滑らかに仕上げられ得る。

【発明の詳細な説明】
【技術分野】
【0001】
技術分野
本発明は、物体を加熱する装置に関する。より具体的には、本発明は、物体を誘導加熱及び抵抗加熱の両方で加熱する装置に関する。本発明は、プラスチック及び金属のような溶融材料を処理するための大きいチューブ状物体(例えば、押出機及び射出成形機のような機械のバレル及びノズル)を加熱するのに特に有用である。
【0002】
発明の背景
図1を参照するに、従来技術による、典型的な抵抗加熱回路10が、示されている。電源12が、通常はライン周波数の、DC電圧又はAC電圧を、ヒータコイル14へ供給し得、そのヒータコイル14は、被加熱物品20に極めて近接して巻き付けられている。通常、ヒータコイル14は、絶縁体18を備えている電気抵抗素子で作られており、その絶縁体18は、電気抵抗素子を短絡から防ぐために使用されている。ヒータコイル全体をカバー16内に入れてモジュール加熱組立体を形成することも、一般的である。従来技術は、熱を材料に加えて被加熱物品20の温度を所定のレベルまで上昇させる方法の例を、たっぷり備えている。これらの例の大部分は、抵抗熱発生器即ちオーム熱発生器であって、加熱されるべき物品との機械的且つ熱的な伝達状態にあるものの使用に集中している。
【0003】
抵抗ヒータは、今日使用されている支配的な方法である。抵抗熱は、電流がワイヤを流れる際に起こるオーム損即ち抵抗損によって発生される。そして、抵抗型ヒータのコイルに発生した熱は、伝導又は放射により、加工物へ伝達されなければならない。抵抗ヒータの使用及び構成は、良く知られており、大部分のケースにおいて、誘導ヒータよりも、使用するのが容易且つ安価である。大部分の抵抗ヒータは、螺旋に巻かれているコイルから作られており、これらのコイルは、成形品上へ巻き付けられており、又は曲がりくねったループ素子へと形成されている。
【0004】
抵抗型ヒータを使用している典型的な発明は、Juliano外への米国特許第5,973,296号に見出され得、その特許は、厚膜ヒータ装置であって、円筒状基板の表面に印刷されている抵抗トレースにおけるオーム損を通して熱を発生するものを教示している。オーム損によって発生される熱は、ノズル内の溶融プラスチックへ伝達され、これにより、プラスチックは、易流動性状態に維持される。抵抗型ヒータは、比較的安価である一方、それらは、幾つかの相当な欠点を有している。ほんの幾つかの欠点は、精密許容差嵌合、ホットスポット、コイルの酸化、及び遅い昇温時間である。この加熱方法の場合、最大加熱電力は、PR(max)=(IR(max))×Rであり、式中、IR(max)は、抵抗ワイヤが流すことのできる最大電流に等しく、そして、Rは、コイルの抵抗である。更に、具体的な物品を加熱するための最小時間は、tR(min)=(cMΔT)/PR(max)によって支配され、式中、cは、物品の比熱であり、Mは、物品の質量であり、そして、ΔTは、所望されている温度変化である。抵抗加熱の場合、ヒータコイルにおける全エネルギ損失は、本質的にゼロに等しい。何故ならば、コイルに入る、電源からの全エネルギが、熱エネルギに変換されるからであり、従って、PR(losses)=0である。
【0005】
ここで図2を参照するに、従来技術による、典型的な誘導加熱回路30が、示されている。可変周波数AC電源32が、同調コンデンサ34へ並列に接続されている。同調コンデンサ34は、負荷における無効損失を補償して、そのような損失を最小にする。誘導ヒータコイル36は、通常、中空の銅チューブから成っており、その銅チューブは、それの外面に塗布されている電気絶縁被膜18と、チューブの内部を流れる冷却流体39とを有している。冷却流体39は、誘導ヒータコイル36から熱を除去すべく、冷却システム38と連通している。ヒータコイル36は、通常、加熱されるべき物品20と接触していない。電流がコイル36を流れると、矢印40a及び40bによって表されている磁力線が、生成される。
【0006】
誘導加熱は、導電性材料を交流(AC)電力で加熱する方法である。交流電力は、導電性コイル(例えば銅)へ加えられて交流磁界を生成する。この交流磁界は、コイルへぴったりと連結されている加工物内に交流電圧と交流電流とを誘導する。これらの交流電流は、電気抵抗損を発生し、これにより、加工物を加熱する。従って、誘導加熱の重要な特徴は、加熱素子と加工物との間の直接接触なしに、導電性材料内へ熱を送り届ける能力である。
【0007】
交流電流がコイルを流れると、電流の大きさと共に変化する磁界が、生成される。導電性の負荷がコイル内に置かれると、渦電流が、負荷の内部に誘導される。渦電流は、コイル内の電流とは反対の方向に流れる。負荷における、これらの誘導電流は、コイルによって生成される磁界とは反対の方向に磁界を生成して、負荷の中心へ磁界が浸透するのを防止する。このため、渦電流は、負荷の表面に集中させられると共に、中心に向かって劇的に減少する。図3Aに示されているように、誘導ヒータコイル36は、円柱状被加熱本体20の周りに巻き付けられている。電流密度Jは、グラフにおいて線41によって示されている。この現象の結果、殆ど全ての電流が、円柱状被加熱本体20の領域22内で発生され、そして、被加熱本体の中心に含まれている材料24は、熱の発生には利用されない。この現象は、しばしば、「表皮効果」と呼ばれている。
【0008】
本技術分野においては、負荷内の電流密度がそれの最大値の37%の値まで下がるところの深さが、浸透深さ(δ)と呼ばれている。単純化仮定として、負荷内の電流の全てが浸透深さ内にあるということが、無理なく仮定され得る。この単純化仮定は、負荷内の電流路の抵抗を計算するのに有用である。負荷は電流の流れに対する本来的な抵抗を有しているので、熱が、負荷内に発生する。発生される熱の量(Q)は、抵抗(R)と渦電流(I)の二乗と時間(t)との積の関数である(Q=IRt)。
【0009】
浸透の深さは、誘導加熱システムの設計における最も重要な因子のうちの1つの因子である。浸透の深さδについての一般式は、次式によって与えられる。
【数1】

【0010】
従って、浸透の深さは、3つの変数の関数であり、それらの3つの変数のうちの2つの変数は、負荷と関連している。変数は、負荷の抵抗率ρ、負荷の透磁率μ、及びコイル内の交流の周波数fである。真空の透磁率は、4π×10-7(Wb/A m)に等しい定数である。
【0011】
浸透の深さを計算する主な理由は、与えられたサイズの負荷内にどのくらいの電流が流れるかを決定するためである。発生される熱は、渦電流の二乗(I)に関連しているので、可能な限り大きい電流の流れを負荷内に有することが、重要である。
【0012】
従来技術においては、誘導加熱コイルは、殆ど排他的に、中空の銅チューブであって、このチューブの中を流れる水冷を備えているもので作られている。抵抗ヒータのように、誘導コイルも、或るレベルの抵抗熱発生を示す。この現象は、望ましくない。何故ならば、コイル内に熱が発生すると、それが、コイルの全ての物理的な特性に影響を与えて、ヒータ効率に直接的に強い影響を与えるからである。更に、熱がコイル内に生じると、コイル材料の酸化が、強まり、そして、それは、コイルの寿命を厳しく制限する。これが、流動伝達媒体を使用して誘導コイルから熱を奪うための手段を従来技術が採用してきた理由である。従来技術による、その使用されない熱は、熱エネルギを浪費し、これは、誘導ヒータの全効率を低下させる。更に、流水のような能動的冷却手段のシステムへの追加は、システムのコストを大いに上昇させ且つ信頼性を低下させる。従って、誘導コイル内に発生される抵抗熱を利用する方法を見出すことは、有利であり、これは、ヒータ全体の複雑さを低減させると共に、システム効率を上昇させよう。
【0013】
従来技術によると、種々の被覆が、被加熱加工物の高い温度からコイルを保護すべく且つ電気絶縁をもたらすべく、使用されている。これらの被覆は、セメント、ガラス繊維、及びセラミックを含む。
【0014】
誘導加熱電源は、コイルへ供給される電流の周波数によって分類される。これらのシステムは、ライン周波数システム、電動発電システム、固体システム、及び無線周波数システムとして、分類され得る。ライン周波数システムは、電力送電設備網から入手可能な50Hz又は60Hzで作動する。これらは、最も低コストのシステムであると共に、通常、浸透の深い深さの故に、大きいビレットの加熱に使用される。周波数変換の欠如が、これらのシステムにとっての主要な経済的利点である。従って、ライン周波数を効率的に使用する誘導加熱システムを設計することが、有利であり、これにより、システムの全体コストが、下がる。
【0015】
Ross外への米国特許第5,799,720号は、溶融金属を移送するための誘導被加熱ノズル組立体を示している。このノズルは、箱状の構造体であり、箱の壁と誘導コイルとの間に絶縁材を備えている。その箱構造体内を流れる溶融金属が、誘導コイルを介して、誘導加熱される。
【0016】
Shibata外への米国特許第4,726,751号は、チューブ状ノズルを備えているホットランナープラスチック射出システムであって、そのノズルの外側の周りに巻き付けられている誘導加熱巻線を備えているものを開示している。巻線は、互いに直列に、高周波電源へ取着されている。チューブ状ノズルそれ自体が、誘導コイルによって加熱され、そのチューブ状ノズルは、順次、熱を溶融プラスチックへ伝達する。
【0017】
Aarsethへの米国特許第5,979,506号は、石油パイプラインを加熱する方法及びシステムであって、パイプラインの周囲に沿って配置されているヒータケーブルの使用を採用しているものを開示している。ヒータケーブルは、抵抗熱発生及び誘導熱発生の両方を示し、熱は、パイプラインの壁へ、これにより、パイプライン内の内容物へ、伝達される。この軸方向で使用されている電気導体は、長い導体(>10km)の本来的な抵抗に依存している抵抗器として、オーム加熱用に主として利用されている。Aarsethは、電源の周波数を0〜500Hzの間で変化させることによって誘導加熱がもたらされ得る、ということを主張している。
【0018】
Iguchiへの米国特許第5,061,835号は、低周波電磁ヒータから成る装置を開示しており、その低周波電磁ヒータは、2次側に短絡回路を備えている低電圧変圧器を利用している。1次コイルと、磁気鉄心と、規定抵抗を備えている2次格納容器の特殊なデザインとの構成が、この開示の真髄である。その開示は、低温ヒータを記載しており、この低温ヒータにおいては、在来の樹脂状成形コンパウンドが、1次コイルの周りに置かれていると共に、鉄心と2次パイプとの間の空間を満たしている。
【0019】
Burkeへの米国特許第4,874,916号は、多層巻線を備えている誘導コイル用の構造体を開示しており、この構造体は、変圧器手段と磁心とであって、各巻線における電流の流れを動作窓のあらゆる部分で等しくするためのものを設けられている。特別に構成されているコイルが、別個の素線から作られていると共に、各素線が全ての使用可能な半径方向位置を同じ程度まで占めるように配設されている。
【0020】
Dufourへの米国特許第2,163,993号は、加熱されるべき物品の周りに巻き付けられている電気導体と、抵抗及び誘導の両方によって行われる加熱とを開示している。しかしながら、コイルが物品の外側にあり且つコイルの外側に物品の部分が全く存在しないので、磁気回路は、コイル状の導体の周りで閉じられていない。また、コイル状の導体の外側に物品の部分が全く存在しないので、導体内で発生される抵抗熱の幾らかは、その導体が取り囲んでいる物品へよりも、周囲空気へ伝達される。
【0021】
Gilbertへの英国特許第772,424号は、1つ又は2つ以上のコイルであって、各々が複数の同軸巻線から成っているものを開示しており、それらの同軸巻線は、シリンダの周りに配置されていると共に、ツーピースシェル即ちツーピースケーシング内に閉じ込められており、そのツーピースシェル即ちツーピースケーシングは、やはり磁化可能材料で作られていると共に、押出システム又は射出成形システム用のシリンダの周りにクランプされている。コイルは、シリンダとシェルとを誘導加熱する。コイルによる抵抗加熱の開示及びコイル構成の詳細は、全く存在しない。
【0022】
改良された加熱装置であって、この加熱装置において発生される熱の使用を最適にすべく、この加熱装置の内側に位置させられている加熱コイルから発生される誘導熱及び抵抗熱の両方を利用するものに対するニーズが、存在する。
【0023】
発明の概要
流動性材料を加熱する装置が、提供される。その装置は、コアであって、このコアの中に形成されている、流動性材料の輸送用の通路を有しているものと、螺旋パターンにおいて、コアに凭れるようにして、多数のターン数でコイル状にされている電気素子とを具備している。電気素子は、使用時において、コアを抵抗加熱及び誘導加熱の両方で加熱する。電気素子は、補助冷却能力を有していない。
【0024】
コアは、強磁性体で好適に作られていると共に、螺旋溝を有しており、この螺旋溝の中に、電気素子が、組み込まれている。やはり好適に強磁性体から成るヨークが、コアと電気素子との周りに好適に設けられている。ヨークは、コア上に組み込まれるスリーブであってよく、又は、それは、コア上に付着させられる金属材料であってもよい。
【0025】
電気素子は、組み込まれたときに、溝と一致し得ると共に、コアの外面と面一になる外面を好適に有している。
【0026】
コアは、耐磨耗ライナを有し得、そして、電気素子は、ライナ内に、コアの内面に凭れるようにして埋設され得る。ライナは、ホットスプレ技術によって形成され得ると共に、流動性材料が通過するところの滑らかな内腔を形成すべく仕上げられ得る。
【0027】
好適な実施形態の詳細な記載
図3を参照するに、本発明の例示としての実施形態41の単純化された図が、概略的に示されている。電源42は、ヒータコイル44へ交流電流を供給し、そのヒータコイル44は、本体20a及び20bの周りに巻き付けられていると共に、それらの本体20a及び20bとの伝達状態にある。好適な実施形態においては、但しそれに限定されないが、コイル42は、本体20a及び20bの間に形成されている溝46内に配置されており、その溝46は、閉磁気構造体を形成している。交流電流がコイル44に加えられると、矢印40a及び40bによって示されている磁力線が、発生する。本体の周囲全体の周りには複数の磁力線(簡単化のために、2つの磁力線40a及び40bが示されている)が発生する、ということが、留意されるべきである。これらの磁力線は、本体20a及び20b内に渦電流を発生し、この渦電流は、前述した表皮効果原理に従って熱を発生する。好適な実施形態においては、本体20a及び20bは、磁力線20a及び20bを最大にして可能な限り大きな熱を発生すべく、最善の状態に設計され得る。更に、コイル44は、本体20a及び20bとの熱伝達状態にあり、もって、コイル44内で発生する抵抗熱は、本体へ伝導する。
【0028】
ここで図3B及び図3Cを参照するに、本発明の別の例示としての好適な実施形態47が、概略的に示されている。本明細書においては、シリンダが、主として図示されており且つ議論されているが、本出願における用語シリンダ又はチューブの使用は円形のシリンダ又はチューブに決して限定されず、これらの用語はあらゆる断面形状を包含することが意図されている、ということが、理解されるべきである。更に、全ての図示されている電気回路構成体は、電源への直結即ちオーミック接続を採用しているが、本発明はそれに限定されない、ということが、理解されるべきである。何故ならば、本発明の適用の範囲が、誘導的に又は容量的に電源が発熱体へ電気的に結合されるところのケースをも含むからである。
【0029】
ヒータコイル52が、コア48の周りに、螺旋の態様で巻き付けられている。好適な実施形態においては、ヒータコイル52は、銅のような固体金属材料、又は他の非磁性の導電性且つ熱伝導性の材料で作られている。あるいは、コイルは、高抵抗耐熱合金で作られ得る。低抵抗を有している導体の使用は、幾つかの加熱用途において有用であり得る。低抵抗コイル用に使用され得る一のワイヤ構造は、リッツ線である。リッツ線構造は、表皮効果に起因する、固体導体において示される電力損失を最小にすべく、設計される。表皮効果は、高周波電流の、導体の表面に集中する傾向である。リッツ構造は、導体のサイズを著しくは増大させることなく、表面積の量を増大させることにより、その効果を妨害する。リッツ線は、多数の細い銅線から成っており、各素線は、0.001インチのオーダの直径を有しており、そして、電気絶縁が、各素線の周りに施されており、もって、各素線は、独立した導体として作用する。
【0030】
コア48の内壁49が、加熱されるべき流体材料又は固体材料の移送用の通路58を画成している。例としてのみの、好適な実施形態においては、流体材料は、気体、水、溶融プラスチック、溶融金属又は他の材料であり得る。ヨーク50が、ヒータコイル52の周りに且つこのヒータコイル52との熱伝達状態で位置させられている。好適な実施形態においては、ヨーク50は、やはり、好適に(しかし排他的にではなく)強磁性体で作られている。コイル52は、コア48とヨーク50との間に設けられている溝54内に置かれ得る。コア48及びヨーク50は、好適に、ヒータコイル52との熱伝達状態にある。ヒータコイル52とコア又はヨークとの間の熱伝達を増大させるために、適切な螺旋溝であって、ヒータコイル52をなおいっそう固定し且つこの螺旋溝内での接触面積を増大させるためのものが、少なくともコア又はヨーク内に設けられ得る。この増大させられた接触面積は、ヒータコイル52からコア又はヨークへ熱の伝導を増大させる。
【0031】
適切な周波数の交流源(図示せず)が、コイル52へ、このコイル52に電流を流すべく、直列に接続されている。好適な実施形態においては、電流源の周波数は、ヒータの物理的な設計と調和すべく選択される。あるいは、電流源の周波数は、加熱システムのコストを下げるべく、好ましくは50〜60Hz付近に、固定され得、そして、コア48及び/又はヨーク50並びにヒータコイル52の物理的なサイズは、その与えられた周波数に対して最も効率の良いヒータを製造すべく変更され得る。
【0032】
ヒータコイル52を流れる交流電流の供給は、ヒータコイル52の誘導加熱及び抵抗加熱の両方をもたらし、そして、前述した渦電流の発生によってコア48及びヨーク50内に熱を生成する。コア48の直径及び肉厚は、可能な限り高いヒータ効率を達成すべく選択されると共に、最も効率の良いコイル径を決定する。以下に記載されるべき方法に基づいて、ヒータコイルの直径が、与えられたヒータの設計に対して、種々の物理特性及び性能パラメータに基づいて選択される。
【0033】
図3Cを参照するに、ヒータコイル52の拡大断面図が、種々の構成要素における電流密度の図示と共に示されている。ヒータコイル52は、それの主軸即ち長さに沿って、交流電流源からの高周波交流電流によって行ったり来たりされる。この電流の流れの効果は、ヒータコイルの断面106に沿う、図3Cに示されている電流密度プロファイルを生成することである。当業者ならば明瞭に理解するであろうように、曲線58,60及び56は、各々、各構成要素における表皮効果を表している。コイル52については、このコイルは、トレース60で示されている、導体断面における電流密度を示しており、この電流密度は、導体の外縁部において最大であり、そして、導体の中心に向かって指数関数的に減少する。
【0034】
本発明はヒータコイル52を強磁性コア48と強磁性ヨーク50との間に置いているので、表皮効果現象も、これらの構成要素内で起こる。図3Cは、ヨーク及びコアの断面における電流密度プロファイルを示している。前述のように、全ての実用的な目的上、全ての誘導電流が、3δに等しい深さにおいて、各構成要素の表皮に沿う領域内に含まれる。曲線56は、コア48内に誘導される電流密度を示している。コイルの中心から距離3δにおいて、本質的に電流の100%が、コア内に含まれると共に、熱を発生すべく作用する。しかしながら、曲線58は、ヨーク内の電流密度を示しており、この場合、陰影領域62によって描かれている電流の部分は、ヨーク内には含まれておらず、それ自体、熱を発生していない。この熱エネルギを発生する機会を失うことは、ヒータ全体の効率を下げることになる。
【0035】
この加熱方法の場合、ヒータの設計の種々のパラメータが、解析され得ると共に、高効率のヒータを製造すべく変更され得る。それらのパラメータは、以下のものを含む。
coil=ヒータコイル電流
n=ヒータコイルのターン数
d=コイルワイヤの直径
o=ヒータコイルの半径
l=コイルの長さ
ρcoil=ヒータコイルの抵抗率
coil=ヒータコイルの比熱
γcoil=コイルの密度
y=外側チューブの厚さ
h=溶融チャンネルの直径
μsubstrate=基材の透磁率
substrate=基材の比熱
γsubstrate=基材の固有密度
f−交流の周波数
ΔT−温度上昇
【0036】
コイルの電気的な抵抗率(ρcoil)及びコイルの物理的な寸法(n、d、Ro、l)が、コイル内での抵抗熱エネルギの生成への主要な寄与物である。これまで、従来技術は、この熱発生を利用不可能とみなして、それを軽減するための幾つかの方法を使用していた。第1に、抵抗熱の発生を低減させるためにリッツ線を使用し、第2に、適切な冷却液でコイルを冷却していた。この結果、ヒータは、ピーク効率で動作することはない。
【0037】
このことを念頭に置いて、本発明は、誘導コイル内の全てのエネルギを活用し且つこのエネルギをプロセス加熱に利用する。コイルのエネルギの全てをプロセスへ効率良く伝達すべく、我々は、材料を選択すると共に、誘導コイルを、最適な位置(又は深さ)において基材内に配置する。なお、その最適な位置(又は深さ)は、プロセス加熱要求性能、機械的構造要求性能及び加熱速度の解析に基づいている。
【0038】
例えば図3Bに示されている、本発明の好適な実施形態においては、コイル52の材料は、ニクロムであってよく、このニクロムは、銅よりも6倍高い抵抗を有している。この高められた抵抗により、我々は、従来技術において示唆されている銅を用いるよりも、6倍も多い熱を発生することができる。純粋な誘導加熱システムにおいては、一般に使用されている高周波誘導加熱装置は、高められたヒータ抵抗の下では、動作することができないであろう。今日知られている電源は、最低のコイル抵抗で動作し、この最低のコイル抵抗は、加熱装置の共振状態を支持する。通常、従来技術によると、コイル抵抗における増大は、加熱システムの効率を著しく低下させる。
【0039】
コイル52は、動作すべく、コア及びヨークから電気的に絶縁されている。そこで、高誘電体絶縁被膜53を提供する材料が、コイル52の周りに設けられなければならない。コイル絶縁材53は、また、コイル52からヨーク及びコアへの熱伝達を可能にすべく、良好な熱伝導体でなければならない。良好な誘電特性と優秀な熱伝導性とを備えている材料は、容易に入手可能である。最後に、コイル52は、被加熱コア及び被加熱ヨークとの密接な接触状態で配置されなければならない。良好な熱伝導性を備えている誘電体は、注封材料として、固体の形において及び粉体の形において入手可能である。どちらの形の誘電体を使用すべきかは、個々の用途次第である。
【0040】
ヨーク及びコア内に組み込まれているコイル52によって発生される使用可能な全エネルギは、次の関係式によって与えられる。
combo=Q(resistive)+Q(inductive)
combo=Ic2c+Iec2ec
式中、
Q=熱エネルギ
combo=誘導加熱及び抵抗加熱の組合せによって発生されるエネルギの量
c=加熱コイル内の全電流
c=誘導コイルの抵抗
ec=被加熱物品内の全等価渦電流
ec=被加熱物品内の等価渦電流抵抗
【0041】
上式の第2の部分は、コイルを流れ且つコア及びヨーク内に渦電流を誘導する電流の結果としての、誘導寄与分である。コイル52はコア48とヨーク50との間に配置されているので、我々は、結合損失を全く有しておらず、このため、最大エネルギ伝達が、達成される。純粋な抵抗法又は純粋な誘導法と比較して、同じコイル電流がより大きい加熱電力を供給する、ということが、エネルギ式から理解され得る。この結果、同じ電力レベルの場合、ヒータコイルの温度は、純粋な抵抗加熱よりも、著しく低くなり得る。現代の誘導加熱においては、誘導コイルにおけるオーム損として発生するエネルギの全てが、前述のように、冷却によって除去される。
【0042】
構造部品加熱の場合、部品内の熱勾配の低減が、重要である。抵抗加熱及び誘導加熱は、熱勾配をもたらし、そして、両方の加熱手段の組合せは、同じ電力定格に対して、熱勾配を著しく低減させる。抵抗発熱体は1600°Fの温度に達し得る一方、被加熱物品は、暫くの間、表面下層内への熱伝導を開始し得ない。この加熱遅れは、結果的に、材料の表面に大きな熱勾配をもたらす。著しい引張応力が、動的熱勾配のために、被加熱物品の表皮に存在する。同様に、誘導加熱は、被加熱物品の薄い表皮に、熱を高速で生成するだけである。これらの有害作用は、本発明に従って、2つの別体の加熱源を一体となるように組み合わせることにより、著しく減少させられ得、そして、本発明は、結果的に、温度勾配を平らにし、従って、局部的な応力レベルを低減させる。
【0043】
ここで、前述の各加熱方法についての種々の設計基準を比較している表を示している図5を参照するに、読者は、本発明による誘導加熱と抵抗加熱との組合せを用いることと結び付いている利点を、直ちに認識することができる。本発明によると、より大きい熱エネルギが、補助的な冷却を用いることなく且つ共振フィルタを用いることなく、より小さいエネルギ損失で発生される。この結果、与えられた物品を加熱するための時間が、より短くなると共に、より制御された態様(ヒータコイルの設計に依存している)で達成される。
【0044】
ここで図4及び図4Aを参照するに、本発明の別の例示としての好適な実施形態であって、ノズル100に適用されているものが、示されている。これらの図は、マグネシウムのような射出成形金属用の典型的な構成を示しているが、プラスチックのような射出成形材料用の多数の他の構成も、当業者により、非常に僅かな努力で容易に想像され得る、ということが、留意されるべきである。
【0045】
熱ノズル100は、細長い外側部102(ヨークの均等物)から成っており、この外側部102は、それの中に形成されている通路104であって、流体の輸送のためのものを有している。流体は、溶融金属(例えばマグネシウム)、プラスチック、又は他の流体のようなものであり得る。好適な実施形態においては、流体は、チキソトロープ状態のマグネシウム合金である。好適な実施形態においては、螺子部103が、外側部102の近位端部に設けられており、その螺子部103は、ノズルヘッド108に形成されている螺子部と協働している。ノズルヘッド108は、外側部102へ堅固に固定されており、そして、内側部116(コアと均等)が、ヘッド108と外側部102との間に挿入されている。通路104は、流体の輸送のために、内側部116を貫通して出口110まで続いている。ヒータコイル106の挿入用の環状ギャップ107が、内側部116と外側部102との間に設けられている。この好適な実施形態においては、テーパ部112が、ノズルヘッド108と内側部116との間に設けられており、これにより、良好な機械的な接続が、保証される。電気導体118及び120が、それぞれ、ヒータコイル106への接続用の溝114及び115を介して挿入されている。ヒータコイル106は、好適に、前述の電気絶縁被膜を設けられている。
【0046】
図によって示されているように、この構成では、ヒータコイル106は、強磁性内側部116と強磁性外側部102との間に挟まれており、これは、コイルの周りに閉磁気回路を形成している。好適に、ヒータコイル106は、コイルからの熱伝導を増大させるべく、内側部116及び外側部102の両方との物理的な接触状態にある。しかし、ヒータコイル106と内側部及び外側部との間の僅かなギャップは、依然として正しく機能するであろう。
【0047】
好適な実施形態においては、交流電流が、ヒータコイル106を流れ、これにより、外側部102及び内側部116内に、更に、ノズルヘッド108内に、誘導熱が、発生する。コイル106を流れる電流は、また、コイル自身内に抵抗熱を生成し、この抵抗熱は、内側部及び外側部へ伝導する。この構成においては、熱エネルギは、殆ど又は全く失われず又は浪費されずに、加熱されるべき物品に向けられる。
【0048】
ここで図6を参照するに、本発明の別の例示としての好適な実施形態であって、溶融材料を処理する機械(例えば、押出機又は射出成形機)用のバレル組立体200へ適用されているものが、概略的に示されている。押出機又は射出成形機用のバレル組立体200は、通常、任意の耐磨耗ライナ204を備えているバレル部202と、ノズル206と、スクリュ208と、バレル組立体200を加工機へ接続するマウント210とを備えている。
【0049】
本発明は、コイル状にされた電気素子212を、バレル部202(コアの均等物)の中又は上に組み込んでいる。図6に示されている実施形態においては、電気素子212は、バレル部202の外側に沿って形成されている少なくとも1つの螺旋溝214内に組み込まれている。スリーブ216(ヨークの均等物)が、任意に、バレル部202上に組み込まれ得、これにより、少なくとも1つの溝214内に電気素子212を維持するのが、助けられる。あるいは、螺旋溝は、バレル部の内側に沿って形成され得、そして、電気素子は、それの中に組み込まれ得る。しかしながら、そのような構成は、製造し且つ組み立てるのが困難である。バレル部202、ライナ204、スクリュ208、及びスリーブ216は、全て、強磁性体で好適に作られており、もって、それらは、400Hzまでの低周波加熱の用途に好適な磁気構造体を容易に形成し得る。あるいは、これらの構成要素は、高導電性のセラミック材料又はグラファイト材料で作られ得る。螺旋溝214は、所望されている熱プロファイルをバレル部202に沿って提供すべく、可変の軸方向ピッチを有していてもよい。溝214は、バレル部202に沿う単一の電気素子212を有し得、又は、溝214は、複数のコイル状電気素子212を有し得、この場合、個々に制御され得る、離散した加熱ゾーンを提供すべく、各コイルは、別のコイルの隣に軸方向に位置させられる。各コイルは、コイル間の干渉を防止すべく、僅かに異なる周波数で動作し得る。
【0050】
溝214及び電気素子212を備えているバレル部202の部分の詳細図を示している図7及び図8を参照するに、電気素子212が溝内に組み込まれると、好適に、電気素子212の外面218が、バレル部202の外面とほぼ面一になるように、溝214は、バレル部202の外面に形成されている。これは、電気素子212が溝内に組み込まれる際に、電気素子212が溝214の形状と一致するように、電気素子212を変形させることによって達成される。電気素子212は、円い断面を最初は好適に有している同軸構造である。正方形、長方形又は他の形状の断面を有している電気素子も、適している。
【0051】
電気素子212は、導体226(好ましくは、ニッケルクロムのような、高い抵抗を有している材料)を具備しており、その導体226は、電気絶縁材料によって取り囲まれており、その電気絶縁材料は、また、熱伝導性でもあり、好ましくは、高度に圧縮された鉱物粉体(例えば酸化マグネシウム)である。金属シース228が、絶縁材料と導体とを囲んでいる。一の、そのような電気素子は、フランス国Suresnes CedexのThermocoaxから、商品名THERMOCOAXで販売されている。
【0052】
溝214は、好適に、丸みを付された内部隅部222と、垂直側部224とを有している。電気素子212が溝内へ圧入されると、シース228は、溝214の形状と実質的に一致すべく変形し、そして、外面は、平らになって、バレル部202の外面220とほぼ整合する。外側部218は、スリーブ216と外面218との間の良好な接触を保証すべく、好適に、外面220を僅かに越えて突出していてもよい。スリーブ216は、バレル部202上へ焼嵌めされ得、これにより、電気素子212は、溝214内へしっかりと圧入させられる。あるいは、スリーブ216は、一体となるようにクランプされている、2つのC字形部であってもよい。しかしながら、スリーブ216が無くても電気素子212は溝214内に留まるということが、見出されている。
【0053】
スリーブ216は、バレル組立体200内で処理される際の圧力によって発生される著しい半径方向荷重に耐え得るかもしれないし耐え得ないかもしれない。図7及び図8に示されているように、スリーブ216は、バレル部202と比して非常に薄くてもよく、電気素子212を拘束する目的のためのみに奉仕してもよい。あるいは、図9に示されているように、スリーブ216は、かなりの厚さを有していて、著しい半径方向荷重に耐えてもよい。この実施形態においては、スリーブ216は、バレル部202とほぼ同じ厚さを有している。この実施形態は、バレル組立体200の壁部の内側へ、素子212をより深く配置させている。このような配置は、バレル組立体200を加熱するのに、誘導エネルギをより効率的に使用するという利点を有している。何故ならば、電気素子212から外方へ延びる磁界が、より深い浸透の深さに亘って、金属構造体(スリーブ216)と係合するからである。また、電気素子212はスクリュ208へより近接しているので、それは、電気素子212がより遠くに位置させられているところの実施形態であって、浸透の深さを増すために、より低い周波数が必要とされるものにおけるよりも、より高い周波数でより効率的に加熱することができる。
【0054】
図10を参照するに、本発明の別の実施形態においては、電気素子212は、ライナ内に組み込まれ得る。この実施形態の利点は、構造用バレル部202が、滑らかなままであり、応力を集中させる溝を備えていない、ということである。ライナ204は、螺旋溝を備えているチューブ状素子であり、その螺旋溝内へは、電気素子212が、組み込まれている。バレル部202は、前述の実施形態においてスリーブ216が行っているのと同様な態様で、電気素子212を覆っている。あるいは、電気素子212は、コイル形状に形成されて、コア202の内面250に凭れるようにして組み込まれ得る。次いで、ライナ204を形成すべく、電気素子及び内面250の上に、適切な耐摩耗ライナ材料が、例えばホットスプレ技術により、付着させられ得、そして、ライナ204の内面が滑らかな内腔を形成すべく仕上げられ得るように、その適切な耐摩耗ライナ材料は、十分な厚さに形成され得る。なお、その内腔を、バレル組立体内で処理されつつある流動性材料が、通過する。これが、本発明の最良のモードである。何故ならば、スクリュ208とスクリュ208によって処理されつつある材料とを誘導加熱すべく、しかも、バレル部202を効率的に加熱すべく、電気素子212が、スクリュ208(図6に示されている)に最も近接して配置されるからであり、また、現行の技術での製造が、実際的であるからである。また、熱が、コア202の内側に集中し、これにより、コア202の外側は、流動性材料が処理されているところの温度よりも低い温度であり得る。
【0055】
図11に示されている実施形態においては、バレル部202は、溝を有していないという、同じ利点を有している。電気素子212は、別体のヒータバンド230における螺旋溝214内に組み込まれており、そのヒータバンド230は、バレル部202上に組み込まれている。ヒータバンド230は、好適に、非構造用のものである。前述の実施形態のように、任意のスリーブ216が、電気素子212を溝内に保持すべく使用され得る。
【0056】
同様の利点が、図12に示されている実施形態によって得られる。この実施形態においては、構成要素に形成されている溝は、全く存在しない。電気素子212は、スペーサ素子232と共にバレル部202上へ巻きつけられており且つスペーサ素子232の間の空間とほぼ一致すべく圧縮されている。スペーサ素子232は、好ましくはコア202と同じ系統の材料からの、アニールされた強磁性体のストリップのような材料であり得る。この実施形態においては、スリーブ216は、電気素子212とスペーサ素子232との両方をバレル部202に対して保持するのに好ましく、もって、スペーサ素子と電気素子とは、スリーブとコアとの間に収容されている。
【0057】
図13に示されている別の実施形態においては、バレル部202は、それの外面220に溝214を有しているが、溝214は、電気素子212の外面218が外面220と実質的に面一になるのを許容するに十分には深くない。溝214は、シース228の周囲の部分と係合すると共に、シース228が一致するところの輪郭を好適に有している。溝214は、シースの周囲の丁度180度に亘って係合し得、もって、シース228は、溝214内へスナップ嵌合し、これにより、それの中に保持される。この実施形態における磁気回路は、シース228によって閉じられている。シース228は非常に薄いので、磁界は、それの中に集中し、バレル部202内に誘導熱を発生するためには、効率的には使用されない。また、この実施形態と共に使用されるスリーブは存在しないので、電気素子212内に発生される著しい抵抗熱は、空気へ放射され、又はバレル組立体200上へ任意に施され得る絶縁層へ放射される。この実施形態は、それがライナもスリーブも有しておらず且つ溝214が最小の深さであるという点において、組み立てるのが最も簡単であり得るが、それは、最も低効率である。この実施形態の性能は、電気素子212の直径の半分を超える厚さまで、電気素子212とバレル部202の外面220との上に被覆を施すことにより、向上させられ得る。被覆は、好適に、金属合金であり、この金属合金は、ホットスプレ処理のような、良く知られている技術により、施され得る。
【0058】
あるいは、電気素子212は、溝を備えていないバレル部202上へ組み込まれ得、次いで、電気素子212を所望されている場所に保持すべく且つ性能を向上させるべく、金属合金の被覆が、施される。
【0059】
これらの実施形態の全てにおいて、電気素子212は、それらの間の金属構造体で、或る距離だけ軸方向に離隔させられている。電気素子212の間の金属構造体の幅は、好適に、電気素子212の幅とほぼ同じである。電気素子212は、バレル組立体200上の加熱密度を高めるべく、互いにより近接して配置され得るが、それは、電気素子212間の磁界を集中させ、これにより、望ましくない熱勾配が、発生すると共に、加熱効率が、低下する。電気素子212の間の距離を減少させることよりも、電気素子212への周波数及び電力を調節して、所望されている加熱を達成することの方が、好ましい。電気素子212の間の距離は、より広くされ得るが、それは、熱密度を低下させると共に、電気素子212の高められた出力要求を補償すべく、増大させられた電流及び/又は周波数を必要とするかも知れない。
【0060】
前述の実施形態の全ては、別体の電気素子212を使用している。あるいは、図14に示されているように、電気素子212は、既知の皮膜付着技術を用いて、バレルの構成要素と一体に構成され得る。この用途に適している技術の一例は、マサチューセッツ州ShirleyのThermoCeramiX Inc.によって提供されている熱スプレである。電気絶縁層240が、溝214内に付着させられる。次いで、加熱素子242が、絶縁層240上に付着させられる。最後に、外側絶縁層244が、加熱素子242上に付着させられ、これにより、加熱素子242は、封入される。外側絶縁層244は、電気絶縁性及び熱絶縁性の両方であると共に、スリーブを収容すべく、バレル部202の外面220と面一になるよう機械加工され又は他の方法で仕上げられ得る。これを行うのに利用可能な他の皮膜技術は、米国特許第5,973,296号、米国特許第6,305,923号及び米国特許第6,341,954号であって、引用によって本明細書に組み入れられているものに記載されているような、薄膜の蒸着と、シルクスクリーン及び/又は筆記によって付着させられるインクを使用する厚膜とを含む。
【0061】
図15を参照するに、上記のような皮膜技術は、溝の中にではなく、バレル部202の滑らかな外面220の上へ電気素子を施すべく使用され得る。この実施形態においては、電気絶縁層240が、バレル部202の外面全体の上に施されている。次いで、コイルを形成すべく、加熱素子242が、好適に螺旋構成で、絶縁層240の上に付着させられる。次いで、第2の絶縁層246が、表面全体の上に施される。この層は、前述の実施形態におけるように、最終的な外側層であってよく、又は、この層は、中間層であってもよく、もって、追加の加熱素子が、図示されているように、先に付着させられた加熱素子と好適に整合した状態で、それの頂部上に付着させられ、これにより、多層コイルが、形成される。このプロセスは、所望されている厚さが得られるまで、繰り返され得、その後、最終的な外側絶縁層244は、前述の実施形態の場合のように、機械加工され得る。
【0062】
これら全ての皮膜付着技術に関し、加熱素子242は、既知の方法で施される。適用される材料は、具体的な周波数及び電力に対して、抵抗加熱及び誘導加熱の最良の組合せを提供すべく最適化されている抵抗率を有するよう、配合され得る。抵抗率が高すぎると、加熱は、主に抵抗性となり、この場合、誘導に関しては、小電流が、発現され、抵抗率が低すぎると、大誘導電流を生成するところの大電流が、流れ、この場合、抵抗加熱は、殆ど起こらない。加熱素子242に関する抵抗率の好適な範囲は、好適に、4×10−8〜10Ω・mの範囲内である。
【0063】
本発明は、チューブ状構造体の優れた熱管理を提供し、この優れた熱管理は、熱勾配を最小にし、この結果、チューブ状構造体における、熱によって誘導される応力及び疲労が、最小になり、これにより、構造体の寿命が、延びる。加熱コイルは、構造体を誘導加熱し且つ抵抗加熱すべく、チューブ状構造体との熱伝達状態にあると共に、チューブ状構造体の内腔内の材料及び構造体に熱を効率的に誘導すべく、位置させられている。生成される誘導熱と抵抗熱との間の比率を調節することにより、且つ、チューブ状構造体の内側に熱が集中させられるようにコイルを位置させることにより、チューブ状構造体の外側は、流動性材料が処理されるところの温度よりも低い温度であり得る。
【0064】
上記記載は例としてのみ与えられたものであるということと、細部における変更が本発明の範囲内でなされ得るということとは、勿論、理解されよう。例えば、実施形態は、射出成形機又は押出機用のバレル又はノズルを加熱することに関して記載されてきたが、本発明は、この態様で加熱され得るチューブ状の金属装置へ適用すべく意図されている。
【図面の簡単な説明】
【0065】
【図1】本技術分野において知られている抵抗加熱の、簡単化された概略図である。
【図2】本技術分野において知られている誘導加熱の、簡単化された概略図である。
【図3】本発明による加熱素子を示している部分概略図である。
【図3A】誘導型ヒータコイルの導体における「表皮効果」のグラフ図である。
【図3B】本発明の好適な実施形態の断面図である。
【図3C】各構成要素における電流密度分布を示している、図3Bの部分の詳細図である。
【図4】射出成形機用のノズルに適用されている、本発明の実施形態の部分断面等角図である。
【図4A】図4に示されている実施形態の断面図である。
【図5】抵抗加熱、誘導加熱及び本発明による加熱方法の設計基準を比較している表である。
【図6】射出成形機用のバレルに適用されている本発明の別の実施形態の断面図である。
【図7】図6の部分の詳細図である。
【図8】電気素子の詳細を示している、図7の部分の詳細図である。
【図9】本発明の別の実施形態を示している、図7の図である。
【図10】本発明の更に別の実施形態を示している、図7の図である。
【図11】本発明の更に別の実施形態を示している、図7の図である。
【図12】本発明の更に別の実施形態を示している、図7の図である。
【図13】本発明の更に別の実施形態を示している、図7の図である。
【図14】本発明において使用されている電気素子の代替実施形態を示している、図8の図である。
【図15】本発明において使用されている電子の代替実施形態を示している本発明の更に別の実施形態を示している、図7の図である。

【特許請求の範囲】
【請求項1】
流動性材料を加熱する装置であって、
外面を有しているコアであって、このコアの中に形成されている、流動性材料の輸送用の通路を有しているものと、
螺旋パターンにおいて、コアに凭れるようにして、多数のターン数でコイル状にされている電気素子であって、使用時においてコアを抵抗加熱及び誘導加熱の両方で加熱すると共に、補助冷却能力を有していないものと、
を具備している装置。
【請求項2】
コアの外面が、少なくとも1つの溝であって、電気素子を受容するものを有している請求項1に記載の装置。
【請求項3】
電気素子が、熱伝導性でもある電気絶縁材料によって取り囲まれている導体と、電気絶縁材料の周りの金属シースとを有している請求項2に記載の装置。
【請求項4】
導体が、ニッケルクロム合金で作られている請求項3に記載の装置。
【請求項5】
溝が、輪郭を有しており、且つ、シースの少なくとも部分が、その輪郭と一致している請求項3に記載の装置。
【請求項6】
溝が、実質的に垂直な壁部であって、電気素子を溝内に保持すべく、シースと協働するものを有している請求項5に記載の装置。
【請求項7】
溝が、電気素子の外面がコアの外面とほぼ面一となるように、十分に深い請求項2に記載の装置。
【請求項8】
コアの周りに配置されているヨークを更に具備している請求項7に記載の装置。
【請求項9】
コアとヨークとが、強磁性体で作られている請求項8に記載の装置。
【請求項10】
ヨークが、電気素子にぴったりと嵌合するスリーブから成っている請求項8に記載の装置。
【請求項11】
スリーブが、コアよりもかなり薄い請求項10に記載の装置。
【請求項12】
スリーブが、コアとほぼ同じ厚さである請求項10に記載の装置。
【請求項13】
電気素子の外面が、コアの外面を越えて延びている請求項1に記載の装置。
【請求項14】
コアの外面が、少なくとも1つの螺旋溝であって、電気素子を受容するものを有している請求項13に記載の装置。
【請求項15】
電気素子の外面とコアの外面との上に付着させられている金属合金で作られている被覆を更に具備している請求項13に記載の装置。
【請求項16】
コイル状の電気素子の各ターンの間に適用されているスペーサ素子を更に具備している請求項13に記載の装置。
【請求項17】
スペーサが、アニールされた強磁性合金から成っている請求項16に記載の装置。
【請求項18】
コアの上に組み込まれているスリーブを更に具備しており、電気素子及びスペーサ素子は、コアの周りに配置されており、もって、スペーサ素子及び電気素子は、スリーブとコアとの間に収容されている請求項16に記載の装置。
【請求項19】
電気素子が、コアの外面に付着させられており、電気素子は、コアの外面の少なくとも部分に施されている第1絶縁層と、第1絶縁層上に螺旋パターンで付着させられている加熱素子と、加熱素子の上に、それを封入すべく、付着させられている第2絶縁層とを具備している請求項1に記載の装置。
【請求項20】
第2絶縁層が、コアの外面と面一になるべく仕上げられている請求項19に記載の装置。
【請求項21】
コアの上に組み込まれているスリーブを更に具備している請求項20に記載の装置。
【請求項22】
コアが、外面に螺旋溝を有しており、且つ、電気素子が、螺旋溝内に付着させられている請求項19に記載の装置。
【請求項23】
複数の電気素子が、多層コイルを形成すべく、付着させられている請求項19に記載の装置。
【請求項24】
流動性材料を加熱する装置であって、
内面と、この内面に隣接している耐磨耗ライナとを有しているコアであって、このコアの中に形成されている、流動性材料の輸送用の通路を有しているものと、
コアの内面においてコアに凭れるようにして、多数のターン数でコイル状にされている電気素子であって、使用時においてコアを抵抗加熱及び誘導加熱の両方で加熱すると共に、補助冷却能力を有していないものと、
を具備している装置。
【請求項25】
電気素子が、ライナ内に埋設されており、且つ、ライナが、電気素子の外面とコアの外面との上に付着させられている金属合金で作られている被覆から成っている請求項24に記載の装置。
【請求項26】
ライナが、流動性材料が通過するところの滑らかな内腔を形成すべく仕上げられている請求項25に記載の装置。
【特許請求の範囲】
【請求項1】
流動性材料を加熱する装置であって、
外面を有している非成層コアであって、このコアの中に形成されている、流動性材料の輸送用の通路を有しているものと、
螺旋パターンにおいて、コアに凭れるようにして、多数のターン数でコイル状にされている電気素子であって、使用時においてコアを抵抗加熱及び誘導加熱の両方で加熱すると共に、補助冷却能力を有していないものと、
を具備している装置。
【請求項2】
コアの外面が、少なくとも1つの溝であって、電気素子を受容するものを有している請求項1に記載の装置。
【請求項3】
電気素子が、熱伝導性でもある電気絶縁材料によって取り囲まれている導体と、電気絶縁材料の周りの金属シースとを有している請求項2に記載の装置。
【請求項4】
導体が、ニッケルクロム合金で作られている請求項3に記載の装置。
【請求項5】
溝が、輪郭を有しており、且つ、シースの少なくとも部分が、その輪郭と一致している請求項3に記載の装置。
【請求項6】
溝が、実質的に垂直な壁部であって、電気素子を溝内に保持すべく、シースと協働するものを有している請求項5に記載の装置。
【請求項7】
溝が、電気素子の外面がコアの外面とほぼ面一となるように、十分に深い請求項2に記載の装置。
【請求項8】
コアの周りに配置されているヨークを更に具備している請求項7に記載の装置。
【請求項9】
コアとヨークとが、強磁性体で作られている請求項8に記載の装置。
【請求項10】
ヨークが、電気素子にぴったりと嵌合するスリーブから成っている請求項8に記載の装置。
【請求項11】
スリーブが、コアよりもかなり薄い請求項10に記載の装置。
【請求項12】
スリーブが、コアとほぼ同じ厚さである請求項10に記載の装置。
【請求項13】
電気素子の外面が、コアの外面を越えて延びている請求項1に記載の装置。
【請求項14】
コアの外面が、少なくとも1つの螺旋溝であって、電気素子を受容するものを有している請求項13に記載の装置。
【請求項15】
電気素子の外面とコアの外面との上に付着させられている金属合金で作られている被覆を更に具備している請求項13に記載の装置。
【請求項16】
コイル状の電気素子の各ターンの間に適用されているスペーサ素子を更に具備している請求項13に記載の装置。
【請求項17】
スペーサが、アニールされた強磁性合金から成っている請求項16に記載の装置。
【請求項18】
コアの上に組み込まれているスリーブを更に具備しており、電気素子及びスペーサ素子は、コアの周りに配置されており、もって、スペーサ素子及び電気素子は、スリーブとコアとの間に収容されている請求項16に記載の装置。
【請求項19】
電気素子が、コアの外面に付着させられており、電気素子は、コアの外面の少なくとも部分に施されている第1絶縁層と、第1絶縁層上に螺旋パターンで付着させられている加熱素子と、加熱素子の上に、それを封入すべく、付着させられている第2絶縁層とを具備している請求項1に記載の装置。
【請求項20】
第2絶縁層が、コアの外面と面一になるべく仕上げられている請求項19に記載の装置。
【請求項21】
コアの上に組み込まれているスリーブを更に具備している請求項20に記載の装置。
【請求項22】
コアが、外面に螺旋溝を有しており、且つ、電気素子が、螺旋溝内に付着させられている請求項19に記載の装置。
【請求項23】
複数の電気素子が、多層コイルを形成すべく、付着させられている請求項19に記載の装置。
【請求項24】
流動性材料を加熱する装置であって、
内面と、この内面に隣接している耐磨耗ライナとを有している非成層コアであって、このコアの中に形成されている、流動性材料の輸送用の通路を有しているものと、
コアの内面においてコアに凭れるようにして、多数のターン数でコイル状にされている電気素子であって、使用時においてコアを抵抗加熱及び誘導加熱の両方で加熱すると共に、補助冷却能力を有していないものと、
を具備している装置。
【請求項25】
電気素子が、ライナ内に埋設されており、且つ、ライナが、電気素子の外面とコアの外面との上に付着させられている金属合金で作られている被覆から成っている請求項24に記載の装置。
【請求項26】
ライナが、流動性材料が通過するところの滑らかな内腔を形成すべく仕上げられている請求項25に記載の装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図4】
image rotate

【図4A】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公表番号】特表2006−511906(P2006−511906A)
【公表日】平成18年4月6日(2006.4.6)
【国際特許分類】
【出願番号】特願2004−560939(P2004−560939)
【出願日】平成15年11月5日(2003.11.5)
【国際出願番号】PCT/CA2003/001707
【国際公開番号】WO2004/057918
【国際公開日】平成16年7月8日(2004.7.8)
【出願人】(595155303)ハスキー インジェクション モールディング システムズ リミテッド (88)
【氏名又は名称原語表記】HUSKY INJECTION MOLDING SYSTEMS LIMITED
【Fターム(参考)】