説明

異方導電性コネクター、プローブカード並びにウエハ検査装置およびウエハ検査方法

【課題】 回路装置の電気的検査において、多数回にわたって繰り返して使用された場合或いは高温環境下において繰り返して使用された場合にも、長期間にわたって良好な導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる異方導電性コネクター、これを具えたプローブカード並びにウエハ検査装置およびウエハ検査方法を提供する。
【解決手段】 本発明の異方導電性コネクターは、導電性粒子が含有された厚み方向に伸びる複数の接続用導電部が形成された弾性異方導電膜を有する異方導電性コネクターにおいて、前記接続用導電部に含有された導電性粒子は、磁性を示す芯粒子の表面に、少なくとも銀よりなる被覆層および金よりなる被覆層を含む複数の被覆層が積層されてなり、複数の被覆層のうち最外層が金よりなる被覆層であることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プリント回路基板、集積回路装置、ウエハに形成された集積回路、回路の形成された液晶パネルなどの電気的検査を行うために好適に用いられる異方導電性コネクター、この異方導電性コネクターをプローブカード並びにこのプローブカードを具えたウエハ検査装置およびこのプローブカードを使用したウエハ検査方法に関する。
【背景技術】
【0002】
一般に、半導体集積回路装置の製造工程においては、例えばシリコンよりなるウエハに多数の集積回路を形成し、その後、これらの集積回路の各々について、基礎的な電気特性を検査することによって、欠陥を有する集積回路を選別するプローブ試験が行われる。このプローブ試験は、例えは85℃の温度環境下において行われている。次いで、このウエハを切断することによって半導体チップが形成され、この半導体チップが適宜のパッケージ内に収納されて封止される。更に、パッケージ化された半導体集積回路装置の各々について、例えば125℃の高温環境下において電気特性を検査することによって、潜在的欠陥を有する半導体集積回路装置を選別するバーンイン試験が行われる。
このようなプローブ試験またはバーンイン試験などの集積回路の電気的検査においては、検査対象物における被検査電極の各々をテスターに電気的に接続するためにプローブカードが用いられている。このようなプローブカードとしては、被検査電極のパターンに対応するパターンに従って検査用電極が形成された検査用回路基板と、この検査用回路基板上に配置された異方導電性エラストマーシートとよりなるものが知られている。
【0003】
かかる異方導電性エラストマーシートとしては、従来、種々の構造のものが知られており、例えば特許文献1等には、導電性粒子をエラストマー中に厚み方向に並ぶよう配向した状態で分散して得られる異方導電性エラストマーシート(以下、「分散型異方導電性エラストマーシート」という。)が開示され、また、特許文献2等には、導電性粒子をエラストマー中に厚み方向に並ぶよう配向した状態で不均一に分布させることにより、厚み方向に伸びる多数の導電部と、これらを相互に絶縁する絶縁部とが形成されてなる異方導電性エラストマーシート(以下、これを「偏在型異方導電性エラストマーシート」という。)が開示され、更に、特許文献3等には、導電部の表面と絶縁部との間に段差が形成された偏在型異方導電性エラストマーシートが開示されている。
そして、偏在型異方導電性エラストマーシートは、検査すべき集積回路の被検査電極のパターンに対応するパターンに従って導電部が形成されているため、分散型異方導電性エラストマーシートに比較して、被検査電極の配列ピッチすなわち隣接する被検査電極の中心間距離が小さい集積回路などに対しても電極間の電気的接続を高い信頼性で達成することができる点で、有利である。
【0004】
また、これらの異方導電性エラストマーシートにおいては、当該異方導電性エラストマーシートを製造する際に、磁場の作用によって導電性粒子を厚み方向に並ぶよう配向させるために、当該導電性粒子として磁性を示すものを用いることが必要である。また、高い導電性を有し、かつ、その導電性が長時間維持される異方導電性エラストマーシートを得るためには、導電性粒子としては、それ自体高い導電性を有し、かつ、長時間にわたって化学的に安定なものであることが肝要である。このような観点から、導電性粒子としては、ニッケルなどの強磁性体よりなる芯粒子の表面に金よりなる被覆層が形成されてなるものが使用されている。
【0005】
ところで、ウエハに形成された集積回路に対して行われるプローブ試験においては、従来、ウエハに形成された多数の集積回路のうち例えば16個または32個の集積回路からなる集積回路群について一括してプローブ試験を行い、順次、その他の集積回路群についてプローブ試験を行う方法が採用されている。
そして、近年、検査効率を向上させ、検査コストの低減化を図るために、ウエハに形成された多数の集積回路のうち例えば64個若しくは128個または全部の集積回路について一括してプローブ試験を行うことが要請されている。
このようなプローブ試験において、検査対象であるウエハが量産品である場合には、当該プローブ試験を行うためのプローブカードに用いられる異方導電性エラストマーシートとしては、例えば5万回以上繰り返して使用することが可能な耐久性が求められる。
しかしながら、従来の異方導電性エラストマーシートにおいては、プローブ試験に例えば2万回以上繰り返して使用すると、導電部の導電性が著しく低下するため、その後の試験に供することができず、新たなものに交換することが必要であった。
【0006】
また、バーンイン試験においては、検査対象である集積回路装置は微小なものであってその取扱いが不便なものであるため、多数の集積回路装置の電気的検査を個別的に行うためには,長い時間を要し、これにより、検査コストが相当に高いものとなる。このような理由から、ウエハ上に形成された多数の集積回路について、それらのバーンイン試験をウエハの状態で一括して行うWLBI(Wafer Lebel Burn−in)試験が提案されている。
このようなWLBI試験において、検査対象であるウエハが量産品である場合には、当該WLBI試験を行うためのプローブカードに用いられる異方導電性エラストマーシートとしては、例えば300回以上繰り返して使用することが可能な耐久性が求められる。
しかしながら、従来の異方導電性エラストマーシートにおいては、WLBI試験に例えば200回以上繰り返して使用すると、導電部の導電性が著しく低下するため、その後の試験に供することができず、新たなものに交換することが必要であった。
【0007】
以上のような現象が生じるのは、異方導電性エラストマーシートを繰り返して使用すると、導電部中の導電性粒子の表面が変質する結果、当該導電性粒子の電気抵抗値が増加するためである。
このような問題を解決する手段としては、芯粒子の表面に形成された金よりなる被覆層の厚みを大きくする、すなわち芯粒子に対して高い割合で金よりなる被覆層を形成することが考えられる。
しかしながら、金よりなる被覆層を高い割合で形成しただけでは、導電性粒子の表面の変質を十分に抑制することは困難であることが判明した。
【0008】
【特許文献1】特開昭51−93393号公報
【特許文献2】特開昭53−147772号公報
【特許文献3】特開昭61−250906号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明は、以上のような事情に基づいてなされたものであって、その第1の目的は、回路装置の電気的検査において、多数回にわたって繰り返して使用された場合或いは高温環境下において繰り返して使用された場合にも、長期間にわたって良好な導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる異方導電性コネクターを提供することにある。
本発明の第2の目的は、ウエハに形成された複数の集積回路の電気的検査において、多数回にわたって繰り返して使用された場合或いは高温環境下において繰り返して使用された場合に、長期間にわたって良好な導電性が維持され、従って、耐久性が高くて長い使用寿命が得られるプローブカードを提供することにある。
本発明の第3の目的は、上記のプローブカードを使用して、ウエハに形成された複数の集積回路の電気的検査をウエハの状態で行うウエハ検査装置およびウエハ検査方法を提供することにある。
【課題を解決するための手段】
【0010】
本発明者らは、上記の課題を解決するため鋭意検討を重ねた結果、芯粒子の表面に銀よりなる被覆層を形成したうえで、金よりなる被覆層を形成することにより、表面の変質が少ない導電性粒子が得られることを見出し、この知見に基づいて本発明を完成したものである。
【0011】
すなわち、本発明の異方導電性コネクターは、導電性粒子が含有された厚み方向に伸びる複数の接続用導電部が形成された弾性異方導電膜を有する異方導電性コネクターにおいて、
前記接続用導電部に含有された導電性粒子は、磁性を示す芯粒子の表面に、少なくとも銀よりなる被覆層および金よりなる被覆層を含む複数の被覆層が積層されてなり、複数の被覆層のうち最外層が金よりなる被覆層であることを特徴とする。
【0012】
本発明の異方導電性コネクターにおいては、導電性粒子における複数の被覆層のうち最内層が銀よりなる被覆層であることが好ましい。
また、導電性粒子は、ロジウムよりなる被覆層を有することが好ましい。
また、導電性粒子は、芯粒子の質量に対する銀よりなる被覆層の質量の割合が3〜25%であることが好ましい。
また、導電性粒子は、芯粒子の質量に対する金よりなる被覆層の質量の割合が3〜40%であることが好ましい。
また、導電性粒子の数平均粒子径が1〜50μmであることが好ましい。
【0013】
また、本発明の異方導電性コネクターにおいては、厚み方向に伸びる異方導電膜配置用孔が形成されたフレーム板を有し、このフレーム板の異方導電膜配置用孔に、弾性異方導電膜が配置されて当該フレーム板に支持されていることが好ましい。
【0014】
また、本発明の異方導電性コネクターにおいては、ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うために用いられる異方導電性コネクターである場合には、検査対象であるウエハに形成された全てのまたは一部の集積回路における被検査電極が形成された電極領域に対応してそれぞれ厚み方向に伸びる複数の異方導電膜配置用孔が形成されたフレーム板を有し、このフレーム板の異方導電膜配置用孔の各々に、弾性異方導電膜が配置されて当該フレーム板に支持されていることが好ましい。
【0015】
本発明のプローブカードは、ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うために用いられるプローブカードであって、 検査対象であるウエハに形成された全てのまたは一部の集積回路における被検査電極のパターンに対応するパターンに従って検査電極が表面に形成された検査用回路基板と、この検査用回路基板の表面に配置された、上記の異方導電性コネクターとを具えてなることを特徴とする。
【0016】
本発明のプローブカードにおいては、異方導電性コネクターが前記フレーム板を具えてなるものである場合には、当該異方導電性コネクターにおけるフレーム板の線熱膨張係数が3×10-5/K以下であり、検査用回路基板を構成する基板材料の線熱膨張係数が3×10-5/K以下であることが好ましい。
【0017】
また、本発明のプローブカードにおいては、異方導電性コネクター上に、絶縁性シートと、この絶縁性シートをその厚み方向に貫通して伸び、被検査電極のパターンに対応するパターンに従って配置された複数の電極構造体とよりなるシート状プローブが配置されていてもよい。
【0018】
本発明のウエハ検査装置は、ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うウエハ検査装置において、
上記のプローブカードを具えてなり、当該プローブカードを介して、検査対象であるウエハに形成された集積回路に対する電気的接続が達成されることを特徴とする。
【0019】
本発明のウエハ検査方法は、ウエハに形成された複数の集積回路の各々を、上記のプローブカードを介してテスターに電気的に接続し、当該ウエハに形成された集積回路の電気的検査を実行することを特徴とする。
【発明の効果】
【0020】
本発明の異方導電性コネクターによれば、弾性異方導電膜における接続用導電部中に含有された導電性粒子が、金よりなる被覆層および銀よりなる被覆層を有し、最外層が金よりなる被覆層であるため、回路装置の電気的検査において、多数回にわたって繰り返して使用された場合或いは高温環境下において繰り返して使用された場合にも、導電性粒子の表面の変質が抑制される結果、長期間にわたって良好な導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる。
【0021】
本発明に係るプローブカードによれば、上記の異方導電性コネクターを具えてなるため、多数回にわたって繰り返して使用された場合或いは高温環境下において繰り返して使用された場合に長期間にわたって良好な導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる。
【0022】
本発明に係るウエハ検査装置およびウエハ検査方法によれば、耐久性が高くて使用寿命の長い異方導電性コネクターを有するプローブカードを使用するため、多数回にわたって繰り返して使用された場合或いは高温環境下において繰り返して使用された場合において、異方導電性コネクターを新たなものに交換する頻度を少なくすることができ、これにより、高い効率でウエハの検査を行うことができると共に、検査コストの低減化を図ることができる。
【発明を実施するための最良の形態】
【0023】
以下、本発明の実施の形態について詳細に説明する。
〔異方導電性コネクター〕
図1は、本発明に係る異方導電性コネクターの一例を示す平面図、図2は、図1に示す異方導電性コネクターの一部を拡大して示す平面図、図3は、図1に示す異方導電性コネクターにおける弾性異方導電膜を拡大して示す平面図、図4は、図1に示す異方導電性コネクターにおける弾性異方導電膜を拡大して示す説明用断面図である。
【0024】
図1に示す異方導電性コネクターは、例えば複数の集積回路が形成されたウエハについて当該集積回路の各々の電気的検査をウエハの状態で行うために用いられるものであって、図2に示すように、それぞれ厚み方向に貫通して伸びる複数の異方導電膜配置用孔11(破線で示す)が形成されたフレーム板10を有する。このフレーム板10の異方導電膜配置用孔11は、検査対象であるウエハにおける集積回路の被検査電極が形成された電極領域のパターンに対応して形成されている。フレーム板10の各異方導電膜配置用孔11内には、厚み方向に導電性を有する弾性異方導電膜20が、当該フレーム板10の当該異方導電膜配置用孔11の周辺部に支持された状態で、かつ、隣接する弾性異方導電膜20と互いに独立した状態で配置されている。また、この例におけるフレーム板10には、後述するウエハ検査装置において、減圧方式の加圧手段を用いる場合に、当該異方導電性コネクターとこれに隣接する部材との間の空気を流通させるための空気流通孔15が形成され、更に、検査対象であるウエハおよび検査用回路基板との位置決めを行うための位置決め孔16が形成されている。
【0025】
弾性異方導電膜20は、弾性高分子物質によって形成されており、図3に示すように、厚み方向(図3において紙面と垂直な方向)に伸びる複数の接続用導電部22と、この接続用導電部22の各々の周囲に形成され、当該接続用導電部22の各々を相互に絶縁する絶縁部23とよりなる機能部21を有し、当該機能部21は、フレーム板10の異方導電膜配置用孔11に位置するよう配置されている。この機能部21における接続用導電部22は、検査対象であるウエハにおける集積回路の被検査電極のパターンに対応するパターンに従って配置され、当該ウエハの検査において、その被検査電極に電気的に接続されるものである。
機能部21の周縁には、フレーム板10における異方導電膜配置用孔11の周辺部に固定支持された被支持部25が、当該機能部21に一体に連続して形成されている。具体的には、この例における被支持部25は、二股状に形成されており、フレーム板10における異方導電膜配置用孔11の周辺部を把持するよう密着した状態で固定支持されている。 弾性異方導電膜20の機能部21における接続用導電部22には、図4に示すように、磁性を示す導電性粒子Pが厚み方向に並ぶよう配向した状態で密に含有されている。これに対して、絶縁部23は、導電性粒子Pが全く或いは殆ど含有されていないものである。 また、図示の例では、弾性異方導電膜20における機能部21の両面には、接続用導電部22およびその周辺部分が位置する個所に、それ以外の表面から突出する突出部24が形成されている。
【0026】
フレーム板10の厚みは、その材質によって異なるが、20〜600μmであることが好ましく、より好ましくは40〜400μmである。
この厚みが20μm未満である場合には、異方導電性コネクターを使用する際に必要な強度が得られず、耐久性が低いものとなりやすく、また、当該フレーム板10の形状が維持される程度の剛性が得られず、異方導電性コネクターの取扱い性が低いものとなる。一方、厚みが600μmを超える場合には、異方導電膜配置用孔11に形成される弾性異方導電膜20は、その厚みが過大なものとなって、接続用導電部22における良好な導電性および隣接する接続用導電部22間における絶縁性を得ることが困難となることがある。 フレーム板10の異方導電膜配置用孔11における面方向の形状および寸法は、検査対象であるウエハの被検査電極の寸法、ピッチおよびパターンに応じて設計される。
【0027】
フレーム板10を構成する材料としては、当該フレーム板10が容易に変形せず、その形状が安定に維持される程度の剛性を有するものであれば特に限定されず、例えば、金属材料、セラミックス材料、樹脂材料などの種々の材料を用いることができ、フレーム板10を例えば金属材料により構成する場合には、当該フレーム板10の表面に絶縁性被膜が形成されていてもよい。
フレーム板10を構成する金属材料の具体例としては、鉄、銅、ニッケル、クロム、コバルト、マグネシウム、マンガン、モリブデン、インジウム、鉛、パラジウム、チタン、タングステン、アルミニウム、金、白金、銀などの金属またはこれらを2種以上組み合わせた合金若しくは合金鋼などが挙げられる。
フレーム板10を構成する樹脂材料の具体例としては、液晶ポリマー、ポリイミド樹脂などが挙げられる。
また、絶縁性被膜としては、フッ素樹脂被膜、ポリイミド樹脂被膜、フッ素樹脂やポリイミド樹脂を含む複合被膜、金属酸化物被膜などを用いることができる。
【0028】
また、フレーム板10は、後述する方法により、弾性異方導電膜20における被支持部25に導電性粒子Pを容易に含有させることができる点で、少なくとも異方導電膜配置用孔11の周辺部すなわち弾性異方導電膜20を支持する部分が磁性を示すもの、具体的にはその飽和磁化が0.1Wb/m2 以上のものであることが好ましく、特に、当該フレーム板10の作製が容易な点で、フレーム板10全体が磁性体により構成されていることが好ましい。
このようなフレーム板10を構成する磁性体の具体例としては、鉄、ニッケル、コバルト若しくはこれらの磁性金属の合金またはこれらの磁性金属と他の金属との合金若しくは合金鋼などが挙げられる。
【0029】
また、異方導電性コネクターをプローブ試験またはウエハレベルバーンイン試験に用いる場合には、フレーム板10を構成する材料としては、線熱膨張係数が3×10-5/K以下のものを用いることが好ましく、より好ましくは−1×10-7〜1×10-5/K、特に好ましくは1×10-6〜8×10-6/Kである。
このような材料の具体例としては、インバーなどのインバー型合金、エリンバーなどのエリンバー型合金、スーパーインバー、コバール、42合金などの磁性金属の合金または合金鋼などが挙げられる。
【0030】
弾性異方導電膜20の全厚(図示の例では接続用導電部22における厚み)は、50〜3000μmであることが好ましく、より好ましくは70〜2500μm、特に好ましくは100〜2000μmである。この厚みが50μm以上であれば、十分な強度を有する弾性異方導電膜20が確実に得られる。一方、この厚みが3000μm以下であれば、所要の導電性特性を有する接続用導電部22が確実に得られる。
図示の例では、突出部24は、弾性異方導電膜20の両面の各々に形成されているが、弾性異方導電膜20の片面にのみ形成されていてもよい。このような突出部24の突出高さは、その合計が当該突出部24における厚みの10%以上であることが好ましく、より好ましくは20%以上である。このような突出高さを有する突出部24を形成することにより、小さい加圧力で接続用導電部22が十分に圧縮されるため、良好な導電性が確実に得られる。
また、突出部24の突出高さは、当該突出部24の最短幅または直径の100%以下であることが好ましく、より好ましくは70%以下である。このような突出高さを有する突出部24を形成することにより、当該突出部24が加圧されたときに座屈することがないため、所期の導電性が確実に得られる。
また、被支持部25の厚み(図示の例では二股部分の一方の厚み)は、5〜600μmであることが好ましく、より好ましくは10〜500μm、特に好ましくは20〜400μmである。
また、被支持部25は二股状に形成されることは必須のことではなく、フレーム板10の一面のみに固定されていてもよい。
【0031】
弾性異方導電膜20を形成する弾性高分子物質としては、架橋構造を有する耐熱性の高分子物質が好ましい。かかる架橋高分子物質を得るために用いることができる硬化性の高分子物質形成材料としては、種々のものを用いることができるが、液状シリコーンゴムが好ましい。
液状シリコーンゴムは、付加型のものであっても縮合型のものであってもよいが、付加型液状シリコーンゴムが好ましい。この付加型液状シリコーンゴムは、ビニル基とSi−H結合との反応によって硬化するものであって、ビニル基およびSi−H結合の両方を含有するポリシロキサンからなる一液型(一成分型)のものと、ビニル基を含有するポリシロキサンおよびSi−H結合を含有するポリシロキサンからなる二液型(二成分型)のものがあるが、本発明においては、二液型の付加型液状シリコーンゴムを用いることが好ましい。
【0032】
付加型液状シリコーンゴムとしては、その23℃における粘度が100〜1,000Pa・sのものを用いることが好ましく、さらに好ましくは150〜800Pa・s、特に好ましくは250〜500Pa・sのものである。この粘度が100Pa・s未満である場合には、後述する弾性異方導電膜20を得るための成形材料において、当該付加型液状シリコーンゴム中における導電性粒子の沈降が生じやすく、良好な保存安定性が得られず、また、成形材料層に平行磁場を作用させたときに、導電性粒子が厚み方向に並ぶよう配向せず、均一な状態で導電性粒子の連鎖を形成することが困難となることがある。一方、この粘度が1,000Pa・sを超える場合には、得られる成形材料が粘度の高いものとなるため、金型内に成形材料層を形成しにくいものとなることがあり、また、成形材料層に平行磁場を作用させても、導電性粒子が十分に移動せず、そのため、導電性粒子を厚み方向に並ぶよう配向させることが困難となることがある。
このような付加型液状シリコーンゴムの粘度は、B型粘度計によって測定することができる。
【0033】
弾性異方導電膜20を液状シリコーンゴムの硬化物(以下、「シリコーンゴム硬化物」という。)によって形成する場合において、当該シリコーンゴム硬化物は、その150℃における圧縮永久歪みが10%以下であることが好ましく、より好ましくは8%以下、さらに好ましくは6%以下である。この圧縮永久歪みが10%を超える場合には、得られる異方導電性コネクターを高温環境下において繰り返し使用したときには、接続用導電部22における導電性粒子の連鎖に乱れが生じる結果、所要の導電性を維持することが困難となる。
ここで、シリコーンゴム硬化物の圧縮永久歪みは、JIS K 6249に準拠した方法によって測定することができる。
【0034】
また、弾性異方導電膜20を形成するシリコーンゴム硬化物は、その23℃におけるデュロメーターA硬度が10〜60のものであることが好ましく、さらに好ましくは15〜60、特に好ましくは20〜60のものである。このデュロメーターA硬度が10未満である場合には、加圧されたときに、接続用導電部22を相互に絶縁する絶縁部23が過度に歪みやすく、接続用導電部22間の所要の絶縁性を維持することが困難となることがある。一方、このデュロメーターA硬度が60を超える場合には、接続用導電部22に適正な歪みを与えるために相当に大きい荷重による加圧力が必要となるため、例えば検査対象であるウエハに大きな変形や破壊が生じやすくなる。
ここで、シリコーンゴム硬化物のデュロメーターA硬度は、JIS K 6249に準拠した方法によって測定することができる。
【0035】
また、弾性異方導電膜20を形成するシリコーンゴム硬化物は、その23℃における引き裂き強度が8kN/m以上のものであることが好ましく、さらに好ましくは10kN/m以上、より好ましくは15kN/m以上、特に好ましくは20kN/m以上のものである。この引き裂き強度が8kN/m未満である場合には、弾性異方導電膜20に過度の歪みが与えられたときに、耐久性の低下を起こしやすい。
ここで、シリコーンゴム硬化物の引き裂き強度は、JIS K 6249に準拠した方法によって測定することができる。
【0036】
このような特性を有する付加型液状シリコーンゴムとしては、信越化学工業株式会社製の液状シリコーンゴム「KE2000」シリーズ、「KE1950」シリーズ、「KE1990」シリーズとして市販されているものを用いることができる。
【0037】
本発明においては、付加型液状シリコーンゴムを硬化させるために適宜の硬化触媒を用いることができる。このような硬化触媒としては、白金系のものを用いることができ、その具体例としては、塩化白金酸およびその塩、白金−不飽和基含有シロキサンコンプレックス、ビニルシロキサンと白金とのコンプレックス、白金と1,3−ジビニルテトラメチルジシロキサンとのコンプレックス、トリオルガノホスフィンあるいはホスファイトと白金とのコンプレックス、アセチルアセテート白金キレート、環状ジエンと白金とのコンプレックスなどの公知のものが挙げられる。
硬化触媒の使用量は、硬化触媒の種類、その他の硬化処理条件を考慮して適宜選択されるが、通常、付加型液状シリコーンゴム100重量部に対して3〜15重量部である。
【0038】
また、付加型液状シリコーンゴム中には、付加型液状シリコーンゴムのチクソトロピー性の向上、粘度調整、導電性粒子の分散安定性の向上、或いは高い強度を有する基材を得ることなどを目的として、必要に応じて、通常のシリカ粉、コロイダルシリカ、エアロゲルシリカ、アルミナなどの無機充填材を含有させることができる。
このような無機充填材の使用量は、特に限定されるものではないが、多量に使用すると、磁場による導電性粒子の配向を十分に達成することができなくなるため、好ましくない。
【0039】
弾性異方導電膜20における接続用導電部22に含有される導電性粒子Pとしては、磁性を示す芯粒子(以下、「磁性芯粒子」ともいう。)の表面に、金よりなる被覆層および銀よりなる被覆層を含む複数の被覆層が積層されてなるものであり、複数の被覆層のうち最外層は金よりなる被覆層とされる。
導電性粒子Pの数平均粒子径は、1〜50μmであることが好ましく、より好ましくは5〜40μmである。
ここで、粒子の数平均粒子径は、レーザー回折散乱法によって測定されたものをいう。 この数平均粒子径が過小である場合には、後述する製造方法において、成形材料層中に分散されている導電性粒子Pを接続用導電部22となる部分に確実に重合させることが困難となることがある。また、導電性粒子Pの連鎖における当該導電性粒子Pの数が多くなるため、導電性粒子P間の接触抵抗の総和が増大する結果、所要の導電性を有する接続用導電部を得ることが困難となることがある。一方、この数平均粒子径が過大である場合には、互いに隣接する接続用導電部22間の絶縁性を確保した状態で、当該接続用導電部22を小さいピッチで形成することが困難となることがある。
また、導電性粒子Pは、その粒子径の変動係数が50%以下のものであることが好ましく、より好ましくは40%以下、更に好ましくは30%以下、特に好ましくは20%以下のものである。
ここで、粒子径の変動係数は、式:(σ/Dn)×100(但し、σは、粒子径の標準偏差の値を示し、Dnは、粒子の数平均粒子径を示す。)によって求められるものである。
上記粒子径の変動係数が50%以下であれば、粒子径の均一性が大きいため、導電性のバラツキの小さい接続用導電部22を形成することかできる。
また、導電性粒子Pの形状は、特に限定されるものではないが、高分子物質形成材料中に容易に分散させることができる点で、球状のもの、星形状のものあるいはこれらが凝集した2次粒子による塊状のものであることが好ましい。
【0040】
導電性粒子Pを得るための磁性芯粒子は、そのBET比表面積が10〜1500m2 /kgであることが好ましく、より好ましくは20〜1000m2 /kg、特に好ましくは50〜500m2 /kgである。
このBET比表面積が10m2 /kg以上であれば、当該磁性芯粒子は被覆層が形成される領域の面積が十分に大きいものであるため、当該磁性芯粒子に所要の質量の被覆層を確実に形成することができ、従って、導電性の大きい導電性粒子Pを得ることができると共に、当該導電性粒子P間において、接触面積が十分に大きいため、安定で高い導電性が得られる。一方、このBET比表面積が1500m2 /kg以下であれば、当該磁性芯粒子が脆弱なものとならず、物理的な応力が加わった際に破壊することが少なく、安定で高い導電性が保持される。
【0041】
磁性芯粒子を構成する材料としては、鉄、ニッケル、コバルト、これらの金属を銅、樹脂にコーティングしたものなどを用いことができるが、その飽和磁化が0.1Wb/m2 以上のものを好ましく用いることができ、より好ましくは0.3Wb/m2 以上、特に好ましくは0.5Wb/m2 以上のものであり、具体的には、鉄、ニッケル、コバルトまたはそれらの合金を挙げることができる。
この飽和磁化が0.1Wb/m2 以上であれば、後述する製造方法によって、当該弾性異方導電膜20を形成するための成形材料層中において導電性粒子Pを容易に移動させることができ、これにより、当該成形材料層における接続用導電部となる部分に、導電性粒子Pを確実に移動させて導電性粒子Pの連鎖を形成することができる。
【0042】
導電性粒子Pは、磁性芯粒子の質量に対する銀よりなる被覆層の質量の割合〔(被覆層の質量/芯粒子の質量)×100〕が3〜25%であることが好ましく、より好ましくは5〜20%である。
銀よりなる被覆層の質量が過小である場合には、当該被覆層を磁性芯粒子の表面に完全にかつ十分に大きい厚みで形成することが困難となることがあるため、得られる異方導電性コネクターは耐久性が低いものとなりやすい。一方、銀よりなる被覆層の質量が過大である場合には、導電性粒子の凝集が起こりやすくなるため、目的とする粒子径を有する導電性粒子を得ることが困難となることがある。
【0043】
また、導電性粒子Pは、磁性芯粒子の質量に対する金よりなる被覆層の質量の割合〔(被覆層の質量/芯粒子の質量)×100〕が3〜40%であることが好ましく、より好ましくは5〜30%である。
金よりなる被覆層の質量が過小である場合には、当該被覆層を銀よりなる被覆層の表面に完全にかつ十分に大きい厚みで形成することが困難となることがあるため、得られる異方導電性コネクターは高温における耐久性が低いものとなりやすい。一方、金よりなる被覆層の質量が過大である場合には、導電性粒子の凝集が起こりやすくなるため、生産コストが高くなり、好ましくない。
【0044】
また、導電性粒子Pは、銀よりなる被覆層および金よりなる被覆層の他に、適宜の金属よりなる被覆層(以下、「他の被覆層」という。)を有するものであってもよい。この場合には、導電性粒子における複数の被覆層のうち最内層が銀よりなる被覆層であることが好ましい。
他の被覆層を形成する金属の具体例としては、ロジウム、インジウム、パラジウム、白金などが挙げられ、これらの中では、ロジウムが好ましい。
磁性芯粒子の質量に対する他の被覆層の質量の割合〔(被覆層の質量/芯粒子の質量)×100〕は、3〜20%であることが好ましく、より好ましくは5〜15%である。
また、磁性芯粒子の質量に対する全被覆層の質量の合計の割合〔(被覆層の質量/芯粒子の質量)×100〕は、5〜50%であることが好ましく、より好ましくは10〜40%である。
【0045】
このような導電性粒子Pは、例えは以下の方法によって得ることができる。
先ず、強磁性体材料を常法により粒子化し或いは市販の強磁性体粒子を用意し、この粒子に対して分級処理を行うことにより、所要の粒子径を有する磁性芯粒子を調製する。
ここで、粒子の分級処理は、例えば空気分級装置、音波ふるい装置などの分級装置によって行うことができる。
また、分級処理の具体的な条件は、目的とする磁性芯粒子の数平均粒子径、分級装置の種類などに応じて適宜設定される。
次いで、磁性芯粒子に対して表面酸化膜除去処理を行い、更に、例えば純水によって表面洗浄処理することにより、磁性芯粒子の表面に存在する汚れ、異物、酸化膜などの不純物を除去する。そして、必要に応じて、磁性芯粒子に対して酸化防止処理を行った後、当該磁性芯粒子の表面に例えば銀よりなる被覆層を形成し、更に.必要に応じて他の被覆層を形成することにより、中間体粒子を形成する。次いで、この中間体粒子の表面に、金よりなる被覆層を被覆層を形成し、その後、必要に応じて分級処理することによって、目的とする導電性粒子が得られる。
ここで、磁性芯粒子の表面酸化膜除去処理の具体的な方法としては、塩酸などの酸による処理方法を利用することができる。
また、磁性芯粒子の酸化防止処理の具体的な方法としては、水溶性フラーレンなどによる処理方法を利用することができる。
また、各被覆層を形成する方法としては、特に限定されず種々の方法を利用することができ、例えば置換メッキ法や化学還元メッキ法等の無電解メッキ法、電気メッキ法などの湿式法、スパッター法、蒸着法などの乾式法を用いることができ、これらの中では、無電解メッキ法、電気メッキ法、スパッター法を好適に利用することができる。
【0046】
化学還元メッキ法や置換メッキ法等の無電解メッキ法によって被覆層を形成する方法について説明すると、先ず、メッキ液中に、酸処理および洗浄処理された磁性芯粒子を添加してスラリーを調製し、このスラリーを攪拌しながら当該磁性芯粒子の無電解メッキを行う。次いで、スラリー中の粒子をメッキ液から分離し、その後、当該粒子を例えば純水によって洗浄処理することにより、被覆層を形成することができる。ここで、無電解メッキ法に用いられるメッキ液としては、特に限定されるものではなく、種々の市販のものを用いることができる。
また、スパッター法によって被覆層を形成する方法について説明すると、真空チャンバー内に試料を攪拌するための回転ドラムが設けられたスパッタリング装置を用意し、Agターゲット、Auターゲット、および他の被覆層を形成する場合には他の金属ターゲットを用い、酸処理および洗浄処理された磁性芯粒子に対して順次スパッター処理することにより、所要の被覆層を形成することができる。
【0047】
被覆層を形成する際に、粒子が凝集することにより、粒子径の大きい導電性粒子が発生することがあるため、必要に応じて、導電性粒子の分級処理を行うことが好ましく、これにより、所期の粒子径を有する導電性粒子が確実に得られる。
導電性粒子の分級処理を行うための分級装置としては、前述の磁性芯粒子を調製するための分級処理に用いられる分級装置として例示したものを挙げることができる。
【0048】
機能部21の接続用導電部22における導電性粒子Pの含有割合は、体積分率で10〜60%、好ましくは15〜50%となる割合で用いられることが好ましい。この割合が10%未満の場合には、十分に電気抵抗値の小さい接続用導電部22が得られないことがある。一方、この割合が60%を超える場合には、得られる接続用導電部22は脆弱なものとなりやすく、接続用導電部22として必要な弾性が得られないことがある。
【0049】
上記の異方導電性コネクターは、例えば以下のようにして製造することができる。
先ず、検査対象であるウエハにおける集積回路の被検査電極が形成された電極領域のパターンに対応して異方導電膜配置用孔11が形成された磁性金属よりなるフレーム板10を作製する。ここで、フレーム板10の異方導電膜配置用孔11を形成する方法としては、例えばエッチング法などを利用することができる。
【0050】
次いで、硬化されて弾性高分子物質となる高分子形成材料中に上記の導電性粒子が分散されてなる成形材料を調製する。そして、図5に示すように、弾性異方導電性膜成形用の金型60を用意し、この金型60における上型61および下型65の各々の成形面に、調製した成形材料を、所要のパターンすなわち形成すべき弾性異方導電膜の配置パターンに従って塗布することによって成形材料層20Aを形成する。
【0051】
ここで、金型60について具体的に説明すると、この金型60は、上型61およびこれと対となる下型65が互いに対向するよう配置されて構成されている。
上型61においては、図6に拡大して示すように、基板62の下面に、成形すべき弾性異方導電性膜20の接続用導電部22の配置パターンに対掌なパターンに従って強磁性体層63が形成され、この強磁性体層63以外の個所には、非磁性体層64が形成されており、これらの強磁性体層63および非磁性体層64によって成形面が形成されている。また、上型61の成形面には、成形すべき弾性異方導電膜20における突出部24に対応して凹所64aが形成されている。
一方、下型65においては、基板66の上面に、成形すべき弾性異方導電膜20の接続用導電部22の配置パターンと同一のパターンに従って強磁性体層67が形成され、この強磁性体層67以外の個所には、非磁性体層68が形成されており、これらの強磁性体層67および非磁性体層68によって成形面が形成されている。また、下型65の成形面には、成形すべき弾性異方導電膜20における突出部24に対応して凹所68aが形成されている。
【0052】
上型61および下型65の各々における基板62,66は、強磁性体により構成されていることが好ましく、このような強磁性体の具体例としては、鉄、鉄−ニッケル合金、鉄−コバルト合金、ニッケル、コバルトなどの強磁性金属が挙げられる。この基板62,66は、その厚みが0.1〜50mmであることが好ましく、表面が平滑で、化学的に脱脂処理され、また、機械的に研磨処理されたものであることが好ましい。
【0053】
また、上型61および下型65の各々における強磁性体層63,67を構成する材料としては、鉄、鉄−ニッケル合金、鉄−コバルト合金、ニッケル、コバルトなどの強磁性金属を用いることができる。この強磁性体層63,67は、その厚みが10μm以上であることが好ましい。この厚みが10μm以上であれば、成形材料層20Aに対して、十分な強度分布を有する磁場を作用させることができ、この結果、当該成形材料層20Aにおける接続用導電部22となる部分に導電性粒子を高密度に集合させることができ、良好な導電性を有する接続用導電部22が得られる。
【0054】
また、上型61および下型65の各々における非磁性体層64,68を構成する材料としては、銅などの非磁性金属、耐熱性を有する高分子物質などを用いることができるが、フォトリソグラフィーの手法により容易に非磁性体層64,68を形成することができる点で、放射線によって硬化された高分子物質を好ましく用いることができ、その材料としては、例えばアクリル系のドライフィルムレジスト、エポキシ系の液状レジスト、ポリイミド系の液状レジストなどのフォトレジストを用いることができる。
【0055】
上型61および下型65の成形面に成形材料を塗布する方法としては、スクリーン印刷法を用いることが好ましい。このような方法によれば、成形材料を所要のパターンに従って塗布することが容易で、しかも、適量の成形材料を塗布することができる。
【0056】
次いで、図7に示すように、成形材料層20Aが形成された下型65の成形面上に、スペーサー69aを介して、フレーム板10を位置合わせして配置すると共に、このフレーム板10上に、スペーサー69bを介して、成形材料層20Aが形成された上型61を位置合わせして配置し、更に、これらを重ね合わせることにより、図8に示すように、上型61と下型65との間に、目的とする形態(形成すべき弾性異方導電膜20の形態)の成形材料層20Aが形成される。この成形材料層20Aにおいては、図9に示すように、導電性粒子Pは成形材料層20A全体に分散された状態で含有されている。
このようにフレーム板10と上型61および下型65との間にスペーサー69a,69bを配置することにより、目的とする形態の弾性異方導電膜を形成することができると共に、隣接する弾性異方導電膜同士が連結することが防止されるため、互いに独立した多数の弾性異方導電膜を確実に形成することができる。
【0057】
その後、上型61における基板62の上面および下型65における基板66の下面に例えば一対の電磁石を配置してこれを作動させることにより、上型61および下型65が強磁性体層63,67を有するため、上型61の強磁性体層63とこれに対応する下型65の強磁性体層67との間においてその周辺領域より大きい強度を有する磁場が形成される。その結果、成形材料層20Aにおいては、当該成形材料層20A中に分散されていた導電性粒子Pが、図10に示すように、上型61の強磁性体層63とこれに対応する下型65の強磁性体層67との間に位置する接続用導電部22となる部分に集合して厚み方向に並ぶよう配向する。
そして、この状態において、成形材料層20Aを硬化処理することにより、弾性高分子物質中に導電性粒子Pが厚み方向に並ぶよう配向した状態で含有されてなる複数の接続用導電部22が、導電性粒子Pが全く或いは殆ど存在しない高分子弾性物質よりなる絶縁部23によって相互に絶縁された状態で配置されてなる機能部21と、この機能部21の周辺に連続して一体に形成された被支持部25とよりなる弾性異方導電膜20が、フレーム板10の異方導電膜配置用孔11の周辺部に当該被支持部25が固定された状態で形成され、以て異方導電性コネクターが製造される。
【0058】
以上において、成形材料層20Aにおける接続用導電部22となる部分に作用させる外部磁場の強度は、平均で0.1〜2.5テスラとなる大きさが好ましい。
成形材料層20Aの硬化処理は、使用される材料によって適宜選定されるが、通常、加熱処理によって行われる。加熱により成形材料層20Aの硬化処理を行う場合には、電磁石にヒーターを設ければよい。具体的な加熱温度および加熱時間は、成形材料層20Aを構成する高分子物質形成材料などの種類、導電性粒子Pの移動に要する時間などを考慮して適宜選定される。
【0059】
上記の異方導電性コネクターによれば、弾性異方導電膜20における接続用導電部22中に含有された導電性粒子Pが、金よりなる被覆層および銀よりなる被覆層を有し、最外層が金よりなる被覆層であるため、例えばウエハに形成された集積回路の電気的検査において、多数回にわたって繰り返して使用された場合或いは高温環境下において繰り返して使用された場合にも、導電性粒子Pの表面の変質が抑制される結果、長期間にわたって良好な導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる。
【0060】
また、弾性異方導電膜20には、接続用導電部22を有する機能部21の周縁に被支持部25が形成されており、この被支持部25がフレーム板10の異方導電膜配置用孔11の周辺部に固定されているため、変形しにくくて取扱いやすく、検査対象であるウエハとの電気的接続作業において、当該ウエハに対する位置合わせおよび保持固定を容易に行うことができる。
また、フレーム板10の異方導電膜配置用孔11の各々は、検査対象であるウエハにおける集積回路の被検査電極が形成された電極領域に対応して形成されており、当該異方導電膜配置用孔11の各々に配置される弾性異方導電膜20は面積が小さいものでよいため、個々の弾性異方導電膜20の形成が容易である。しかも、面積の小さい弾性異方導電膜20は、熱履歴を受けた場合でも、当該弾性異方導電膜20の面方向における熱膨張の絶対量が少ないため、フレーム板10を構成する材料として線熱膨張係数の小さいものを用いることにより、弾性異方導電膜20の面方向における熱膨張がフレーム板によって確実に規制される。従って、大面積のウエハに対してWLBI試験またはプローブ試験を行う場合においても、良好な電気的接続状態を安定に維持することができる。
【0061】
〔ウエハ検査装置〕
図11は、本発明に係る異方導電性コネクターを用いたウエハ検査装置の一例における構成の概略を示す説明用断面図である。このウエハ検査装置は、ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うためのものである。
【0062】
図11に示すウエハ検査装置は、検査対象であるウエハ6の被検査電極7の各々とテスターとの電気的接続を行うプローブカード1を有する。このプローブカード1においては、図12にも拡大して示すように、検査対象であるウエハ6の被検査電極7のパターンに対応するパターンに従って複数の検査電極31が表面(図において下面)形成された検査用回路基板30を有し、この検査用回路基板30の表面には、図1〜図4に示す構成の異方導電性コネクター2が、その弾性異方導電膜20における接続用導電部22の各々が検査用回路基板30の検査電極31の各々に対接するよう設けられ、この異方導電性コネクター2の表面(図において下面)には、絶縁性シート41に検査対象であるウエハ6の被検査電極7のパターンに対応するパターンに従って複数の電極構造体42が配置されてなるシート状プローブ40が、当該電極構造体42の各々が異方導電性コネクター2の弾性異方導電膜20における接続用導電部22の各々に対接するよう設けられている。
また、プローブカード1における検査用回路基板30の裏面(図において上面)には、当該プローブカード1を下方に加圧する加圧板3が設けられ、プローブカード1の下方には、検査対象であるウエハ6が載置されるウエハ載置台4が設けられており、加圧板3およびウエハ載置台4の各々には、加熱器5が接続されている。
【0063】
検査用回路基板30を構成する基板材料としては、従来公知の種々の基板材料を用いることができ、その具体例としては、ガラス繊維補強型エポキシ樹脂、ガラス繊維補強型フェノール樹脂、ガラス繊維補強型ポリイミド樹脂、ガラス繊維補強型ビスマレイミドトリアジン樹脂等の複合樹脂材料、ガラス、二酸化珪素、アルミナ等のセラミックス材料などが挙げられる。
また、WLBI試験またはプローブ試験を行うためのウエハ検査装置を構成する場合には、線熱膨張係数が3×10-5/K以下のものを用いることが好ましく、より好ましくは1×10-7〜1×10-5/K、特に好ましくは1×10-6〜6×10-6/Kである。
このような基板材料の具体例としては、パイレックス(登録商標)ガラス、石英ガラス、アルミナ、ベリリア、炭化ケイ素、窒化アルミニウム、窒化ホウ素など挙げられる。
【0064】
プローブカード1におけるシート状プローブ40について具体的に説明すると、このシート状プローブ40は、柔軟な絶縁性シート41を有し、この絶縁性シート41には、当該絶縁性シート41の厚み方向に伸びる複数の金属よりなる電極構造体42が、検査対象であるウエハ6の被検査電極7のパターンに対応するパターンに従って、当該絶縁性シート41の面方向に互いに離間して配置されている。
電極構造体42の各々は、絶縁性シート41の表面(図において下面)に露出する突起状の表面電極部43と、絶縁性シート41の裏面に露出する板状の裏面電極部44とが、絶縁性シート41の厚み方向に貫通して伸びる短絡部45によって互いに一体に連結されて構成されている。
【0065】
絶縁性シート41としては、絶縁性を有する柔軟なものであれば特に限定されるものではなく、例えばポリイミド樹脂、液晶ポリマー、ポリエステル、フッ素系樹脂などよりなる樹脂シート、繊維を編んだクロスに上記の樹脂を含浸したシートなどを用いることができる。
また、絶縁性シート41の厚みは、当該絶縁性シート41が柔軟なものであれば特に限定されないが、10〜50μmであることが好ましく、より好ましくは10〜25μmである。
【0066】
電極構造体42を構成する金属としては、ニッケル、銅、金、銀、パラジウム、鉄などを用いることができ、電極構造体42としては、全体が単一の金属よりなるものであっても、2種以上の金属の合金よりなるものまたは2種以上の金属が積層されてなるものであってもよい。
また、電極構造体42における表面電極部43および裏面電極部44の表面には、当該電極部の酸化が防止されると共に、接触抵抗の小さい電極部が得られる点で、金、銀、パラジウムなどの化学的に安定で高導電性を有する金属被膜が形成されていることが好ましい。
【0067】
電極構造体42における表面電極部43の突出高さは、ウエハ6の被検査電極7に対して安定な電気的接続を達成することができる点で、15〜50μmであることが好ましく、より好ましくは15〜30μmである。また、表面電極部43の径は、ウエハ6の被検査電極の寸法およびピッチに応じて設定されるが、例えば30〜80μmであり、好ましくは30〜50μmである。
電極構造体42における裏面電極部44の径は、短絡部45の径より大きく、かつ、電極構造体42の配置ピッチより小さいものであればよいが、可能な限り大きいものであることが好ましく、これにより、異方導電性コネクター2の弾性異方導電膜20における接続用導電部22に対しても安定な電気的接続を確実に達成することができる。また、裏面電極部44の厚みは、強度が十分に高くて優れた繰り返し耐久性が得られる点で、20〜50μmであることが好ましく、より好ましくは30〜40μmである。
電極構造体42における短絡部45の径は、十分に高い強度が得られる点で、30〜80μmであることが好ましく、より好ましくは30〜50μmである。
【0068】
シート状プローブ40は、例えば以下のようにして製造することができる。
すなわち、絶縁性シート41上に金属層が積層されてなる積層材料を用意し、この積層材料における絶縁性シート41に対して、レーザ加工、ドライエッチング加工等によって、当該絶縁性シート41の厚み方向に貫通する複数の貫通孔を、形成すべき電極構造体42のパターンに対応するパターンに従って形成する。次いで、この積層材料に対してフォトリソグラフィーおよびメッキ処理を施すことによって、絶縁性シート41の貫通孔内に金属層に一体に連結された短絡部45を形成すると共に、当該絶縁性シート41の表面に、短絡部45に一体に連結された突起状の表面電極部43を形成する。その後、積層材料における金属層に対してフォトエッチング処理を施してその一部を除去することにより、裏面電極部44を形成して電極構造体42を形成し、以てシート状プローブ40が得られる。
【0069】
このような電気的検査装置においては、ウエハ載置台4上に検査対象であるウエハ6が載置され、次いで、加圧板3によってプローブカード1が下方に加圧されることにより、そのシート状プローブ40の電極構造体42における表面電極部43の各々が、ウエハ6の被検査電極7の各々に接触し、更に、当該表面電極部43の各々によって、ウエハ6の被検査電極7の各々が加圧される。この状態においては、異方導電性コネクター2の弾性異方導電膜20における接続用導電部22の各々は、検査用回路基板30の検査電極31とシート状プローブ40の電極構造体42の表面電極部43とによって挟圧されて厚み方向に圧縮されており、これにより、当該接続用導電部22にはその厚み方向に導電路が形成され、その結果、ウエハ6の被検査電極7と検査用回路基板30の検査電極31との電気的接続が達成される。その後、加熱器5によって、ウエハ載置台4および加圧板3を介してウエハ6が所定の温度に加熱され、この状態で、当該ウエハ6における複数の集積回路の各々について所要の電気的検査が実行される。
【0070】
このようなウエハ検査装置によれば、耐久性が高くて使用寿命の長い異方導電性コネクター2を有するプローブカード1を具えてなるため、多数回にわたってウエハの検査を行う場合において、異方導電性コネクター2を新たなものに交換する頻度を少なくすることができ、これにより、高い効率でウエハの検査を行うことができると共に、検査コストの低減化を図ることができる。
また、被検査電極7のピッチが小さいものであっても、当該ウエハに対する位置合わせおよび保持固定を容易に行うことができ、しかも、高温環境下において繰り返し使用した場合にも、所要の電気的検査を長期間にわたって安定して実行することができる。
また、異方導電性コネクター2における弾性異方導電膜20は、それ自体の面積が小さいものであり、熱履歴を受けた場合でも、当該弾性異方導電膜20の面方向における熱膨張の絶対量が少ないため、フレーム板10を構成する材料として線熱膨張係数の小さいものを用いることにより、弾性異方導電膜20の面方向における熱膨張がフレーム板によって確実に規制される。従って、大面積のウエハに対してWLBI試験を行う場合においても、良好な電気的接続状態を安定に維持することができる。
【0071】
図13は、本発明に係る異方導電性コネクターを用いたウエハ検査装置の他の例における構成の概略を示す説明用断面図である。
このウエハ検査装置は、検査対象であるウエハ6が収納される、上面が開口した箱型のチャンバー50を有する。このチャンバー50の側壁には、当該チャンバー50の内部の空気を排気するための排気管51が設けられており、この排気管51には、例えば真空ポンプ等の排気装置(図示省略)が接続されている。
チャンバー50上には、図11に示すウエハ検査装置におけるプローブカード1と同様の構成のプローブカード1が、当該チャンバー50の開口を気密に塞ぐよう配置されている。具体的には、チャンバー50における側壁の上端面上には、弾性を有するO−リング55が密着して配置され、プローブカード1は、その異方導電性コネクター2およびシート状プローブ40がチャンバー50内に収容され、かつ、その検査用回路基板30における周辺部がO−リング55に密着した状態で配置されており、更に、検査用回路基板30が、その裏面(図において上面)には設けられた加圧板3によって下方に加圧された状態とされている。
また、チャンバー50および加圧板3には、加熱器5が接続されている。
【0072】
このようなウエハ検査装置においては、チャンバー50の排気管51に接続された排気装置を駆動させることにより、チャンバー50内が例えば1000Pa以下に減圧される結果、大気圧によって、プローブカード1が下方に加圧される。これにより、O−リング55が弾性変形するため、プローブカード1が下方に移動する結果、シート状プローブ40の電極構造体42における表面電極部43の各々によって、ウエハ6の被検査電極7の各々が加圧される。この状態においては、異方導電性コネクター2の弾性異方導電膜20における接続用導電部22の各々は、検査用回路基板30の検査電極31とシート状プローブ40の電極構造体42の表面電極部43とによって挟圧されて厚み方向に圧縮されており、これにより、当該接続用導電部22にはその厚み方向に導電路が形成され、その結果、ウエハ6の被検査電極7と検査用回路基板30の検査電極31との電気的接続が達成される。その後、加熱器5によって、チャンバー50および加圧板3を介してウエハ6が所定の温度に加熱され、この状態で、当該ウエハ6における複数の集積回路の各々について所要の電気的検査が実行される。
【0073】
このようなウエハ検査装置によれば、図11に示すウエハ検査装置と同様の効果が得られ、更に、大型の加圧機構が不要であるため、検査装置全体の小型化を図ることができると共に、検査対象であるウエハ6が例えば直径が8インチ以上の大面積のものであっても、当該ウエハ6全体を均一な力で押圧することができる。しかも、異方導電性コネクター2におけるフレーム板10には、空気流通孔15が形成されているため、チャンバー50内を減圧したときに、異方導電性コネクター2と検査用回路基板30との間に存在する空気が、異方導電性コネクター2におけるフレーム板10の空気流通孔15を介して排出され、これにより、異方導電性コネクター2と検査用回路基板30とを確実に密着させることができるので、所要の電気的接続を確実に達成することができる。
【0074】
〔他の実施の形態〕
本発明は、上記の実施の形態に限定されず、次のような種々の変更を加えることが可能である。
(1)異方導電性コネクターにおいては、弾性異方導電膜20には、接続用導電部22以外に、ウエハにおける被検査電極に電気的に接続されない非接続用導電部が形成されていてもよい。以下、非接続用導電部が形成された弾性異方導電膜を有する異方導電性コネクターについて説明する。
【0075】
図14は、本発明に係る異方導電性コネクターの他の例における弾性異方導電膜を拡大して示す平面図である。この異方導電性コネクターの弾性異方導電膜20においては、その機能部21に、検査対象であるウエハの被検査電極に電気的に接続される厚み方向(図15において紙面と垂直な方向)に伸びる複数の接続用導電部22が、被検査電極のパターンに対応するパターンに従って2列に並ぶよう配置され、これらの接続用導電部22の各々は、磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で密に含有されてなり、導電性粒子が全く或いは殆ど含有されていない絶縁部23によって相互に絶縁されている。
そして、接続用導電部22が並ぶ方向において、最も外側に位置する接続用導電部22とフレーム板10との間には、検査対象であるウエハの被検査電極に電気的に接続されない厚み方向に伸びる非接続用導電部26が形成されている。この非接続用導電部26は、磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で密に含有されてなり、導電性粒子が全く或いは殆ど含有されていない絶縁部23によって、接続用導電部22と相互に絶縁されている。
また、図示の例では、弾性異方導電膜20における機能部21の両面には、接続用導電部22およびその周辺部分が位置する個所並びに非接続用導電部26およびその周辺部分が位置する個所に、それら以外の表面から突出する突出部24および突出部27が形成されている。
機能部21の周縁には、フレーム板10における異方導電膜配置用孔11の周辺部に固定支持された被支持部25が、当該機能部21に一体に連続して形成されており、この被支持部25には、導電性粒子が含有されている。
その他の構成は、基本的に図1〜図4に示す異方導電性コネクターの構成と同様である。
【0076】
図15は、本発明に係る異方導電性コネクターの更に他の例における弾性異方導電膜を拡大して示す平面図である。この異方導電性コネクターの弾性異方導電膜20においては、その機能部21に、検査対象であるウエハの被検査電極に電気的に接続される厚み方向(図15において紙面と垂直な方向)に伸びる複数の接続用導電部22が、被検査電極のパターンに対応するパターンに従って並ぶよう配置され、これらの接続用導電部22の各々は、磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で密に含有されてなり、導電性粒子が全く或いは殆ど含有されていない絶縁部23によって相互に絶縁されている。
これらの接続用導電部22のうち中央に位置する互いに隣接する2つの接続用導電部22は、その他の互いに隣接する接続用導電部22間における離間距離より大きい離間距離で配置されている。そして、中央に位置する互いに隣接する2つの接続用導電部22の間には、検査対象であるウエハの被検査電極に電気的に接続されない厚み方向に伸びる非接続用導電部26が形成されている。この非接続用導電部26は、磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で密に含有されてなり、導電性粒子が全く或いは殆ど含有されていない絶縁部23によって、接続用導電部22と相互に絶縁されている。
また、図示の例では、弾性異方導電膜20における機能部21の両面には、接続用導電部22およびその周辺部分が位置する個所並びに非接続用導電部26およびその周辺部分が位置する個所に、それら以外の表面から突出する突出部24および突出部27が形成されている。
機能部21の周縁には、フレーム板10における異方導電膜配置用孔11の周辺部に固定支持された被支持部25が、当該機能部21に一体に連続して形成されており、この被支持部25には、導電性粒子が含有されている。
その他の具体的な構成は、基本的に図1〜図4に示す異方導電性コネクターの構成と同様である。
【0077】
図14に示す異方導電性コネクターおよび図15に示す異方導電性コネクターは、図6に示す金型の代わりに、成形すべき弾性異方導電性膜20の接続用導電部22および非接続用導電部26の配置パターンに対応するパターンに従って強磁性体層が形成され、この強磁性体層以外の個所には、非磁性体層が形成された上型および下型からなる金型を用いることにより、前述の図1〜図4に示す異方導電性コネクターを製造する方法と同様にして製造することができる。
【0078】
すなわち、このような金型によれば、上型における基板の上面および下型における基板の下面に例えば一対の電磁石を配置してこれを作動させることにより、当該上型および当該下型の間に形成された成形材料層においては、当該成形材料層における機能部21となる部分に分散されていた導電性粒子が、接続用導電部22となる部分および非接続用導電部26となる部分に集合して厚み方向に並ぶよう配向し、一方、成形材料層におけるフレーム板10の上方および下方にある導電性粒子は、フレーム板10の上方および下方に保持されたままとなる。
そして、この状態において、成形材料層を硬化処理することにより、弾性高分子物質中に導電性粒子が厚み方向に並ぶよう配向した状態で含有されてなる複数の接続用導電部22および非接続用導電部26が、導電性粒子が全く或いは殆ど存在しない高分子弾性物質よりなる絶縁部23によって相互に絶縁された状態で配置されてなる機能部21と、この機能部21の周辺に連続して一体に形成された、弾性高分子物質中に導電性粒子が含有されてなる被支持部25とよりなる弾性異方導電膜20が、フレーム板10の異方導電膜配置用孔11の周辺部に当該被支持部25が固定された状態で形成され、以て異方導電性コネクターが製造される。
【0079】
図14に示す異方導電性コネクターにおける非接続用導電部26は、弾性異方導電膜20の形成において、成形材料層における非接続用導電部26となる部分に磁場を作用させることにより、成形材料層における最も外側に位置する接続用導電部22となる部分とフレーム板10との間に存在する導電性粒子を、非接続用導電部26となる部分に集合させ、この状態で、当該成形材料層の硬化処理を行うことにより得られる。そのため、当該弾性異方導電膜20の形成において、導電性粒子が、成形材料層における最も外側に位置する接続用導電部22となる部分に過剰に集合することがない。従って、形成すべき弾性異方導電膜20が、比較的多数の接続用導電部22を有するものであっても、当該弾性異方導電膜20における最も外側に位置する接続用導電部22に、過剰な量の導電性粒子が含有されることが確実に防止される。
【0080】
また、図15に示す異方導電性コネクターにおける非接続用導電部26は、弾性異方導電膜20の形成において、成形材料層における非接続用導電部26となる部分に磁場を作用させることにより、成形材料層における大きい離間距離で配置された隣接する2つの接続用導電部22となる部分の間に存在する導電性粒子を、非接続用導電部26となる部分に集合させ、この状態で、当該成形材料層の硬化処理を行うことにより得られる。そのため、当該弾性異方導電膜20の形成において、導電性粒子が、成形材料層における大きい離間距離で配置された隣接する2つの接続用導電部22となる部分に過剰に集合することがない。従って、形成すべき弾性異方導電膜20が、それぞれ大きい離間距離で配置された2つ以上の接続用導電部22を有するものであっても、それらの接続用導電部22に、過剰な量の導電性粒子が含有されることが確実に防止される。
【0081】
(2)異方導電性コネクターにおいては、弾性異方導電膜20における突出部24は必須のものではなく、一面または両面が平坦面のもの、或いは凹所が形成されたものであってもよい。
(3)弾性異方導電膜20における接続用導電部22の表面には、金属層あるいはDLC(ダイヤモンドライクカーボン)層が形成されていてもよい。
(4)本発明の異方導電性コネクターの用途は、ウエハの検査に限定されるものではなく、半導体チップ、パッケージ化された集積回路装置などの電子部品の検査に用いられるコネクターや、電子部品の実装に用いられるコネクターとしても有用である。
(5)異方導電性コネクターの製造において、フレーム板10の基材として非磁性のものを用いる場合には、成形材料層20Aにおける被支持部25となる部分に磁場を作用させる方法として、当該フレーム板10における異方導電膜配置用孔11の周辺部に磁性体をメッキしてまたは磁性塗料を塗布して磁場を作用させる手段、金型60に、弾性異方導電膜20の被支持部25に対応して強磁性体層を形成して磁場を作用させる手段を利用することができる。
(6)成形材料層の形成において、スペーサーを用いることは必須のことではなく、他の手段によって、上型および下型とフレーム板との間に弾性異方導電膜成形用の空間を確保してもよい。
(7)プローブカード1においては、シート状プローブ40は、必須のものではなく、図16に示すように、例えば検査対象であるウエハ6の被検査電極7がハンダよりなる半球状の突起電極である場合には、プローブカード1は、異方導電性コネクター2における弾性異方導電膜20がウエハ6に接触して電気的接続を達成する構成のものであってもよい。
【0082】
(8)本発明の異方導電性コネクターまたは本発明のプローブカードを使用したウエハの検査方法においては、ウエハに形成された全ての集積回路について一括して行うことは必須のことではない。
バーンイン試験においては、集積回路の各々に必要な検査時間が数時間と長いため、ウエハに形成された全ての集積回路について一括して検査を行えば高い時間的効率が得られるが、プローブ試験においては、集積回路の各々に必要な検査時間が数分間と短いため、ウエハを2以上のエリアに分割し、分割されたエリア毎に、当該エリアに形成された集積回路について一括してプローブ試験を行うこともできる。
このように、ウエハに形成された集積回路について、分割されたエリア毎に電気的検査を行う方法によれば、直径が8インチまたは12インチのウエハに高い集積度で形成された集積回路について電気的検査を行う場合において、全ての集積回路について一括して検査を行う方法と比較して、用いられる検査用回路基板の検査電極数や配線数を少なくすることができ、これにより、検査装置の製造コストの低減化を図ることができる。
そして、本発明の異方導電性コネクターまたは本発明のプローブカードは、繰り返し使用における耐久性が高いものであるため、ウエハに形成された集積回路について、分割されたエリア毎に電気的検査を行う方法に用いる場合には、異方導電性コネクターに故障が生じて新たなものに交換する頻度が少なくなるので、検査コストの低減化を図ることができる。
【実施例】
【0083】
以下、本発明の具体的な実施例について説明するが、本発明は以下の実施例に限定されるものではない。
また、以下の実施例において、付加型液状シリコーンゴムの物性および導電性粒子における被覆層の物性は、次のようにして測定した。
【0084】
(1)付加型液状シリコーンゴムの粘度:
B型粘度計により、23±2℃における粘度を測定した。
(2)シリコーンゴム硬化物の圧縮永久歪み:
二液型の付加型液状シリコーンゴムにおけるA液とB液とを等量となる割合で攪拌混合した。次いで、この混合物を金型に流し込み、当該混合物に対して減圧による脱泡処理を行った後、120℃、30分間の条件で硬化処理を行うことにより、厚みが12.7mm、直径が29mmのシリコーンゴム硬化物よりなる円柱体を作製し、この円柱体に対して、200℃、4時間の条件でポストキュアを行った。このようにして得られた円柱体を試験片として用い、JIS K 6249に準拠して150±2℃における圧縮永久歪みを測定した。
(3)シリコーンゴム硬化物の引裂強度:
上記(2)と同様の条件で付加型液状シリコーンゴムの硬化処理およびポストキュアを行うことにより、厚みが2.5mmのシートを作製した。このシートから打ち抜きによってクレセント形の試験片を作製し、JIS K 6249に準拠して23±2℃における引裂強度を測定した。
(4)デュロメーターA硬度:
上記(3)と同様にして作製されたシートを5枚重ね合わせ、得られた積重体を試験片として用い、JIS K 6249に準拠して23±2℃におけるデュロメーターA硬度を測定した。
【0085】
〔磁性芯粒子の調製例1〕
市販のニッケル粒子(Westaim社製,「FC1000」)を用い、以下のようにして磁性芯粒子[A]を調製した。
コアンダ効果を利用した空気分級機(日鉄鉱業社製,「エルボージェット分級機 EJ−L−3型」)によって、ニッケル粒子1.7kgを、比重8.9、エジェクター圧0.2MPa、ブロック位置FΔR30.0mm、MΔR38.0mm、ニッケル粒子の供給速度1.43kg/hrの設定条件で分級処理して捕集することにより、磁性芯粒子1.1kgを調製した。この磁性芯粒子を「磁性芯粒子[A]」とする。
得られた磁性芯粒子[A]は、数平均粒子径が7.38μm、粒子径の変動係数が31%、BET比表面積が0.494×103 2 /kg、飽和磁化が0.2Wb/m2 であった。
【0086】
〔導電性粒子の調製例1(本発明用)〕
(1)磁性芯粒子の表面酸化膜除去処理:
粉末処理槽内に、磁性芯粒子[A]100gを投入し、更に、3.2Nの塩酸水溶液2Lを加えて攪拌し、磁性芯粒子[A]を含有するスラリーを得た。このスラリーを常温で30分間攪拌することにより、磁性芯粒子[A]の表面酸化膜除去処理を行い、その後、1分間静置して磁性芯粒子[A]を沈殿させ、上澄み液を除去した。
次いで、表面酸化膜除去処理が施された磁性芯粒子[A]に純水2Lを加え、常温で2分間攪拌し、その後、1分間静置して磁性芯粒子[A]を沈殿させ、上澄み液を除去した。この操作を更に2回繰り返すことにより、磁性芯粒子[A]の表面洗浄処理を行った。
【0087】
(2)磁性芯粒子の酸化防止処理:
表面酸化膜除去処理および表面洗浄処理が施された磁性芯粒子[A]に、水溶性フラーレン(三菱商事,「PEG−フラーレン」)の0.5質量%水溶液を加えて攪拌することにより、磁性芯粒子[A]を含有するスラリーを得た。このスラリーを常温で30分間攪拌することにより、磁性芯粒子の酸化防止処理を行い、その後、1分間静置して磁性芯粒子[A]を沈殿させ、上澄み液を除去した。そして、この磁性芯粒子[A]について、真空乾燥機によって、150℃、1×10-3Pa、10時間の条件で乾燥処理を行った。
【0088】
(3)被覆層の形成:
磁性芯粒子[A]を、粉体スパッター装置(日新製鋼社製)の真空チャンバー内に設けられた回転ドラムに投入し、銀よりなるターゲットをセットした。その後、磁性芯粒子[A]を攪拌しながら、真空チャンバー内の空気を雰囲気圧が1×10-3Paとなるまで排気し、当該真空チャンバー内にアルゴンガスを雰囲気圧が1×10-1Paとなるよう導入した。そして、この状態で、磁性芯粒子[A]に対して、スパッターレートが0.5nm/min、処理時間が1時間の条件でスパッター処理を行うことにより、銀よりなる被覆層が形成されてなる中間体粒子を調製した。
次いで、中間体粒子を冷却した後、真空チャンバー内から取り出し、当該中間体粒子をエタノール中に投入して攪拌し、2分間静置した後、上澄み液を除去した。この操作を更に2回繰り返すことにより、中間体粒子の洗浄処理を行った。その後、80℃のオーブンによって中間体粒子の乾燥処理を行った。
【0089】
この中間体粒子を、粉体スパッター装置(日新製鋼社製)の真空チャンバー内に設けられた回転ドラムに投入し、金よりなるターゲットをセットした。その後、中間体粒子を攪拌しながら、真空チャンバー内の空気を雰囲気圧が1×10-3Paとなるまで排気し、当該真空チャンバー内にアルゴンガスを雰囲気圧が1×10-1Paとなるよう導入した。そして、この状態で、中間体粒子に対して、スパッターレートが0.25nm/min、処理時間が1.5時間の条件でスパッター処理を行うことにより、金よりなる被覆層を形成し、以て、導電性粒子を調製した。
次いで、導電性粒子を冷却した後、真空チャンバー内から取り出し、当該導電性粒子をエタノール中に投入して攪拌し、2分間静置した後、上澄み液を除去した。この操作を更に2回繰り返すことにより、導電性粒子の洗浄処理を行った。その後、80℃のオーブンによって導電性粒子の乾燥処理を行った。
【0090】
(4)導電性粒子の分級処理:
導電性粒子を、セラミック棒の複数個が投入されたボールミル装置内に投入し、2時間粉砕処理を行った。その後、導電性粒子を、ボールミル装置から取り出し、音波篩器(筒井理化学機器(株)製,「SW−20AT形」)によって分級処理した。具体的には、それぞれ開口径が20μm、16μm、10μmの3つの篩を上からこの順で3段に重ね合わせ、篩の各々にセラミックボール7gを投入し、最上段の篩(開口径が20μm)に粉砕処理された導電性粒子を投入し、125Hzで15分間の条件で分級処理し、最下段の篩(開口径が10μm)に補集された導電性粒子を回収した。このような操作を2回行うことにより、導電性粒子の分級処理を行った。この分級処理した導電性粒子を「導電性粒子[A1]」とする。
導電性粒子[A1]は、数平均粒子径が8.02μm、粒子径の変動係数が36%、磁性芯粒子[A]の質量に対する銀よりなる被覆層の質量の割合が15%、磁性芯粒子[A]の質量に対する金よりなる被覆層質量の割合が10%であった。
【0091】
〔導電性粒子の調製例2(本発明用)〕
導電性粒子の調製例1と同様にして、磁性芯粒子[A]に対して、表面酸化膜除去処理、表面洗浄処理および酸化防止処理を行った。
この磁性芯粒子[A]に対して、導電性粒子の調製例1と同様にしてスパッター処理を行うことにより、銀よりなる被覆層が形成されてなる第1の中間体粒子を調製した。
次いで、第1の中間体粒子を冷却した後、真空チャンバー内から取り出し、当該第1の中間体粒子をエタノール中に投入して攪拌し、2分間静置した後、上澄み液を除去した。この操作を更に2回繰り返すことにより、第1の中間体粒子の洗浄処理を行った。その後、80℃のオーブンによって第1の中間体粒子の乾燥処理を行った。
この第1の中間体粒子を、粉体スパッター装置(日新製鋼社製)の真空チャンバー内に設けられた回転ドラムに投入し、ロジウムよりなるターゲットをセットした。その後、第1の中間体粒子を攪拌しながら、真空チャンバー内の空気を雰囲気圧が1×10-3Paとなるまで排気し、当該真空チャンバー内にアルゴンガスを雰囲気圧が1×10-1Paとなるよう導入した。そして、この状態で、第1の中間体粒子に対して、スパッターレートが0.1nm/min、処理時間が1.5時間の条件でスパッター処理を行うことにより、ロジウムよりなる被覆層を形成し、以て、第2の中間体粒子を調製した。
次いで、第2の中間体粒子を冷却した後、真空チャンバー内から取り出し、当該第2の中間体粒子をエタノール中に投入して攪拌し、2分間静置した後、上澄み液を除去した。この操作を更に2回繰り返すことにより、導電性粒子の洗浄処理を行った。その後、80℃のオーブンによって第2の中間体粒子の乾燥処理を行った。
【0092】
この第2の中間体粒子を、粉体スパッター装置(日新製鋼社製)の真空チャンバー内に設けられた回転ドラムに投入し、金よりなるターゲットをセットした。その後、第2の中間体粒子を攪拌しながら、真空チャンバー内の空気を雰囲気圧が1×10-3Paとなるまで排気し、当該真空チャンバー内にアルゴンガスを雰囲気圧が1×10-1Paとなるよう導入した。そして、この状態で、第2の中間体粒子に対して、スパッターレートが0.25nm/min、処理時間が1時間の条件でスパッター処理を行って金よりなる被覆層を形成することにより、導電性粒子を調製した。
次いで、導電性粒子を冷却した後、真空チャンバー内から取り出し、当該導電性粒子をエタノール中に投入して攪拌し、2分間静置した後、上澄み液を除去した。この操作を更に2回繰り返すことにより、導電性粒子の洗浄処理を行った。その後、80℃のオーブンによって導電性粒子の乾燥処理を行った。
そして、導電性粒子の調製例1と同様にして導電性粒子の分級処理を行った。この導電性粒子を「導電性粒子[A2]」とする。
導電性粒子[A2]は、数平均粒子径が7.89μm、粒子径の変動係数が36%、磁性芯粒子[A]の質量に対する銀よりなる被覆層の質量の割合が15%、磁性芯粒子[A]の質量に対するロジウムよりなる被覆層質量の割合が5%、磁性芯粒子[A]の質量に対する金よりなる被覆層質量の割合が5%であった。
【0093】
〔導電性粒子の調製例3(本発明用)〕
導電性粒子の調製例2における金よりなる被覆層の形成において、スパッター処理の条件を、スパッターレートが0.25nm/min、処理時間が1時間に変更したこと以外は同様にして導電性粒子を調製し、当該導電性粒子の分級処理を行った。この導電性粒子を「導電性粒子[A3]」とする。
導電性粒子[A3]は、数平均粒子径が8.03μm、粒子径の変動係数が36%、磁性芯粒子[A]の質量に対する銀よりなる被覆層の質量の割合が15%、磁性芯粒子[A]の質量に対するロジウムよりなる被覆層質量の割合が5%、磁性芯粒子[A]の質量に対する金よりなる被覆層質量の割合が10%であった。
【0094】
〔導電性粒子の調製例4(本発明用)〕
導電性粒子の調製例1と同様にして、磁性芯粒子[A]に対して、表面酸化膜除去処理、表面洗浄処理および酸化防止処理を行った。
この磁性芯粒子[A]を粉体メッキ装置の処理槽内に投入し、銀の含有割合が15g/Lの銀メッキ液(IM−SILVER,日本高純度化学(株)製)を加え、処理槽内の温度を60℃に昇温して攪拌することにより、スラリーを調製した。この状態で、スラリーを攪拌しながら、磁性芯粒子[A]に対して、処理時間が3時間の条件で銀の無電解メッキを行った。その後、スラリーを放冷しながら静置して粒子を沈殿させ、上澄み液を除去することにより、磁性芯粒子の表面に銀よりなる被覆層が形成されてなる中間体粒子を調製した。次いで、処理槽内に純水2Lを加え、常温で2分間攪拌した後、1分間静置して粒子を沈殿させ、上澄み液を除去した。この操作を更に2回繰り返すことにより、中間体粒子の表面洗浄処理を行った。
【0095】
次いで、粉体メッキ装置の処理槽内に、金の含有量が20g/Lの金メッキ液(レクトロレス,日本エレクトロプレイティング・エンジニャース(株)製)を投入し、金メッキ液を攪拌しながら、当該金メッキ液に中間体粒子を添加し、当該中間体粒子に対して、処理槽内の温度が60℃の条件で金の無電解メッキを行うことにより、金よりなる被覆層が形成し、以て、導電性粒子を調製した。
そして、処理槽内に純水2Lを加え、常温で2分間攪拌した後、1分間静置して粒子を沈殿させ、上澄み液を除去した。次いで、処理槽内に純水2Lを加え、90℃に加熱して攪拌して静置した後、上澄み液を除去した。この操作を更に繰り返し、その後、導電性粒子を含むスラリーを処理槽内から取り出し、当該スラリーを濾紙によって濾過することにより、導電性粒子を回収した。そして、この導電性粒子を、90℃に設定された乾燥機によって乾燥処理した。
そして、導電性粒子の調製例1と同様にして導電性粒子の分級処理を行った。この導電性粒子を「導電性粒子[A4]」とする。
導電性粒子[A4]は、数平均粒子径が7.85μm、粒子径の変動係数が38%、磁性芯粒子[A]の質量に対する銀よりなる被覆層の質量の割合が15%、磁性芯粒子[A]の質量に対する金よりなる被覆層の質量の割合が10%であった。
【0096】
〔導電性粒子の調製例5(本発明用)〕
導電性粒子の調製例4において、金の無電解メッキに用いられる金メッキ液を、金の含有量が25g/Lのものに変更したこと以外は同様にして導電性粒子を調製し、当該導電性粒子の分級処理を行った。この導電性粒子を「導電性粒子[A5]」とする。
導電性粒子[A5]は、数平均粒子径が7.13μm、粒子径の変動係数が64%、磁性芯粒子[A]の質量に対する銀よりなる被覆層の質量の割合が15%、磁性芯粒子[A]の質量に対する金よりなる被覆層の質量の割合が25%であった。
【0097】
〔導電性粒子の調製例6(比較用)〕
導電性粒子の調製例1と同様にして、磁性芯粒子[A]に対して、表面酸化膜除去処理、表面洗浄処理および酸化防止処理を行った。
この磁性芯粒子[A]を粉体メッキ装置の処理槽内に投入し、金の含有割合が25g/Lの金メッキ液(レクトロレス,日本エレクトロプレイティング・エンジニャース(株)製)を加え、処理槽内の温度を60℃に昇温して攪拌することにより、スラリーを調製した。この状態で、スラリーを攪拌しながら、磁性芯粒子[A]に対して、処理時間が2時間の条件で金の無電解メッキを行った。その後、スラリーを放冷しながら静置して粒子を沈殿させ、上澄み液を除去することにより、磁性芯粒子の表面に金よりなる被覆層が形成されてなる導電性粒子を調製した。次いで、処理槽内に純水2Lを加え、常温で2分間攪拌した後、1分間静置して粒子を沈殿させ、上澄み液を除去した。この操作を更に2回繰り返すことにより、導電性粒子の表面洗浄処理を行った。その後、導電性粒子を含むスラリーを処理槽内から取り出し、当該スラリーを濾紙によって濾過することにより、導電性粒子を回収した。そして、この導電性粒子を、90℃に設定された乾燥機によって乾燥処理した。
そして、導電性粒子の調製例1と同様にして導電性粒子の分級処理を行った。この導電性粒子を「導電性粒子[A6]」とする。
導電性粒子[A6]は、数平均粒子径が8.12μm、粒子径の変動係数が38%、磁性芯粒子[A]の質量に対する金よりなる被覆層の質量の割合が25%であった。
【0098】
〔導電性粒子の調製例7(比較用)〕
導電性粒子の調製例1と同様にして、磁性芯粒子[A]に対して、表面酸化膜除去処理、表面洗浄処理および酸化防止処理を行った。
この磁性芯粒子[A]を、粉体スパッター装置(日新製鋼社製)の真空チャンバー内に設けられた回転ドラムに投入し、金よりなるターゲットをセットした。その後、磁性芯粒子[A]を攪拌しながら、真空チャンバー内の空気を雰囲気圧が1×10-3Paとなるまで排気し、当該真空チャンバー内にアルゴンガスを雰囲気圧が1×10-1Paとなるよう導入した。そして、この状態で、磁性芯粒子[A]に対して、スパッターレートが0.5nm/min、処理時間が1時間の条件でスパッター処理を行うことにより、金よりなる被覆層が形成されてなる導電性粒子を調製した。
次いで、導電性粒子を冷却した後、真空チャンバー内から取り出し、当該導電性粒子をエタノール中に投入して攪拌し、2分間静置した後、上澄み液を除去した。この操作を更に2回繰り返すことにより導電性粒子の洗浄処理を行った。その後、80℃のオーブンによって導電性粒子の乾燥処理を行った。
そして、導電性粒子の調製例1と同様にして導電性粒子の分級処理を行った。この導電性粒子を「導電性粒子[A7]」とする。
導電性粒子[A7]は、数平均粒子径が8.13μm、粒子径の変動係数が37%、磁性芯粒子[A]の質量に対する金よりなる被覆層の質量の割合が25%であった。
【0099】
〔導電性粒子の調製例8(比較用)〕
導電性粒子の調製例7と同様にして、磁性芯粒子[A]に金よりなる被覆層を形成し、これを中間体粒子とした。この中間体粒子を冷却した後、真空チャンバー内から取り出し、当該中間体粒子をエタノール中に投入して攪拌し、2分間静置した後、上澄み液を除去した。この操作を更に2回繰り返すことにより中間体粒子の洗浄処理を行った。その後、80℃のオーブンによって中間体粒子の乾燥処理を行った。
この中間体粒子を、粉体スパッター装置(日新製鋼社製)の真空チャンバー内に設けられた回転ドラムに投入し、ロジウムよりなるターゲットをセットした。その後、中間体粒子を攪拌しながら、真空チャンバー内の空気を雰囲気圧が1×10-3Paとなるまで排気し、当該真空チャンバー内にアルゴンガスを雰囲気圧が1×10-1Paとなるよう導入した。そして、この状態で、中間体粒子に対して、スパッターレートが0.1nm/min、処理時間が1.5時間の条件でスパッター処理を行うことにより、ロジウムよりなる被覆層を形成し、以て、導電性粒子を調製した。
次いで、導電性粒子を冷却した後、真空チャンバー内から取り出し、当該導電性粒子をエタノール中に投入して攪拌し、2分間静置した後、上澄み液を除去した。この操作を更に2回繰り返すことにより、導電性粒子の洗浄処理を行った。その後、80℃のオーブンによって導電性粒子の乾燥処理を行った。
そして、導電性粒子の調製例1と同様にして導電性粒子の分級処理を行った。この導電性粒子を「導電性粒子[A8]」とする。
導電性粒子[A8]は、数平均粒子径が8.01μm、粒子径の変動係数が38%、磁性芯粒子[A]の質量に対する金よりなる被覆層の質量の割合が25%、磁性芯粒子[A]の質量に対するロジウムよりなる被覆層の質量の割合が5%であった。
【0100】
〔導電性粒子の調製例9(比較用)〕
導電性粒子の調製例7において、金よりなるターゲットの代わりにパラジウムよりなるターゲットを用いたこと以外は同様にして、パラジウムよりなる被覆層が形成されてなる導電性粒子を調製し、当該導電性粒子の分級処理を行った。この導電性粒子を「導電性粒子[A9]」とする。
導電性粒子[A9]は、数平均粒子径が7.95μm、粒子径の変動係数が34%、磁性芯粒子[A]の質量に対するパラジウムよりなる被覆層の質量の割合が25%であった。
【0101】
〔試験用ウエハの作製〕
試験用ウエハW1:
図17に示すように、直径が8インチのシリコン(線熱膨張係数3.3×10-6/K)製のウエハ6上に、それぞれ寸法が6.5mm×6.5mmの正方形の集積回路Lを合計で596個形成した。ウエハ6に形成された集積回路Lの各々は、図18に示すように、その中央に被検査電極領域Aを有し、この被検査電極領域Aには、図19に示すように、それぞれ寸法が70μm×220μmの矩形の平板状の26個の被検査電極7が120μmのピッチで横方向に二列(一列の被検査電極7の数が13個)に配列されている。縦方向に隣接する被検査電極7の間の離間距離は、450μmである。また、26個の被検査電極7のうち2個ずつが互いに電気的に接続されている。このウエハ6全体の被検査電極7の総数は15496個である。以下、このウエハを「試験用ウエハW1」という。
【0102】
〈実施例1〉
(1)フレーム板:
図20および図21に示す構成に従い、下記の条件により、上記の試験用ウエハW1における各被検査電極領域に対応して形成された596の異方導電膜配置孔を有する直径が8インチのフレーム板を作製した。
このフレーム板10の材質はコバール(飽和磁化1.4Wb/m2 ,線熱膨張係数5×10-6/K)で、その厚みは、60μmである。
異方導電膜配置用孔11の各々は、その横方向(図20および図21において左右方向)の寸法が1800μmで縦方向(図20および図21において上下方向)の寸法が600μmである。
縦方向に隣接する異方導電膜配置用孔11の間の中央位置には、円形の空気流入孔15が形成されており、その直径は1000μmである。
【0103】
(2)スペーサー:
下記の条件により、試験用ウエハW1における被検査電極領域に対応して形成された複数の貫通孔を有する弾性異方導電膜成形用のスペーサーを2枚作製した。
これらのスペーサーの材質はステンレス(SUS304)で、その厚みは20μmである。
各被検査電極領域に対応する貫通孔は、その横方向の寸法が2500μmで縦方向の寸法が1400μmである。
【0104】
(3)金型:
図6および図22に示す構成に従い、下記の条件により、弾性異方導電膜成形用の金型を作製した。
この金型における上型61および下型65は、それぞれ厚みが6mmの鉄よりなる基板62,66を有し、この基板62,66上には、試験用ウエハW1における被検査電極のパターンに対応するパターンに従ってニッケルよりなる接続用導電部形成用の強磁性体層63(67)および非接続用導電部形成用の強磁性体層63a(67a)が配置されている。具体的には、接続用導電部形成用の強磁性体層63(67)の各々の寸法は60μm(横方向)×200μm(縦方向)×100μm(厚み)で、26個の強磁性体層63(67)が120μmのピッチで横方向に二列(一列の強磁性体層63(67)の数が13個で、縦方向に隣接する強磁性体層63(67)の間の離間距離が450μm)に配列されている。また、強磁性体層63(67)が並ぶ方向において、最も外側に位置する強磁性体層63(67)の外側には、非接続用導電部形成用の強磁性体層63a(67a)が配置されている。各強磁性体層63a(67a)の寸法は、80μm(横方向)×300μm(縦方向)×100μm(厚み)である。
そして、26個の接続用導電部形成用の強磁性体層63(67)および2個の非接続用導電部形成用の強磁性体層63a(67a)が形成された領域が、試験用ウエハW1における被検査電極領域に対応して合計で596個形成され、基板全体で15496個の接続用導電部形成用の強磁性体層63(67)および1192個の非接続用導電部形成用の強磁性体層63a(67a)が形成されている。 また、非磁性体層64(68)は、ドライフィルムレジストを硬化処理することによって形成され、接続用導電部形成用の強磁性体層63(67)が位置する凹所64a(68a)の各々の寸法は、70μm(横方向)×210μm(縦方向)×30μm(深さ)で、非接続用導電部形成用の強磁性体層63a(67a)が位置する凹所64b(68b)の各々の寸法は、90μm(横方向)×260μm(縦方向)×25μm(深さ)で、凹所以外の部分の厚みは75μm(凹所部分の厚み50μm)である。
【0105】
(4)弾性異方導電膜:
上記のフレーム板、スペーサーおよび金型を用い、以下のようにしてフレーム板に弾性異方導電膜を形成した。
付加型液状シリコーンゴム100重量部に、導電性粒子[A1]30重量部を添加して混合し、その後、減圧による脱泡処理を施すことにより、弾性異方導電膜用の成形材料を調製した。
以上において、付加型液状シリコーンゴムとしては、A液の粘度が250Pa・sで、B液の粘度が250Pa・sである二液型のものであって、硬化物の150℃における永久圧縮歪みが5%、硬化物のデュロメーターA硬度が32、硬化物の引裂強度が25kN/mのものを用いた。
【0106】
上記の金型の上型および下型の表面に、弾性異方導電膜用の成形材料をスクリーン印刷によって塗布することにより、形成すべき弾性異方導電膜のパターンに従って成形材料層を形成し、下型の成形面上に、下型側のスペーサーを介してフレーム板を位置合わせして重ね、更に、このフレーム板上に、上型側のスペーサーを介して上型を位置合わせして重ねた。
そして、上型および下型の間に形成された成形材料層に対し、強磁性体層の間に位置する部分に、電磁石によって厚み方向に2Tの磁場を作用させながら、100℃、1時間の条件で硬化処理を施すことにより、フレーム板の異方導電膜配置用孔の各々に弾性異方導電膜を形成し、以て、異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC1」という。
【0107】
得られた弾性異方導電膜について具体的に説明すると、弾性異方導電膜の各々は、横方向の寸法が2500μm、縦方向の寸法が1400μmである。弾性異方導電膜の各々における機能部には、26個の接続用導電部が120μmのピッチで横方向に二列(一列の接続用導電部の数が13個で、縦方向に隣接する接続用導電部の間の離間距離が450μm)に配列されており、接続用導電部の各々は、横方向の寸法が60μm、縦方向の寸法が200μm、厚みが160μmであり、機能部における絶縁部の厚みが100μmである。また、横方向において最も外側に位置する接続用導電部とフレーム板との間には、非接続用導電部が配置されている。非接続用導電部の各々は、横方向の寸法が80μm、縦方向の寸法が300μm、厚みが100μmである。また、弾性異方導電膜の各々における被支持部の厚み(二股部分の一方の厚み)は20μmである。
得られた異方導電性コネクターC1の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
【0108】
〈実施例2〉
導電性粒子[A1]の代わりに導電性粒子[A2]を用いたこと以外は、実施例1と同様にして異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC2」という。
得られた異方導電性コネクターC2の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
【0109】
〈実施例3〉
導電性粒子[A1]の代わりに導電性粒子[A3]を用いたこと以外は、実施例1と同様にして異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC3」という。
得られた異方導電性コネクターC3の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
【0110】
〈実施例4〉
導電性粒子[A1]の代わりに導電性粒子[A4]を用いたこと以外は、実施例1と同様にして異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC4」という。
得られた異方導電性コネクターC4の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
【0111】
〈実施例5〉
導電性粒子[A1]の代わりに導電性粒子[A5]を用いたこと以外は、実施例1と同様にして異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC5」という。
得られた異方導電性コネクターC5の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
【0112】
〈比較例1〉
導電性粒子[A1]の代わりに導電性粒子[A6]を用いたこと以外は、実施例1と同様にして異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC6」という。
得られた異方導電性コネクターC6の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
【0113】
〈比較例2〉
導電性粒子[A1]の代わりに導電性粒子[A7]を用いたこと以外は、実施例1と同様にして異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC7」という。
得られた異方導電性コネクターC7の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
【0114】
〈比較例3〉
導電性粒子[A1]の代わりに導電性粒子[A8]を用いたこと以外は、実施例1と同様にして異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC8」という。
得られた異方導電性コネクターC8の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
【0115】
〈比較例4〉
導電性粒子[A1]の代わりに導電性粒子[A9]を用いたこと以外は、実施例1と同様にして異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC9」という。
得られた異方導電性コネクターC9の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
【0116】
〔異方導電性コネクターの評価〕
(1)検査用回路基板の作製:
基板材料としてアルミナセラミックス(線熱膨張係数4.8×10-6/K)を用い、試験用ウエハW1における被検査電極のパターンに対応するパターンに従って検査電極が形成された検査用回路基板を作製した。この検査用回路基板は、全体の寸法が30cm×30cmの矩形であり、その検査電極は、横方向の寸法が60μmで縦方向の寸法が200μmであり、その表面には金メッキが施されている。以下、この検査用回路基板を「検査用回路基板T1」という。
【0117】
(2)試験1(プローブ試験):
実施例1〜5および比較例1〜4に係るに異方導電性コネクターC1〜C9について、以下の試験を行った。
試験用ウエハW1を、電熱ヒーターを具えた試験台に配置し、この試験用ウエハW1上に異方導電性コネクターをその接続用導電部の各々が当該試験用ウエハW1の被検査電極上に位置するよう位置合わせして配置し、この異方導電製コネクター上に、検査用回路基板Tをその検査電極の各々が当該異方導電性コネクターの接続用導電部上に位置するよう位置合わせして配置し、更に、検査用回路基板Tを下方に異方導電性コネクターの接続用導電部の厚みが160μmから100μmに圧縮されるよう1分間加圧した。そして、室温(25℃)下において、検査用回路基板Tにおける15496個の検査電極について、異方導電性コネクターおよび試験用ウエハW1を介して互いに電気的に接続された2個の検査電極の間の電気抵抗を順次測定し、測定された電気抵抗値から予め測定された試験用ウエハW1の回路の電気抵抗値を除し、得られた値の2分の1の値を異方導電性コネクターにおける接続用導電部の電気抵抗(以下、「導通抵抗」という。)として測定した。この操作を「操作(i)」とする。次いで、検査用回路基板Tに対する加圧を解除し、この無加圧の状態で15秒間放置した。この操作を「操作(ii)」とする。そして、操作(i)および操作(ii)を1サイクルとして繰り返し行った。
測定した導通抵抗の値を下記表1に示す。
【0118】

【表1】

【0119】
(3)試験2(バーンイン試験):
実施例1〜5および比較例1〜4に係る異方導電性コネクターC1〜C9について、以下の試験を行った。
試験用ウエハW1を、恒温槽内に設けられた試験台に配置し、この試験用ウエハW1上に異方導電性コネクターをその接続用導電部の各々が当該試験用ウエハW1の被検査電極上に位置するよう位置合わせして配置し、この異方導電性コネクター上に、検査用回路基板Tをその検査電極の各々が当該異方導電性コネクターの接続用導電部上に位置するよう位置合わせして配置し、更に、検査用回路基板T1を下方に150kgの荷重(接続用導電部1個当たりに加わる荷重が平均で約10g)で加圧した。そして、恒温槽内の温度を125℃まで上昇させ、125℃の温度条件下で4 時間加圧保持し、その後、異方導電性コネクターにおける接続用導電部の導通抵抗を測定した。この操作を「操作(i)」とする。次いで、温度を室温(30℃以下)まで降下させた後、検査用回路基板T1に対する加圧を解除し、この無加圧の状態で15分間放置した。この操作を「操作(ii)」とする。そして、操作(i)および操作(ii)を1サイクルとして繰り返して行った。
測定した導通抵抗の値を下記表2に示す。
【0120】
【表2】

【0121】
表1から表2の結果から明らかなように、実施例1〜実施例5に係る異方導電性コネクターによれば、多数回にわたって繰り返して使用された場合や高温環境下において繰り返して使用された場合にも、長期間にわたって良好な導電性が維持されることが確認された。
【図面の簡単な説明】
【0122】
【図1】本発明に係る異方導電性コネクターの一例を示す平面図である。
【図2】図1に示す異方導電性コネクターの一部を拡大して示す平面図である。
【図3】図1に示す異方導電性コネクターにおける弾性異方導電膜を拡大して示す平面図である。
【図4】図1に示す異方導電性コネクターにおける弾性異方導電膜を拡大して示す説明用断面図である。
【図5】弾性異方導電膜成形用の金型に成形材料が塗布されて成形材料層が形成された状態を示す説明用断面図である。
【図6】弾性異方導電成形用の金型をその一部を拡大して示す説明用断面図である。
【図7】図5に示す金型の上型および下型の間にスペーサーを介してフレーム板が配置された状態を示す説明用断面図である。
【図8】金型の上型と下型の間に、目的とする形態の成形材料層が形成された状態を示す説明用断面図である。
【図9】図8に示す成形材料層を拡大して示す説明用断面図である。
【図10】図9に示す成形材料層にその厚み方向に強度分布を有する磁場が形成された状態を示す説明用断面図である。
【図11】本発明に係る異方導電性コネクターを使用したウエハ検査装置の一例における構成を示す説明用断面図である。
【図12】本発明に係るプローブカードの一例における要部の構成を示す説明用断面図である。
【図13】本発明に係る異方導電性コネクターを使用したウエハ検査装置の他の例における構成を示す説明用断面図である。
【図14】本発明に係る異方導電性コネクターの他の例における弾性異方導電膜を拡大して示す平面図である。
【図15】本発明に係る異方導電性コネクターの更に他の例における弾性異方導電膜を拡大して示す平面図である。
【図16】本発明に係る異方導電性コネクターを使用したウエハ検査装置の更に他の例における構成を示す説明用断面図である。
【図17】実施例で使用した試験用ウエハの上面図である。
【図18】図17に示す試験用ウエハに形成された集積回路の被検査電極領域の位置を示す説明図である。
【図19】図17に示す試験用ウエハに形成された集積回路の被検査電極を示す説明図である。
【図20】実施例1で作製したフレーム板の上面図である。
【図21】図20に示すフレーム板の一部を拡大して示す説明図である。
【図22】実施例1で作製した金型の成形面を拡大して示す説明図である。
【符号の説明】
【0123】
1 プローブカード 2 異方導電性コネクター
3 加圧板 4 ウエハ載置台
5 加熱器 6 ウエハ
7 被検査電極 10 フレーム板
11 異方導電膜配置用孔
15 空気流通孔
16 位置決め孔 20 弾性異方導電膜
20A 成形材料層 21 機能部
22 接続用導電部 23 絶縁部
24 突出部 25 被支持部
26 非接続用導電部 27 突出部
30 検査用回路基板 31 検査電極
41 絶縁性シート 40 シート状プローブ
42 電極構造体 43 表面電極部
44 裏面電極部 45 短絡部
50 チャンバー 51 排気管
55 O−リング
60 金型 61 上型
62 基板 63 強磁性体層
63a 強磁性体層 64 非磁性体層
64a,64b 凹所
65 下型 66 基板
67,67a 強磁性体層
68 非磁性体層 68a,68b 凹所
69a,69b スペーサー

【特許請求の範囲】
【請求項1】
導電性粒子が含有された厚み方向に伸びる複数の接続用導電部が形成された弾性異方導電膜を有する異方導電性コネクターにおいて、
前記接続用導電部に含有された導電性粒子は、磁性を示す芯粒子の表面に、少なくとも銀よりなる被覆層および金よりなる被覆層を含む複数の被覆層が積層されてなり、複数の被覆層のうち最外層が金よりなる被覆層であることを特徴とする異方導電性コネクター。
【請求項2】
導電性粒子における複数の被覆層のうち最内層が銀よりなる被覆層であることを特徴とする請求項1に記載の異方導電性コネクター。
【請求項3】
導電性粒子は、ロジウムよりなる被覆層を有することを特徴とする請求項1または請求項2に記載の異方導電性コネクター。
【請求項4】
導電性粒子は、芯粒子の質量に対する銀よりなる被覆層の質量の割合が3〜25%であることを特徴とする請求項1乃至請求項3のいずれかに記載の異方導電性コネクター。
【請求項5】
導電性粒子は、芯粒子の質量に対する金よりなる被覆層の質量の割合が3〜40%であることを特徴とする請求項1乃至請求項4のいずれかに記載の異方導電性コネクター。
【請求項6】
導電性粒子の数平均粒子径が1〜50μmであることを特徴とする請求項1乃至請求項5のいずれかに記載の異方導電性コネクター。
【請求項7】
厚み方向に伸びる異方導電膜配置用孔が形成されたフレーム板を有し、このフレーム板の異方導電膜配置用孔に、弾性異方導電膜が配置されて当該フレーム板に支持されていることを特徴とする請求項1乃至請求項6のいずれかに記載の異方導電性コネクター。
【請求項8】
ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うために用いられる異方導電性コネクターであって、
検査対象であるウエハに形成された全てのまたは一部の集積回路における被検査電極が形成された電極領域に対応してそれぞれ厚み方向に伸びる複数の異方導電膜配置用孔が形成されたフレーム板を有し、このフレーム板の異方導電膜配置用孔の各々に、弾性異方導電膜が配置されて当該フレーム板に支持されていることを特徴とする請求項1乃至請求項6のいずれかに記載の異方導電性コネクター。
【請求項9】
ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うために用いられるプローブカードであって、
検査対象であるウエハに形成された全てのまたは一部の集積回路における被検査電極のパターンに対応するパターンに従って検査電極が表面に形成された検査用回路基板と、この検査用回路基板の表面に配置された、請求項1乃至請求項8のいずれかに記載の異方導電性コネクターとを具えてなることを特徴とするプローブカード。
【請求項10】
請求項7または請求項8に記載の異方導電性コネクターを具えてなり、当該異方導電性コネクターにおけるフレーム板の線熱膨張係数が3×10-5/K以下であり、検査用回路基板を構成する基板材料の線熱膨張係数が3×10-5/K以下であることを特徴とする請求項9に記載のプローブカード。
【請求項11】
異方導電性コネクター上に、絶縁性シートと、この絶縁性シートをその厚み方向に貫通して伸び、被検査電極のパターンに対応するパターンに従って配置された複数の電極構造体とよりなるシート状プローブが配置されていることを特徴とする請求項9または請求項10に記載のプローブカード。
【請求項12】
ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うウエハ検査装置において、
請求項9乃至請求項11のいずれかに記載のプローブカードを具えてなり、当該プローブカードを介して、検査対象であるウエハに形成された集積回路に対する電気的接続が達成されることを特徴とするウエハ検査装置。
【請求項13】
ウエハに形成された複数の集積回路の各々を、請求項9乃至請求項11のいずれかに記載のプローブカードを介してテスターに電気的に接続し、当該ウエハに形成された集積回路の電気的検査を実行することを特徴とするウエハ検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate


【公開番号】特開2006−216502(P2006−216502A)
【公開日】平成18年8月17日(2006.8.17)
【国際特許分類】
【出願番号】特願2005−30635(P2005−30635)
【出願日】平成17年2月7日(2005.2.7)
【出願人】(000004178)JSR株式会社 (3,320)
【Fターム(参考)】