説明

硬質皮膜形成部材および硬質皮膜の形成方法

【課題】本発明はかかる事情に鑑みてなされたものであり、耐摩耗性に優れた硬質皮膜形成部材および硬質皮膜の形成方法を提供する。
【解決手段】基材1上に硬質皮膜4を備えた硬質皮膜形成部材10であって、硬質皮膜4は、組成がTiCrAlSi(B)(ただし、a、b、c、d、e、u、v、wは所定量の原子比)を満足するA層2と、組成がTiCrAl(B)(ただし、f、g、h、x、y、zは所定量の原子比)を満足するB層3とを備え、A層2とB層3が交互に積層され、前記A層と前記B層の1組の積層構造を1単位としたときに、この1単位の厚さが、10〜50nmであり、かつ硬質皮膜4の膜厚が1〜5μmであることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、切削工具、摺動部材、および成型用金型等の表面に硬質皮膜を被覆した硬質皮膜形成部材および硬質皮膜の形成方法に関する。
【背景技術】
【0002】
従来、超硬合金、サーメット、高速度工具鋼等を基材とするチップ、ドリル、エンドミル等の切削工具や、プレス、鍛造金型、打ち抜きパンチ等の治工具における耐摩耗性を向上させることを目的に、TiN、TiC、TiCN、TiAlN、TiAlCrN、TiAlCrCN、TiAlCrSiBCN、TiCrAlSiBN、CrAlSiBYN、AlCrN等の硬質皮膜をコーティングすることが行われている。
【0003】
例えば、特許文献1には、TiAlCrCNからなり、各元素の原子比を規定した切削工具用硬質皮膜が開示されている。また、特許文献2には、TiAlCrSiBCNからなり、各元素の原子比を規定した切削工具用硬質皮膜が開示されている。さらにこれらの文献には、アークイオンプレーティング法により成膜する技術が開示されている。
【0004】
さらに特許文献3には、(M)CrAlSiBYZ[但し、Mは、周期律表第4A族元素、5A族元素、6A族元素(Crを除く)から選択される少なくとも1種の元素であり、Zは、N、CN、NOまたはCNOのいずれかを示す]や、CrAlSiBYZ[但し、Zは、N、CN、NOまたはCNOのいずれかを示す]からなり、M、Cr、Al、Si、B、Yの原子比を規定した硬質皮膜が開示されている。また、これらの硬質皮膜を相互に異なる組成で交互に積層し、各層の膜厚を規定した硬質皮膜が開示されている。さらに、アークイオンプレーティング法により成膜する技術が開示されている。
【0005】
そして特許文献4には、AlCrX[但し、Xは、N、C、B、CN、BN、CBN、NO、CO、BO、CNO、BNOまたはCBNOのいずれかを示す]からなり、Al、Crの原子比を規定した硬質材料層(硬質皮膜)を有する工作物が開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2003−71610号公報
【特許文献2】特開2003−71611号公報
【特許文献3】特開2008−7835号公報
【特許文献4】特表2006−524748号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
これらの単層や多層からなる硬質皮膜においては、所定元素の原子比を規定することで皮膜の耐酸化性を向上させている。しかし、例えばドライ加工を行なう切削工具に適用される場合等、硬質皮膜を形成した部材を、より高い耐酸化性を必要とされる環境下において使用するために、耐摩耗性等の部材における性能をさらに向上させることが望まれている。また、近年の被削材の高硬度化や切削速度の高速度化に伴い、従来の硬質皮膜に比べ、耐摩耗性をさらに向上させた硬質皮膜が求められている。
【0008】
本発明はかかる事情に鑑みてなされたものであり、耐摩耗性に優れた硬質皮膜形成部材および硬質皮膜の形成方法を提供することを課題とする。
【課題を解決するための手段】
【0009】
本発明者らは鋭意研究した結果、所定の成分組成を有するA層と、所定の成分組成を有するB層とを組み合わせて積層膜とし、かつ、このA層とB層との積層構造の1単位の厚さ(すなわち、積層周期)を規定することで、硬質皮膜(以下、適宜、皮膜という)の耐摩耗性を向上させることができることを見出した。すなわち、A層およびB層の各層において所定元素の原子比を規定しただけでは耐摩耗性が十分に向上せず、また、1単位の厚さを規定しただけでも耐摩耗性が十分に向上しない。しかしながら、皮膜の成分組成と1単位の厚さとを同時に制御することで、耐摩耗性が向上することを見出した。
【0010】
すなわち本発明の硬質皮膜形成部材は、基材上に硬質皮膜を備えた硬質皮膜形成部材であって、前記硬質皮膜は、組成がTiCrAlSi(B)からなり、前記a、b、c、d、e、u、v、wが原子比であるときに、0.05≦a、0.05≦b、0.2≦a+b≦0.55、0.4≦c≦0.7、0.02≦d≦0.2、0≦e≦0.1、0≦u≦0.1、0≦v≦0.3、a+b+c+d+e=1、u+v+w=1、を満足するA層と、組成がTiCrAl(B)からなり、前記f、g、h、x、y、zが原子比であるときに、0≦f、0.05≦g、0.25≦f+g≦0.6、0.4≦h≦0.75、0≦x≦0.1、0≦y≦0.3、f+g+h=1、x+y+z=1、を満足するB層とを備え、前記A層と前記B層が交互に積層され、前記A層と前記B層の1組の積層構造を1単位としたときに、この1単位の厚さが10〜50nmであり、かつ前記硬質皮膜の膜厚が1〜5μmであることを特徴とする。
【0011】
このような構成によれば、A層およびB層の各層において所定の成分組成とすることで、A層においては、高耐酸化性、高硬度であり、耐摩耗性に優れる皮膜となり、B層においては、高靭性であり、かつ耐酸化性に優れる皮膜となる。そして、このA層とB層との積層構造の1単位の厚さを規定することで、皮膜の硬度が高くなり、耐摩耗性が向上する。さらに、皮膜全体の膜厚を規定することで、耐摩耗性に優れるとともに、基材から剥離しにくい皮膜となる。
【0012】
また、本発明の硬質皮膜形成部材は、前記硬質皮膜をθ−2θ法のX線回折にて測定したときの(200)面からの回折線の積分強度I(200)が、(111)面からの回折線の積分強度I(111)の2倍以上であることが好ましい。また、前記記載の硬質皮膜をθ−2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅が0.7°以上であることが好ましい。
これらのような構成によれば、皮膜の耐摩耗性がさらに向上する。
【0013】
本発明の硬質皮膜の形成方法は、硬質皮膜形成部材を作製するための硬質皮膜の形成方法であって、前記硬質皮膜をアークイオンプレーティング法またはスパッタリング法で形成することを特徴とする。また、前記したように、回折線の積分強度の関係を規定し、また半値幅を所定の値とする場合には、前記硬質皮膜をアークイオンプレーティング法またはスパッタリング法で形成するときに、前記基材に印加するバイアス電圧を絶対値が130V以上の負の電圧とする。
【0014】
皮膜をアークイオンプレーティング法またはスパッタリング法で形成することで、皮膜の組成を正確に制御することができる。また、基材に印加するバイアス電圧を絶対値が130V以上の負の電圧とすることで、皮膜をθ−2θ法のX線回折にて測定したときの(200)面からの回折線の積分強度I(200)が、(111)面からの回折線の積分強度I(111)の2倍以上となり、また、皮膜をθ−2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅が0.7°以上となる。
【発明の効果】
【0015】
本発明に係る硬質皮膜形成部材は、所定の組成および構造を有する硬質皮膜を備えているため、硬度が高く、耐摩耗性に優れたものとなる。
本発明に係る硬質皮膜の形成方法によれは、硬度が高く、耐摩耗性に優れた硬質皮膜を基材上に形成することができる。
【図面の簡単な説明】
【0016】
【図1】本発明に係る硬質皮膜形成部材を示す断面図である。
【図2】硬質皮膜をθ−2θ法のX線回折にて測定したときのX線回折(XRD)図形である。
【図3】成膜を行うための複合成膜装置の概略図である。
【発明を実施するための形態】
【0017】
次に、図面を参照して本発明に係る硬質皮膜形成部材および硬質皮膜の形成方法について詳細に説明する。
【0018】
≪硬質皮膜形成部材≫
図1に示すように、本発明に係る硬質皮膜形成部材10は、基材1上に硬質皮膜(以下、適宜、皮膜という)4を備えたものである。この皮膜4は、所定の元素を所定量含有するA層2と、所定の元素を所定量含有するB層3とを備える。そして、A層2とB層3が交互に積層され、A層2とB層3の1組の積層構造を1単位としたときに、この1単位の厚さ(積層周期)が10〜50nmであり、かつ皮膜4の膜厚が1〜5μmとして構成したものである。本実施形態では、基材1上に最初にB層3が形成され、このB層3の上にA層2が形成されて、複数の単位を形成している。また、硬質皮膜4のB層3と基材1との間に下地層(図示省略)を備えていてもよい。なお、「基材1上」とは、基材1の片面や両面、あるいは表面全体等をいい、工具の種類に応じて被覆されている部位は異なる。
以下、具体的に説明する。
【0019】
<基材>
基材1としては、超硬合金、金属炭化物を有する鉄基合金、サーメット、高速度工具鋼等が挙げられる。しかし、基材1としては、これらに限定されるものではなく、チップ、ドリル、エンドミル等の切削工具や、プレス、鍛造金型、成型用金型、打ち抜きパンチ等の治工具等の部材に適用できるものであれば、どのようなものでもよい。
【0020】
<A層>
A層2は、組成がTiCrAlSi(B)からなり、前記a、b、c、d、e、u、v、wが原子比であるときに、「0.05≦a」(金属元素中、以下同じ)、「0.05≦b」、「0.2≦a+b≦0.55」、「0.4≦c≦0.7」、「0.02≦d≦0.2」、「0≦e≦0.1」、「0≦u≦0.1」、「0≦v≦0.3」、「a+b+c+d+e=1」、「u+v+w=1」を満足する層である。このA層2は、高耐酸化性、高硬度であり、耐摩耗性に優れる皮膜である。
【0021】
[Ti:a(0.05≦a、0.2≦a+b≦0.55、a+b+c+d+e=1)]
[Cr:b(0.05≦b、0.2≦a+b≦0.55、a+b+c+d+e=1)]
TiおよびCrは、A層2の結晶構造を高硬度相に保つために、添加する元素である。この効果を発揮するには、TiとCrを合計で、原子比で0.2以上添加する必要がある。一方、Al、Si、Yの添加量を確保するために、TiとCrの合計が0.55以下である必要がある。また、異なる格子定数の窒化物(例えば、TiN:0.424nm、CrN:0.414nm、AlN:0.412nm)を組合せると硬さが上昇するが、この効果を発揮させるには、Ti量およびCr量は、原子比で各々0.05以上であることが必要である。したがって、Tiの原子比a、および、Crの原子比bは、0.05≦a、0.05≦b、かつ、0.2≦a+b≦0.55とする。より好適な範囲は、0.2≦a+b≦0.5である。
【0022】
[Al:c(0.4≦c≦0.7、a+b+c+d+e=1)]
Alは、A層2の耐酸化性を向上させる元素である。A層2に高い耐酸化性を付与するためには、Alを原子比で0.4以上添加する必要がある。一方、0.7を超えると、A層2が軟質化し、耐摩耗性が低下する。したがって、Alの原子比cは、0.4≦c≦0.7とする。より好適な範囲は、0.45≦c≦0.6である。
【0023】
[Si:d(0.02≦d≦0.2、a+b+c+d+e=1)]
Siは、A層2の耐酸化性を向上させる元素である。A層2に高い耐酸化性を付与するためには、Siを原子比で0.02以上添加する必要がある。一方、0.2を超えると、A層2が軟質化し、耐摩耗性が低下する。したがって、Siの原子比dは、0.02≦d≦0.2とする。より好適な範囲は、0.05≦d≦0.15である。
【0024】
[Y:e(0≦e≦0.1、a+b+c+d+e=1)]
Yは、耐酸化性を更に高める場合に添加する元素である。ただし、原子比で0.1を超えるとA層2が軟質化し、耐摩耗性が低下する。したがって、Yの原子比eは、0≦e≦0.1とする。より好適な範囲は、0.02≦e≦0.05である。
【0025】
[B:u、C:v、N:w(0≦u≦0.1、0≦v≦0.3、u+v+w=1)]
BおよびCは、添加によりA層2を高硬度化させることができる。ただし、Bが原子比で0.1を超えると、A層2が非晶質化し、硬さが低下する。また、Cが原子比で0.3を超えると、A層2中に遊離Cが生じA層2が軟質化し、かつ耐酸化性が低下する。したがって、B、Cは、原子比で、各々0.1、0.3以下添加しても良い。Nは、金属元素と結合して、本発明における皮膜4の骨格をなす窒化物を形成する役割を果たすことから0.6以上は必要である。
【0026】
前記のとおり、Ti、Cr、Al、Si、Nは必須の成分であり、Y、B、Cは任意の成分であることから、A層2の組成に関する組み合わせは、TiCrAlSiY(BCN)、TiCrAlSi(BCN)、TiCrAlSiY(CN)、TiCrAlSiY(BN)、TiCrAlSi(CN)、TiCrAlSi(BN)、TiCrAlSiYN、TiCrAlSiN等が挙げられる。
【0027】
<B層>
B層3は、組成がTiCrAl(B)からなり、前記f、g、h、x、y、zが原子比であるときに、「0≦f」、「0.05≦g」、「0.25≦f+g≦0.6」、「0.4≦h≦0.75」、「0≦x≦0.1」、「0≦y≦0.3」、「f+g+h=1」、「x+y+z=1」を満足する層である。このB層3は、高靭性であり、かつ耐酸化性に優れる皮膜である。
【0028】
[Ti:f(0≦f、0.25≦f+g≦0.6、f+g+h=1)]
Tiは、B層3の靱性を確保するために、Crとともに添加する元素である。この効果を発揮するには、TiとCrを合計で、原子比で0.25以上添加する必要がある。一方、合計で0.6を超えると相対的にAlが少なくなり耐酸化性が低下する。したがって、0.25≦f+g≦0.6とする。より好適な範囲は、0.3≦f+g≦0.5である。なお、B層3は、A層2ほど高硬度化させる必要が無いことから、Tiは0であっても良い。Tiを添加せずにCrのみを添加した場合、すなわちB層がCrAl(B)の場合、Tiを含む場合と比べて硬さは変わらないが、CrはTiに比べて耐酸化性が良いことから、ドライの高速切削では耐摩耗性が向上する。
【0029】
[Cr:g(0.05≦g、0.25≦f+g≦0.6、f+g+h=1)]
Crは、B層3の耐酸化性および靱性を確保するために添加する元素である。耐酸化性確保の効果を発揮するには、原子比で0.05以上添加する必要がある。また、靱性確保の効果を発揮するには、TiとCrを合計で、原子比で0.25以上添加する必要がある。一方、合計で0.6を超えると相対的にAlが少なくなり耐酸化性が低下する。したがって、Crの原子比gは、0.05≦g、かつ、0.25≦f+g≦0.6とする。より好適な範囲は、0.3≦f+g≦0.5である。
【0030】
[Al:h(0.4≦h≦0.75、f+g+h=1)]
B層3に関しても一定の耐酸化性を付与するために、Alを原子比で0.4以上添加することが必要である。一方、0.75を超えると、B層3が軟質化し、耐摩耗性が低下する。したがって、Alの原子比hは、0.4≦h≦0.75とする。より好適な範囲は、0.5≦h≦0.7である。
【0031】
[B:x、C:y、N:z(0≦x≦0.1、0≦y≦0.3、x+y+z=1)]
BおよびCは、添加によりB層3を高硬度化させることができる。ただし、Bが原子比で0.1を超えると、B層3が非晶質化し、硬さが低下する。また、Cが原子比で0.3を超えると、B層3中に遊離Cが生じB層3が軟質化し、かつ耐酸化性が低下する。したがって、B、Cは、原子比で、各々0.1、0.3以下添加しても良い。Nは、金属元素と結合して、本発明における皮膜4の骨格をなす窒化物を形成する役割を果たすことから0.6以上は必要である。
【0032】
前記のとおり、Cr、Al、Nは必須の成分であり、Ti、B、Cは任意の成分であることから、B層3の組成に関する組み合わせは、TiCrAl(BCN)、CrAl(BCN)、TiCrAl(CN)、TiCrAl(BN)、CrAl(CN)、CrAl(BN)、TiCrAlN、CrAlN等が挙げられる。
【0033】
<積層構造>
[1単位の厚さ:10〜50nm]
1層のA層2と、1層のB層3の積層構造である1単位の厚さ(すなわち積層周期)が10〜50nmであるときに、皮膜4の硬さが大きくなり耐摩耗性が向上する。前記のとおり、A層2およびB層3の組成を規定した場合であっても、1単位の厚さが10nm未満、または、50nmを超えると、皮膜4の耐摩耗性が向上しない。したがって、1単位の厚さは、10〜50nmとする。より好ましくは、20〜40nmである。なお、1単位(積層周期)とは、例えばA層2と、このA層2の上に密着して形成されたB層3との1組の他、このA層2の下に密着して形成されたB層3との1組のこともいう。したがって、A層2の上下のいずれのB層3との組み合わせでも、1単位の厚さは10〜50nmとする。
【0034】
[皮膜の膜厚:1〜5μm]
皮膜4の膜厚(すなわち、総膜厚)については、1μm未満では耐摩耗性の向上効果が小さい。一方、5μmを超えると、PVD(Physical Vapor Deposition(物理気相成長または物理蒸着))法で成膜された皮膜特有の残留圧縮応力により、基材1から皮膜4が剥離する。したがって、皮膜4の膜厚は、1〜5μmとする。
【0035】
[その他]
A層2とB層3の膜厚比は、ほぼ1:1を目安とするが、1:5〜5:1程度まで変化しても硬度や耐摩耗性等の性能にほとんど変化は無い。ただし、1:5〜5:1の範囲を超えると、性能が低下しやすくなる。したがって、A層2とB層3の膜厚比は、1:5〜5:1が好ましい。さらに好ましくは、1:3〜3:1である。また、ここでは、基材1上の第一層、すなわち、基材1に接着する層はB層3とし、B層3の上にA層2が積層されたものとしているが、A層とB層との積層の順番は特に規定されるものではない。しかしながら、基材1上の第一層は、靱性ならびに密着性に優れるB層3である方が好ましい。なお、A層2とB層3の数は、同じであっても異なっていてもよい。
【0036】
<皮膜の優先配向および回折線の半値幅>
硬質皮膜形成部材10は、硬質皮膜4をθ−2θ法のX線回折にて測定したときの(200)面からの回折線の積分強度I(200)が、(111)面からの回折線の積分強度I(111)の2倍以上(すなわち、I(111)×2≦I(200))であることが好ましい。また、硬質皮膜形成部材10は、硬質皮膜4をθ−2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅(FWHM:Full Width Half Maximum)が0.7°以上であることが好ましい。
【0037】
これらの制御については、後記するように、皮膜4の形成の際に基材1に印加するバイアス電圧を絶対値が130V以上の負の電圧とすることにより行なうことができる。すなわちバイアス電圧を−130V以下とすることで、皮膜4をθ−2θ法のX線回折にて測定したときの回折線の積分強度を前記の関係とすることができ、また、回折線の半値幅を前記の値とすることができる。
【0038】
[優先配向(積分強度の関係):I(111)×2≦I(200)]
回折線の強度比、すなわち優先配向は成膜時に基材1に印加するバイアス電圧に依存する。バイアス電圧が増加するに伴い、(200)配向が優勢となるが、特に耐摩耗性は(200)面が優れる。そして、その指標となる強度比でその関係が(111)の強度の2倍以上になるときに、耐摩耗性が向上する。より好適には3倍以上である。
【0039】
[半値幅:0.7°以上]
基材1に印加するバイアス電圧の値により、配向だけではなく皮膜4の結晶状態も変化する。具体的には皮膜4の結晶粒径が変化し、その指標として、より強く観察される(200)面回折線の半値幅を使用することが出来る。回折線の半値幅が0.7°以上で耐摩耗性がより向上する。より好適には0.9°以上である。回折線の半値幅は、バイアス電圧が−130V以下の値の領域で増加する傾向があるが、その増加は2°付近で飽和する。
【0040】
X線回折による測定は、一例として、以下の条件で行なうことができる。
使用装置:理学電気製RINT−ULTIMA PC、測定方法:θ−2θ、X線源:Cukα(グラファイトモノクロメータ使用)、励起電圧−電流:40kV−40mA、発散スリット:1°、発散縦制限スリット:10.00mm、散乱スリット:1°、受光スリット:0.15mm、モノクロ受光スリット:なし
【0041】
そして、基材1に印加するバイアス電圧を−150Vとして、A層2が(Ti0.2Cr0.2Al0.55Si0.03Y0.02)N、B層3が(Ti0.25Cr0.1Al0.65)Nからなる多層膜(各15nm、1単位の厚さは30nm、総膜厚は3μm)を形成した場合には、図2に示すX線回折(XRD)図形となる。各回折線の積分強度および半値幅は、このXRD図形(生データ)から、例えば表計算ソフトIgorProを用いて算出することができる。具体的には、当該ソフトのMulti−peak fit packageを用いて、ピーク形状としてVoigt関数を用いてフィッティングを行うことで各値を算出する。フィッティング時には生データには基材の回折線も検出されることから、基材成分と皮膜成分との回折成分の分離も実施している(基材成分は、図中、太線(符号Mの部分)で示している)。
【0042】
≪硬質皮膜の形成方法≫
本発明に係る硬質皮膜の形成方法は、硬質皮膜形成部材を作製するための硬質皮膜の形成方法であって、硬質皮膜をアークイオンプレーティング法またはスパッタリング法で形成するものである。
【0043】
皮膜の形成方法としては、A層、B層のように多くの元素を含有する層の組成を正確に制御するために、固体の蒸発源を使用したアークイオンプレーティング(AIP)法あるいはスパッタリング法が適している。中でもAIP法は、ターゲット原子の蒸発時のイオン化率が高く、基材に印加したバイアス電圧により緻密な皮膜を形成することができることから特に推奨される。
【0044】
ただし、皮膜の優先配向および回折線の半値幅を前記の条件とする場合には、皮膜をアークイオンプレーティング法またはスパッタリング法で形成するときに、基材に印加するバイアス電圧を絶対値が130V以上の負の電圧(バイアス電圧を−130V以下)とする必要がある。バイアス電圧を−130V以下として成膜することで、前記したように、皮膜をθ−2θ法のX線回折にて測定したときに、積分強度比がI(111)×2≦I(200)、半値幅:0.7°以上となる。より好ましくは−140V以下である。なお、バイアス電圧が大きな負の値となりすぎると、成膜中の基材の加熱や成膜レートの低下が生じることから、下限値は−250Vが好ましい。
【0045】
すなわち、基材上に皮膜を形成して硬質皮膜形成部材を製造するには、まず所定サイズの基材を必要に応じて超音波脱脂洗浄して準備する(基材準備工程)。次に、この基材を成膜装置に導入した後、基材を500〜550℃の所定温度に保持し(基材加熱工程)、アークイオンプレーティングまたはスパッタリング法で基材上に皮膜を形成する(皮膜形成工程)。これにより、所定の組成、構造を有する硬質皮膜形成部材を製造することができる。
【0046】
次に、基材への成膜方法の一例として、複合成膜装置を使用した場合について、図3を参照して説明するが、成膜方法としては、これに限定されるものではない。
図3に示すように、複合成膜装置100は、真空排気する排気口11と、成膜ガスおよび希ガスを供給するガス供給口12とを有するチャンバー13と、アーク式蒸発源14に接続されたアーク電源15と、スパッタ蒸発源16に接続されたスパッタ電源17と、成膜対象である被処理体(図示省略)を支持する基材ステージ18上の支持台19と、この支持台19と前記チャンバー13との間で支持台19を通して被処理体に負のバイアス電圧を印加するバイアス電源20とを備えている。また、その他、ヒータ21、放電用直流電源22、フィラメント加熱用交流電源23等を備えている。
なお、アーク式蒸発源14を用いることにより、アークイオンプレーティング(AIP)蒸発、スパッタ蒸発源16を用いることにより、アンバランスド・マグネトロン・スパッタリング(UBM)蒸発を行うことができる。
【0047】
まず、複合成膜装置100のカソード(図示省略)に、各種合金、あるいは金属のターゲット(図示省略)を取り付け、さらに、回転する基材ステージ18上の支持台19上に被処理体(図示省略)として基材を取り付け、チャンバー13内を真空引き(5×10−3Pa以下に排気)し、真空状態にする。その後、チャンバー13内にあるヒータ21で被処理体の温度を約500℃に加熱し、フィラメントからの熱電子放出によるイオン源により、Arイオンによるエッチングを5分間実施する。その後、アーク式蒸発源14により、φ100mmのターゲットを用い、アーク電流150Aとし、全圧力4PaのN雰囲気にて、また炭素を含有する場合には、Nガスに炭素を含有するガスを加えた雰囲気中にてアークイオンプレーティングを実施する。B(ホウ素)を含有する場合にはターゲット中にBを含有させる。
【0048】
また、複数の蒸発源に異なる組成のターゲットを取り付け、回転する支持台19上に被処理体を載せて、成膜中に回転させることによって積層膜を形成することができる。支持台19上の被処理体は基材ステージ18の回転に伴い、異なる組成のターゲットを取り付けた蒸発源の前を交互に通過するが、そのときに各々の蒸発源のターゲット組成に対応した皮膜が交互に形成されることで、積層膜を形成することが可能である。また、A層、B層の各々の厚み、積層構造の1単位の厚さ、単位数は、各蒸発源への投入電力(蒸発量)や、支持台19の回転速度、回転数にて制御する。なお、支持台19の回転速度が速い方が1層あたりの厚みは薄くなり、1単位の厚さは薄くなる(すなわち積層周期は短くなる)。
【0049】
以上説明したように、所定の成分組成を有するA層とB層とを積層構造とするとともに、1単位の厚さを所定範囲とすることで、硬質皮膜の耐摩耗性を向上させることができる。そして、このような耐摩耗性に優れる硬質皮膜をコーティングした本発明の硬質皮膜形成部材としては、一例として、チップ、ドリル、エンドミル等の切削工具や、プレス、鍛造金型、成型用金型、打ち抜きパンチ等の治工具が挙げられる。また、本発明の硬質皮膜形成部材は、特にドライでの切削加工に用いる工具に適している。
【実施例】
【0050】
以下、本発明に係る実施例について説明する。本発明は以下の実施例に限定されるものでない。
本実施例においては、図3に示す複合成膜装置を用いて、皮膜を形成した。
[第1実施例]
第1実施例では、成膜時のバイアス電圧を−150Vに固定し、積層構造の1単位の厚さ(積層周期)が30nmとなるように、各々組成の異なるA層、B層を形成し、硬さや切削性能に及ぼす皮膜組成の影響について検討した。
【0051】
まず、複合成膜装置のカソードに、各種合金、あるいは金属のターゲットを取り付け、さらに、エタノール中にて超音波脱脂洗浄した、切削工具(2枚刃超硬エンドミル、φ10mm)ならびに硬さ調査用の鏡面の超硬試験片(縦13mm×横13mm×厚さ5mm)を基材ステージ上の支持台上に取り付けた。そしてチャンバー内を真空引き(5×10−3Pa以下に排気)し、真空状態にした。次に、ヒータで被処理体の温度を500℃に加熱した後、フィラメントからの熱電子放出によるイオン源により、Arイオンによるエッチングを5分間実施した。その後、窒素ガスや、必要に応じて炭素を含有するガスを窒素ガスに加えた混合ガスを導入して全圧力4Paとし、アーク蒸発源(ターゲット径φ100mm)を放電電流150Aで運転して所定厚さの皮膜を形成した。
【0052】
なお、積層膜の形成については、A層およびB層の組成のターゲットを別々の蒸発源に取り付け、基材を搭載した基材ステージを装置内で回転させ、まずB層のターゲットのみ、前記した窒素ガス等の所定の雰囲気中で単独で短時間放電させ、基材にバイアス電圧を−150V印加し、所定厚さのB層を形成した。その後、A層のターゲットを放電させ、A層およびB層のターゲットを同時放電させ、基材にバイアス電圧を−150V印加しながら基材ステージを回転させることで、B層とA層とがこの順に積層した積層構造を有する皮膜(多層膜)を基材上に合計厚さ3μmとなるように形成した。また、A層の厚みは約15nm、B層の厚みは約15nmとし、1単位を30nmとした。A層、B層の各々の厚み、積層構造の1単位の厚さ、単位数は、支持台の回転速度、回転数にて制御した。
【0053】
成膜終了後、皮膜中の成分組成を測定すると共に、皮膜の硬さ、耐摩耗性について評価を行った。
<皮膜組成>
A層およびB層中の金属元素の成分組成を、EPMA(Electron Probe Micro Analyzer)により測定した。
【0054】
<硬さ>
皮膜の硬さは、超硬エンドミルにおける皮膜のビッカース硬さを、マイクロビッカース硬度計において、荷重20mN、保持時間15秒の条件で調べることにより評価した。硬さが25GPa以上のものを良好、25GPa未満のものを不良とした。
【0055】
<耐摩耗性>
耐摩耗性は、以下の条件にて切削試験を実施し、一定距離経過後の境界部摩耗量(フランク摩耗量(摩耗幅))を測定することにより評価した。摩耗量(摩耗幅)が200μm未満のものを耐摩耗性が良好、200μmを超えるものを耐摩耗性が不良とした。
【0056】
[切削試験条件]
被削材:SKD61(HRC57)
切削速度:400m/分
深さ切込み:5mm
径方向切込み:0.6mm
送り:0.06mm/刃
評価条件:100m切削後のフランク摩耗(境界部)
これらの結果を表1、2に示す。なお、表中、本発明の範囲を満たさないものは、各層の組成に下線を引いて示す。ただし、必須の成分を含有しないものについては、下線で示していない。
【0057】
【表1】

【0058】
【表2】

【0059】
表1、2に示すように、No.1〜26は、皮膜(A層およびB層)の組成が本発明の範囲を満足しているため、硬さ、耐摩耗性が良好であった。
一方、No.27〜49は、本発明の範囲を満足していないため、硬さ、耐摩耗性が不良であった。なお、No.50は、切削中に皮膜が基材から剥離した。具体的には、以下のとおりである。
【0060】
No.27は、A層においてAl量が下限値未満であった。No.28は、A層においてTiとCrの合計量が下限値未満であり、Al量が上限値を超えた。No.29は、A層においてSiを含有しなかった。No.30は、A層においてSi量が上限値を超えた。No.31は、A層においてTi、Crを含有せず、Al量が上限値を超えた。No.32は、A層においてCrを含有せず、Al量が上限値を超えた。No.33は、A層においてTiを含有せず、Al量が上限値を超えた。
【0061】
No.34は、A層においてTiとCrの合計量が下限値未満であった。No.35は、A層においてTiとCrの合計量が上限値を超え、Al量が下限値未満であった。No.36は、A層においてY量が上限値を超えた。No.37は、A層においてB量が上限値を超えた。No.38は、A層においてC量が上限値を超えた。No.39は、B層においてTiとCrの合計量が上限値を超え、Al量が下限値未満であった。No.40は、B層においてTiとCrの合計量が下限値未満であり、Al量が上限値を超えた。No.41、42は、B層において、Crを含有しなかった。
【0062】
No.43は、A層においてTiが上限値を超え、Cr、Alを含有しなかった。No.44は、B層においてTiが上限値を超え、Cr、Alを含有しなかった。No.45は、B層においてCrが上限値を超え、Alを含有しなかった。No.46は、A層においてCrを含有せず、Alが上限値を超え、B層においてTiが上限値を超え、Cr、Alを含有しなかった。No.47は、A層においてTiを含有せず、Alが上限値を超え、B層においてCrが上限値を超え、Alを含有しなかった。No.48は、B層においてB量が上限値を超えた。No.49は、B層においてC量が上限値を超えた。No.50は、B層においてSiを含有していた。そのため、密着性が低下した。
【0063】
[第2実施例]
第2実施例では、皮膜組成を一定とし、サンプルごとに1単位の厚さの異なる皮膜を形成し、硬さや切削性能に及ぼす1単位の厚さの影響について検討した。
皮膜の形成は、第1実施例と同様の方法で行った(厚さ以外の条件は第1実施例と同様である)。この際、サンプルごとに1単位の厚さを変化させた。
【0064】
成膜終了後、皮膜中の成分組成を測定すると共に、皮膜の硬さ、耐摩耗性について評価を行った。成分組成の測定方法、硬さおよび耐摩耗性の評価方法は、前記第1実施例と同様である。なお、皮膜中の成分組成は、A層「(Ti0.2Cr0.15Al0.55Si0.1)N」、B層「(Ti0.2Cr0.2Al0.6)N」であった。
これらの結果を表3に示す。なお、表中、本発明の範囲を満たさないものは、数値に下線を引いて示す。
【0065】
【表3】

【0066】
表3に示すように、No.51〜55は、A層とB層の積層構造の1単位の厚さが本発明の範囲を満足しているため、硬さ、耐摩耗性が良好であった。一方、No.56は、1単位の厚さが下限値未満のため、硬さ、耐摩耗性が不良であった。No.57、58は、1単位の厚さが上限値を超えるため、硬さ、耐摩耗性が不良であった。
【0067】
[第3実施例]
第3実施例では、皮膜組成および1単位の厚さを一定とし、皮膜形成時のバイアス電圧を変化させ、硬さや切削性能に及ぼす、X線回折による皮膜の優先配向および回折線の半値幅の影響について検討した。
皮膜の形成は、第1実施例と同様の方法で行った。この際、サンプルごとにバイアス電圧を変化させた。なお、1単位の厚さは30nm、A層とB層の厚さの比率は1:1、総膜厚は3μmとした。
【0068】
成膜終了後、皮膜中の成分組成を測定すると共に、X線回折による皮膜の優先配向、回折線の半値幅を調べた。また、皮膜の硬さ、耐摩耗性について評価を行った。成分組成の測定方法、硬さおよび耐摩耗性の評価方法は、前記第1実施例と同様である。なお、成分組成は、A層「(Ti0.2Cr0.15Al0.55Si0.1)N」、B層「(Ti0.2Cr0.2Al0.6)N」であった。
【0069】
皮膜の優先配向、回折線の半値幅は、皮膜をθ−2θ法のX線回折にて測定したときの(111)面および(200)面からの回折線の積分強度比(表中、(200)/(111)と記す)、および、皮膜をθ−2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅を調べた。
X線回折の条件を以下に示す。
[X線回折装置]
使用装置:理学電気製RINT−ULTIMA PC
測定方法:θ−2θ
X線源:Cukα(グラファイトモノクロメータ使用)
励起電圧−電流:40kV−40mA
発散スリット:1°
発散縦制限スリット:10.00mm
散乱スリット:1°
受光スリット:0.15mm
モノクロ受光スリット:なし
【0070】
そして、各サンプルについてXRD図形(生データ)から、表計算ソフトIgorProを用いて、生データの回折線についてフィッティングを行った後に各回折線の積分強度を求めた。具体的には、当該ソフトのMulti−peak fit packageを用いて、ピーク形状としてVoigt関数を用いてフィッティングを行うことで値を算出した。
これらの結果を表4に示す。なお、表中、本発明の好ましい範囲を満たさないものは、数値に下線を引いて示す。
【0071】
【表4】

【0072】
表4に示すように、No.61〜63は、バイアス電圧が本発明の好ましい上限値である−130V以下であるため、硬さ、耐摩耗性の向上効果が良好であった。
一方、No.59、60は、硬さ、耐摩耗性の向上効果は良好であったものの、バイアス電圧が本発明の好ましい上限値である−130Vを超えるため、No.61〜63に比べるとやや劣った。
【0073】
以上、本発明について実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて広く解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することが可能であることはいうまでもない。
【符号の説明】
【0074】
1 基材
2 A層
3 B層
4 硬質皮膜
10 硬質皮膜形成部材

【特許請求の範囲】
【請求項1】
基材上に硬質皮膜を備えた硬質皮膜形成部材であって、
前記硬質皮膜は、組成がTiCrAlSi(B)からなり、前記a、b、c、d、e、u、v、wが原子比であるときに、
0.05≦a
0.05≦b
0.2≦a+b≦0.55
0.4≦c≦0.7
0.02≦d≦0.2
0≦e≦0.1
0≦u≦0.1
0≦v≦0.3
a+b+c+d+e=1
u+v+w=1
を満足するA層と、
組成がTiCrAl(B)からなり、前記f、g、h、x、y、zが原子比であるときに、
0≦f
0.05≦g
0.25≦f+g≦0.6
0.4≦h≦0.75
0≦x≦0.1
0≦y≦0.3
f+g+h=1
x+y+z=1
を満足するB層とを備え、
前記A層と前記B層が交互に積層され、前記A層と前記B層の1組の積層構造を1単位としたときに、この1単位の厚さが10〜50nmであり、
かつ前記硬質皮膜の膜厚が1〜5μmであることを特徴とする硬質皮膜形成部材。
【請求項2】
前記硬質皮膜をθ−2θ法のX線回折にて測定したときの(200)面からの回折線の積分強度I(200)が、(111)面からの回折線の積分強度I(111)の2倍以上であることを特徴とする請求項1に記載の硬質皮膜形成部材。
【請求項3】
前記硬質皮膜をθ−2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅が0.7°以上であることを特徴とする請求項1または請求項2に記載の硬質皮膜形成部材。
【請求項4】
請求項1に記載の硬質皮膜形成部材を作製するための硬質皮膜の形成方法であって、前記硬質皮膜をアークイオンプレーティング法またはスパッタリング法で形成することを特徴とする硬質皮膜の形成方法。
【請求項5】
請求項2または請求項3に記載の硬質皮膜形成部材を作製するための硬質皮膜の形成方法であって、前記硬質皮膜をアークイオンプレーティング法またはスパッタリング法で形成するときに、前記基材に印加するバイアス電圧を絶対値が130V以上の負の電圧とすることを特徴とする硬質皮膜の形成方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−97303(P2012−97303A)
【公開日】平成24年5月24日(2012.5.24)
【国際特許分類】
【出願番号】特願2010−244767(P2010−244767)
【出願日】平成22年10月29日(2010.10.29)
【出願人】(000001199)株式会社神戸製鋼所 (5,860)
【Fターム(参考)】