説明

箱型成形品

【課題】特殊な材料の使用や複雑な型構造といった制約がなく、側面の倒れ変形が発生しても、側面の上端部が所望の形状となるように、側面の高さ方向に反りを生じさせる構造を有する、または、側面の倒れ変形を抑制することのできる箱型成形品を提供する。
【解決手段】底面2と側面3とを有し、加熱成形して作られる箱型成形品において、側面3の高さをL[mm]、加熱成形時の温度から室温に冷却されたときの底面2と側面3のなす角の角度変化分をΔθ[rad]としたときに、冷却後の側面の高さ方向の曲率κ[1/mm]が0<κ<4Δθ/Lの範囲にあることを特徴とする箱型成形品。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、機械部品などの構造部材、または筐体、カバー、ケースなどに用いられる箱型の成形品に関する。
【背景技術】
【0002】
従来、箱型の成形品を加熱成形によって製造する場合、高温状態で材料を所望の形状に対応する型に押し付ける方法、あるいは、材料を型に押し付けた状態で温度を上昇させるなどの方法を採るが、いずれの方法においても、高温時には所望の形状になっていても、室温まで冷却したときには、図1(b)のように側面の倒れ変形が起き、所望の形状ではなくなるという問題が生じていた。
【0003】
この問題に対して、側面の倒れ変形をあらかじめ見越して、型を所望の形状に対応する形から変形する分だけ逆向きにずらした形状とすることによって、側面の倒れ変形を相殺し所望の形状の成形品を得るという方法が採られることがある。しかし、この方法では、欠点として、型形状が複雑な曲面を持つことになり、型の製造の難易度が上がるという点、複数の側面を持つ箱型成形品では側面の倒れ変形同士が干渉して最終的な変形状態を見積もることが難しいという点、見積もった変形状態が誤っていた場合、型改修が必要であり、大きなコストと時間が必要になるリスクがあるという点が挙げられる。
【0004】
また、例えば特許文献1に示すように、側面の倒れ変形は材料の熱収縮に起因することに着目し、熱膨張率が十分小さい材料および異方性材料の積層設計を適用することにより、側面の倒れ変形を実用上問題のない大きさに収める方法が提案されている。しかし、特許文献1に開示された方法は、熱膨張率の小さな材料、たとえば、ピッチ系炭素繊維やセラミックなどを想定したものであり、これらの材料は靭性が低いために脆く割れやすく、機械部品として使用できる範囲が限定されるものであった。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平6−099507号公報
【非特許文献】
【0006】
【非特許文献1】日本複合材料学会誌,vol.22,pp114-119,1996
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の目的は、特殊な材料の使用や複雑な型構造といった制約がなく、側面の倒れ変形が発生しても、側面の上端部が所望の形状となるように、側面の高さ方向に反りを生じさせる構造を有する、または、側面の倒れ変形を抑制することのできる箱型成形品を提供することにある。
【課題を解決するための手段】
【0008】
上記課題に対し各種検討した結果、成形温度から室温への冷却時に、材料の熱収縮により、(1)図2に示すように、箱型成形品の底面と側面をつなぐコーナー部の角度(底面と側面のなす角)が小さくなるように、すなわち側面が内側に倒れるように変形すること、(2)つながった側面の上端部の周長は一定のため、複数の側面間で倒れ変形が干渉しあい、図1(b)に示すように一部の側面は外側に倒れる状態になったり、図1(c)に示すように全ての側面が内側に倒れる状態になったりすること、の2点を本発明者は見出した。
【0009】
そこで、側面が倒れても、上端部が所望の形状を維持するように、側面自体を反らせることで、所望の形状からの変位が小さくなる構造とすれば、側面の倒れ変形の影響が実用上問題なくなることを見いだした。
【0010】
また、底面と側面をつなぐコーナー部での角度変化を小さくするためには、成形温度から室温への冷却時に、断面中立軸に対して外側での収縮が大きく、内側での収縮が小さくなるようにすると良いことも見出した。以上の知見を元に本発明者は本発明に想到した。
(1)底面と側面とを有し、加熱成形して作られる箱型成形品であって、側面の高さをL[mm]、加熱成形時の温度から室温に冷却されたときの底面と側面のなす角の角度変化分をΔθ[rad]としたときに、冷却後の側面の高さ方向の曲率κ[1/mm]が0<κ<4Δθ/Lの範囲にあることを特徴とする箱型成形品。
(2)底面と側面とを有し、加熱成形して作られる箱型成形品であって、前記箱型成形品における前記底面と前記側面とをつなぐコーナー部において、中立軸より外側の熱膨張係数が、中立軸より内側の熱膨張係数よりも大きいことを特徴とする箱型成形品。
(3)前記コーナー部において、中立軸より外側は繊維強化プラスチックの繊維方向とコーナーの接線方向とのなす角度が小さい領域が多く、中立軸より内側は繊維方向と接線方向のなす角度が大きい領域を多くすることにより、中立軸より外側の熱膨張係数が、中立軸より内側の熱膨張係数よりも大きくなるよう配置されたことを特徴とする(2)に記載の箱型成形品。
(4)前記箱型成形品が繊維強化プラスチックおよび/または金属からなることを特徴とする(1)から(3)のいずれかに記載の箱型成形品。
(5)前記側面が、繊維強化プラスチックおよび/または金属を複数積層させた積層構造を有してなることを特徴とする(4)に記載の箱型成形品。
(6)前記箱型成形品の底面が略矩形であることを特徴とする(1)から(5)のいずれかに記載の箱型成形品。
(7)前記箱型成形品の底面の周囲全体にわたって側面が設けられていることを特徴とする(1)から(6)のいずれかに記載の箱型成形品。
【0011】
ここで、本発明において「所望の形状」とは、理想的には底面に対してほぼ垂直に側面が立設した状態で得られる、底面と反対側の側面上端部の辺を繋いで形成される形状を指し、底面が略長方形の場合は、「所望の形状」も略長方形となる。
【発明の効果】
【0012】
本発明によれば、以下に説明するとおり、側面の倒れ変形の影響を実用上問題のない大きさに抑えた箱型成形品を得ることができる。
【図面の簡単な説明】
【0013】
【図1】本発明に係る箱型成形品の概略斜視図であって、(a)側面の倒れ変形のない箱型成形品の概略斜視図、(b)一部の側面が外側に倒れた状態の箱型成形品の概略斜視図、(c)全ての側面が内側に倒れた状態の箱型成形品の概略斜視図、をそれぞれ示した図である。
【図2】本発明に係る箱型成形品のコーナー部における角度変化を模式的に示した拡大断面図である。
【図3】本発明に係る箱型成形品のコーナー部における角度変化と側面の曲率の関係を模式的に示した断面図である。
【図4】本発明に係る箱型成形品の側面の曲率と所望の形状との関係を模式的に示した断面図である。
【図5】本発明に係る箱型成形品を構成する側面の積層板断面の模式図である。
【図6】本発明に係る箱型成形品のコーナー部における熱変形を模式的に示した断面図である。
【発明を実施するための形態】
【0014】
以下、本発明について図面を用いて説明する。
【0015】
本発明の箱型成形品1は、図1(a)に示すように、底面2と側面3とから構成される。以下の説明では底面2を下側として箱型成形品1を置いた状態について記述するが、使用時に箱型成形品1の底面2が上側となる状態となる場合であっても当然かまわない。
【0016】
箱型成形品1を所望の形状に対応する型(図示せず)を用いて成形する場合、型に沿わせるように、後述する構成材料を載置して成形を行う。成形方法は構成材料にもよるが、型内部に設けられた加熱・冷却手段によって成形できることが好ましい。
【0017】
図1(b)のA−A断面における底面2と側面3とのコーナー部4に着目すると、図3(a)に示すように、加熱成形時において、底面2と側面3のなす角θ[rad]
は所望の形状の角度を保っている。脱型後、箱型成形品1を室温まで冷却すると、コーナー部4は図3(b)に示すように変形し、底面2と側面3のなす角はθ[rad]となる。この変形は、部材の熱収縮や、側面の自重による座屈が原因と考えられる。
【0018】
ここで、加熱前後におけるコーナー部4の角度の変化分をΔθ(=θ−θ)、側面の高さLとすると、側面3の上端部3aにおける所望の形状からのずれ長さΔWは最大でΔW=LtanΔθとなる。そこで、図3(c)に示すように、側面3が曲率κとなるように側面3を反らせるようにすれば、側面3の上端部3aが所望の形状に戻すことが可能になる。
【0019】
図4(a)に示すように、点Aでの接線ADと弦ACのなす角がΔθである。曲率中心Oから弦ACに対して垂線OBを引くと、∠OAD=∠OBA=90°であるから、∠AOB=Δθとなる。同様に∠COB=Δθとなり、∠AOC=2Δθである。Δθ<<1と仮定すると、弧ACの長さLと曲率半径OA=1/κより、2Δθ/κ=Lとなる。すなわち、κ=2Δθ/Lのとき、所望の形状からのずれΔW=0となり、所望の形状からのずれはなくなる。また、κ>2Δθ/Lのときは、図4(b)に示すように、所望の位置EからのずれΔW=CE=2sin(Δθ+φ)sinφ/κとなる。Δθ<<1かつφ<<1と仮定すると、ΔW=2(Δθ+φ)φ/κとなり、φ=2Δθのとき、すなわちκ=4Δθ/Lのときに側面3が曲率を持たないときの所望の形状からのずれと一致する。そこでκの範囲が0<κ<4Δθ/Lとなるとき、側面3が曲率を持たないときよりもΔWを小さくすることができる。
【0020】
箱型成形品1の底面2の形状は、略多角形、円形、楕円その他どのような形状であってもかまわないが、機械を構成する部材としての設計のしやすさ、成形しやすさを考慮すると、略矩形であることが好ましい。
【0021】
箱型成形品1の構成材料は、加熱成形するものであれば特に限定されるものではないが、機械部品としての強度、剛性等を考慮すると、繊維強化プラスチック、金属のいずれか、またはその組み合わせであることが好ましい。繊維強化プラスチックとは、エポキシ樹脂やポリエステル樹脂などのプラスチックを、強化繊維である炭素繊維などで強化したものである。プラスチックには、上記した、エポキシ樹脂、ポリエステル樹脂の他、ビニルエステル樹脂、フェノール樹脂などの熱硬化樹脂の他、ポリプロピレン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂など熱可塑樹脂が使用される。強化繊維は、炭素繊維やガラス繊維などの無機繊維や、アラミド繊維(ケブラー、トワロンなど)、高強度ポリエチレン繊維、PBO繊維などの有機繊維などが使用される。中でも、PAN系炭素繊維とエポキシ樹脂を重量比で4:6〜7:3の割合で組み合わせたCFRPは、重量当たりの剛性、強度が高く、本発明で最も好ましい材料である。金属は、安価で高強度な鉄鋼、軽量なアルミ合金やマグネシウム合金など、目的に応じて適宜組み合わせることが好ましい。
【0022】
側面3に高さ方向の曲率κを持たせるには、型にあらかじめ曲率を付けておくこともできるが、側面3の高さ方向に対して各層の熱膨張係数が異なるような積層構造とすると、積層構成により各層の間で膨張・収縮を互いに作用させることで曲率κを制御することができるので、加熱しても反りの少ない側面3を得ることができ好ましい。以下、積層構成の求め方について説明する。
【0023】
積層構造の熱変形は、非特許文献1にあるようにKirchhoffの仮定を用いた板理論の拡張である古典積層板理論より、合熱膨張率Nαと合熱膨張モーメント率Mαによって、面内歪みεと板曲げとしての曲率κが下記式(1)のように表される。
【0024】
【数1】

【0025】
ここで、Nα,Mα,ε,κは面内の主軸方向2つと面内せん断方向1つのあわせて3つの項を持つベクトルである。ΔT[℃]は成形温度と室温との差である。A,B,Dはそれぞれ面内剛性、カップリング剛性、曲げ剛性をあらわす3×3の行列である。各ベクトル、行列の成分は、図4に示すようなN層積層板(Nは自然数)では、積層板の中のあるk層目(1≦k≦N)の剛性マトリックスQと積層板内での厚さ方向位置zを用いて、下記式(2)〜(6)のように算出することができる。
【0026】
【数2】

【0027】
【数3】

【0028】
【数4】

【0029】
【数5】

【0030】
【数6】

【0031】
ここで、Qは二次元直交異方性を仮定すると、図5に示すような各層の材料主軸の配向角θと各層の材料主軸方向の工学的弾性係数E,ELT,GLTを用いて下記式(7)で示される。
【0032】
【数7】

【0033】
ここでm = cosθ,n = sinθである。なおνTLは相反定理より下記式(8)となる。
【0034】
【数8】

【0035】
また、k層目の線膨張率ベクトルはk層目の材料の線膨張係数αを用いて、下記式(9)で表される。
【0036】
【数9】

【0037】
式(9)により、各層の材料と積層構成が決まると積層板の熱変形が求められることが分かるが、式(1)の逆を取ると以下の式(10)となる。
【0038】
【数10】

【0039】
ここで、式(10)の右辺の行列は弾性コンプライアンスであり、以下式(11)より求まる。
【0040】
【数11】

【0041】
α,β,δは弾性コンプライアンスから3×3の部分行列を抜き出したものとする。式(10)より側面3の高さ方向曲率κを求めることができ、0<κ<4Δθ/Lとなるように、使用する材料、積層順を決めることができる。
【0042】
また、Δθを小さくする構造によってΔWを小さくすることもできる。図6に示すように、断面の中立軸6に対して、コーナー接線方向の熱膨張係数を内側と外側で異ならせ、内側の熱膨張係数を外側よりも小さくすることにより、成形温度から室温への冷却時に、断面の中立軸6に対して外側が相対的に大きく収縮することができ、Δθを小さくすることができる。
【0043】
熱膨張係数を断面の中立軸6の内側と外側で異ならせる方法としては、それぞれの部分に異なる材料を用いても良い。一般に金属の熱膨張係数は、繊維強化プラスチックの繊維方向の熱膨張係数よりも大きいので、コーナー部4の内側に繊維強化プラスチック、外側に金属を配置する方法を採ることもできる。
【0044】
また、同一材料を用いても、繊維強化プラスチックなどの熱膨張係数に異方性のある材料を用いるならば、式(9)に示したように、材料の配置する向きによって、コーナー部4での接線方向の熱膨張係数を、断面の中立軸6の内側と外側で異ならせることができる。具体的には、繊維強化プラスチックの繊維方向を、断面の中立軸6の内側でコーナーの接線方向と成す角度を大きくなるように配置し、断面の中立軸6の外側でコーナーの接線方向となす角度が小さくなるように配置することによって、コーナー部4での接線方向の熱膨張係数を、断面の中立軸6の内側と外側で異ならせることができる。
【0045】
箱型成形品1は、底面2の周囲の一部のみに側面3を有する形状であってもよいが、底面2の周囲全体に側面3を有するような形状の箱型成形品1においては、従来技術では複数の側面の倒れ変形が干渉して複雑な変形モードとなり、所望の形状からのずれが大きくなるので、本発明を適用すると効果が大きく、より好ましい。
【実施例】
【0046】
(実施例1)
底面が長さ380mm、幅320mmの長方形、側面高さが80mm、底面と側面の間に半径12mmの角R、側面同士の間に半径15mmの角Rをもち、板厚2.5mmの箱型成形品を成形した。使用した材料は弾性率235GPa,引張強度5GPaの炭素繊維を一方向に引きそろえてエポキシ樹脂を含浸したプリプレグ(東レ(株)製P3052S−30、繊維目付300g/m,樹脂重量含有率33%,樹脂硬化温度120℃,繊維方向弾性率EL=124GPa,繊維直交方向弾性率ET=7.96GPa,横弾性率GLT=3.89GPa,ポアソン比νLT=0.34,繊維方向線膨張率αL=7×10-7/K,繊維直交方向線膨張率αT=3.75×10-5/K)である。成形方法は、両面金型を用いたプレス成形を採用し、成形温度は125℃とした。積層構成を示す積層角度表示は、0度方向を底面長手方向および側面高さ方向とし、外から見て右回り座標系で示すこととし、内側から45°/0°/-45°/90°/0°/90°/-45°/45°の8層構成とした。
(比較例1)
実施例1と同じ寸法、同じ材料、同じ成形法で箱型成形品を成形した。積層構成は、実施例1と同じ積層角度表示を用いて、45°/0°/-45°/90°/90°/-45°/0°/45°の8層構成とした。
【0047】
実施例と比較例について、角度変化Δθ、側面の曲率κ、側面上部のずれΔWについて、表1に結果をまとめたものを示す。
【0048】
【表1】

【0049】
実施例では、コーナーの角度変化による変形を側面の曲率によって相殺することによって、側面上部のずれΔWを低減できていることがわかる。
【産業上の利用可能性】
【0050】
本発明は、機械部品のカバー、ケースなどに限らず、内部構造材や補剛材などにも応用することができる。その応用範囲はこれらに限られるものではない。
【符号の説明】
【0051】
1 箱型成形品
2 底面
3 側面
3a 上端部
4 コーナー部
5a、5b・・・5k・・・5n 積層板の各層
6 断面の中立軸

【特許請求の範囲】
【請求項1】
底面と側面とを有し、加熱成形して作られる箱型成形品であって、側面の高さをL[mm]、加熱成形時の温度から室温に冷却されたときの底面と側面のなす角の角度変化分をΔθ[rad]としたときに、冷却後の側面の高さ方向の曲率κ[1/mm]が0<κ<4Δθ/Lの範囲にあることを特徴とする箱型成形品。
【請求項2】
底面と側面とを有し、加熱成形して作られる箱型成形品であって、前記箱型成形品における前記底面と前記側面とをつなぐコーナー部において、中立軸より外側の熱膨張係数が、中立軸より内側の熱膨張係数よりも大きいことを特徴とする箱型成形品。
【請求項3】
前記コーナー部において、中立軸より外側は繊維強化プラスチックの繊維方向とコーナーの接線方向とのなす角度が小さい領域が多く、中立軸より内側は繊維方向と接線方向のなす角度が大きい領域を多くすることにより、中立軸より外側の熱膨張係数が、中立軸より内側の熱膨張係数よりも大きくなるよう配置されたことを特徴とする請求項2に記載の箱型成形品。
【請求項4】
前記箱型成形品が繊維強化プラスチックおよび/または金属からなることを特徴とする請求項1から3のいずれかに記載の箱型成形品。
【請求項5】
前記側面が、繊維強化プラスチックおよび/または金属を複数積層させた積層構造を有してなることを特徴とする請求項4に記載の箱型成形品。
【請求項6】
前記箱型成形品の底面が略矩形であることを特徴とする請求項1から5のいずれかに記載の箱型成形品。
【請求項7】
前記箱型成形品の底面の周囲全体にわたって側面が設けられていることを特徴とする請求項1から6のいずれかに記載の箱型成形品。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−20397(P2011−20397A)
【公開日】平成23年2月3日(2011.2.3)
【国際特許分類】
【出願番号】特願2009−168696(P2009−168696)
【出願日】平成21年7月17日(2009.7.17)
【出願人】(000003159)東レ株式会社 (7,677)
【Fターム(参考)】