説明

自己位置推定装置、自己位置推定方法およびプログラム

【課題】自己位置を正確に推定することが可能な自己位置推定装置、自己位置推定方法およびプログラムを提供する。
【解決手段】自己位置推定装置は、撮影部、距離算出部、ランドマーク位置取得部、自己位置推定部、移動位置予測部、観測尤度計算部、視野内ランドマーク抽出部、撮影角度変更部、撮影制御部を有している。ランドマーク位置取得部は、各ランドマークの位置を取得する。自己位置推定部は、取得された画像、算出された距離、および上記位置に基づき自己位置を推定する。移動位置予測部は、推定された自己位置に基づき予測位置を算出する。撮影角度変更部は、視野内ランドマーク抽出部が抽出した視野内ランドマークについて観測尤度計算部が計算した観測尤度と、視野内ランドマークの観測角度とに応じて撮影角度を変更する。撮影制御部は、変更後の撮影角度で撮影した画像に基づき自己位置を更新する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、自己位置推定装置、自己位置推定方法およびプログラムに関する。
【背景技術】
【0002】
移動ロボットの自律移動を制御する方式として、ランドマーク(目印)となる局所的な画像を用いる手法が従来から用いられている。例えば、予め走行経路上で撮影した画像を記憶し、撮影した画像の方向が一定の方向になるようにロボットの指令値を制御して走行を制御する方式が知られている。この方式では、レーザ等の他のセンサデータを用いた軌道制御を備え、画像による制御と適宜切り替えるようにする場合がある。
【0003】
ランドマークの位置を記したランドマーク地図を利用して自己位置を推定する方法も知られている。ランドマーク地図の生成には、Scale Invariant Feature Transform(SIFT)特徴量を用いたビジョンベースSimultaneous Localization And Map Building(SLAMB)アルゴリズムに基づく例がある。このとき、ロボットは、生成したランドマーク地図を参照するとともに、撮影した画像においてランドマークを抽出して、自己位置を推定することができる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−140246号公報
【非特許文献】
【0005】
【非特許文献1】陳彬、中尾学、深貝卓也、沢崎直之 著「ビジュアルランドマークとレイアウト地図を用いた移動地図を用いた移動知能用ナビゲーションシステムの開発」
【非特許文献2】S. Se, D. Lowe, and J. Little.著“Local and global localization for mobile robots using visual landmarks.” In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 414-420, Maui, Hawaii, October 2001.
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、上記のようにランドマークを用いた自己位置推定においては、複数のランドマークが観測可能でも、取得した画像において互いに近傍に観測される場合には、自己位置推定の精度が低下してしまう。
【0007】
また、例えば、移動経路上に障害物がある場合には、障害物を回避するために、ロボットが撮影した画像の方向が一定の方向になる経路とは、異なる経路を移動する必要がある。このようにロボットが経路を外れた場合には、既に撮影された画像とは異なる方向にカメラが向き、そのランドマークが見える角度のずれ量が大きくなる場合、或いはランドマークとのパターンマッチングの一致度が大きく低下する場合がある。さらには、ランドマークを検出できない場合が発生する。
【0008】
このようなランドマークが互いに近傍に観測される場合、ランドマークが見える角度のずれ量が大きい場合や、検出できない場合では、走行部のエンコーダを元にしたオドメトリ情報のみで自己位置を推定することになる。このように、ランドマークが見えない期間が長くなるとオドメトリの誤差が積算されて自己位置推定精度が悪くなり、自己位置を見失ってしてしまう可能性がある。
【0009】
上記課題に鑑み、ランドマークを見失うことを防止することにより、自己の位置を正確に推定することが可能な自己位置推定装置、自己位置推定方式およびプログラム提供する。
【課題を解決するための手段】
【0010】
ひとつの態様である自己位置推定装置は、撮影部、距離算出部、ランドマーク位置取得部、自己位置推定部、移動位置予測部、観測尤度計算部、視野内ランドマーク抽出部、撮影角度変更部、撮影制御部を有することを特徴としている。撮影部は、少なくとも一つのランドマークの画像を含む画像を撮影する。距離算出部は、自己位置推定装置から前記少なくとも一つのランドマークまでの距離を算出する。ランドマーク位置取得部は、少なくとも一つのランドマークの位置を取得する。自己位置推定部は、前記画像、前記距離、および前記少なくとも一つのランドマークの位置に基づき前記自己位置推定装置の自己位置を推定する。移動位置予測部は、前記自己位置推定部により推定された自己位置に基づき前記自己位置推定装置の移動時の将来の予測位置を算出する。観測尤度計算部は、前記予測位置における前記少なくとも一つのランドマークが観測される観測尤度を算出する。視野内ランドマーク抽出部は、前記予測位置において前記画像が撮影される際の撮影角度に応じて観測される前記少なくとも一つのランドマークのうちの視野内ランドマークを抽出するとともに、それぞれの前記視野内ランドマークの観測角度を算出する。撮影角度変更部は、抽出された前記視野内ランドマークの前記観測尤度と前記観測角度とに応じて前記撮影角度を変更する。撮影制御部は、変更後の前記撮影角度で前記画像が撮影されるように撮影を制御する。前記自己位置推定部は、変更後の前記撮影角度で撮影された画像とランドマーク位置取得部により取得される前記少なくとも一つのランドマークの位置とに基づき前記自己位置推定装置の現在位置を更新する。
【0011】
別の態様である自己位置推定方法においては、少なくとも一つのランドマークの画像を含む画像を取得し、前記自己位置推定装置から前記少なくとも一つのランドマークまでの距離を算出し、前記少なくとも一つのランドマークの位置を取得する。前記取得された画像、前記算出された距離、および前記記憶された前記少なくとも一つのランドマークの位置に基づき自己位置を推定し、前記推定された自己位置に基づき移動時の将来の予測位置を算出する。前記予測位置において前記少なくとも一つのランドマークが観測される確率である観測尤度を算出する。前記予測位置において画像が撮影される撮影角度に応じて観測される前記少なくとも一つのランドマークのうちの視野内ランドマークを抽出するとともに、それぞれの前記視野内ランドマークの観測角度を算出する。また、抽出された前記視野内ランドマークの前記観測尤度と前記観測角度とに応じて前記撮影角度を変更し、変更後の前記撮影角度で前記画像が撮影されるように撮影を制御する。さらに、変更後の前記撮影角度で撮影された画像と取得された前記少なくとも一つのランドマークの位置とに基づき前記自己位置推定装置の現在位置を更新することを特徴としている。
【0012】
なお、上述した本発明に係る方法をコンピュータに行わせるためのプログラムであっても、このプログラムを当該コンピュータによって実行させることにより、上述した本発明に係る方法と同様の作用・効果を奏するので、前述した課題が解決される。
【発明の効果】
【0013】
上述した態様の自己位置推定装置、自己位置推定方法およびプログラムによれば、自己位置を正確に推定することが可能になる。
【図面の簡単な説明】
【0014】
【図1】第1の実施の形態によるロボットの構成を示すブロック図である。
【図2】第1の実施の形態によるロボットの機能を示すブロック図である。
【図3】第1の実施の形態によるランドマーク地図生成の動作を示すフローチャートである。
【図4】第1の実施の形態によるランドマーク地図の一例を示す図である。
【図5】第1の実施の形態による観測方向ベクトルと観測距離の一例を示す図である。
【図6】第1の実施の形態によるランドマークの位置と推定される自己位置の関係を示す図であり、(a)はランドマーク1個の場合、(b)は、ランドマーク2個が近接して観測された場合、(c)は、ランドマーク2個が所定距離離れて観測された場合、(d)は、ランドマーク3個が近接して観測された場合である。
【図7】第1の実施の形態によるロボットによる自己位置推定処理を示すフローチャートである。
【図8】第1の実施の形態によるパンチルト角度リストの一例を示す図である。
【図9】第1の実施の形態によるリストΩの一例を示す図である。
【図10】第1の実施の形態によるロボットおよびランドマークの位置関係の一例を示す図である。
【図11】第1の実施の形態による評価値の算出例を示す図である。
【図12】第2の実施の形態によるロボットの機能を示すブロック図である。
【図13】第2の実施の形態による自己位置推定処理を示すフローチャートである。
【図14】標準的なコンピュータの構成を示す図である。
【発明を実施するための形態】
【0015】
(第1の実施の形態)
以下、図面を参照しながら第1の実施の形態によるロボット1について説明する。図1は、第1の実施の形態によるロボット1の構成を示すブロック図、図2は、第1の実施の形態によるロボット1の機能を示すブロック図である。
【0016】
図1に示すように、ロボット1は、ステレオカメラ5、パンチルトモータ7、パンチルト制御部9、車輪制御部11、車輪モータ13、記憶部15を有し、演算処理装置3により制御されている。
【0017】
図2に示すように、ステレオカメラ5は、互いに平行な方向に撮影方向を設定され、所定間隔を隔てて配置された2つのカメラ5A、5Bを有している。所定間隔は、2つのカメラ5A、5Bで撮影した画像により、撮影対象までの距離が所定の精度で算出できる間隔であることが好ましい。カメラ5A、5Bは、少なくとも静止画像を撮影し、電気的信号に変換して出力する撮影装置である。なお、カメラ5A、5Bにより撮影された2つの画像をまとめてステレオ画像ともいう。
【0018】
パンチルトモータ7は、ステレオカメラ5の撮影方向を変化させるための駆動部である。パンチルト制御部9は、演算処理装置3による指示によりパンチルトモータ7の動作を制御する制御部である。車輪モータ13は、図2に示す車輪19を回転させてロボット1を移動させるための駆動部である。車輪制御部11は、演算処理装置3による指示により車輪モータ13を制御する制御部である。
【0019】
記憶部15は、例えばRead Only Memory(ROM)や、Random Access Memory(RAM)、またはハードディスク装置等の記憶装置である。記憶部15は、ロボット1の動作を制御するプログラムを予め記憶したり、プログラムを実行する際に必要に応じて作業領域として使用したりするための記憶装置である。また、記憶部15は、図2に示すランドマーク地図55を格納している。演算処理装置3が、記憶部15のプログラムを読み込み実行することにより、ロボット1の各構成要素の動作制御が可能になる。
【0020】
図2に示すように、ロボット1は、車輪19が備えられた本体17を有している。本体17は、直方体形状であり、車輪19は、本体17の下部に備えられている。本体17は、車輪19が車輪制御部11および車輪モータ13を介して制御されることにより移動可能に構成されている。
【0021】
本体17の上面17Aには、ステレオカメラ5が載置されている。ステレオカメラ5は、パンチルトモータ7、パンチルト制御部9により制御されることにより撮影方向が可変に構成されている。なお、本実施の形態においては、ロボット1の上下方向を図2に示すz軸に平行な方向とするものとし、水平方向は、図2に示すy軸に平行な方向、前後方向は、x軸に平行な方向とする。また、第1の実施の形態においては、パンチルトモータ7は、ステレオカメラ5をz軸に垂直な面内、すなわち水平方向に回転させるものとする。
【0022】
ロボット1の演算処理装置3は、ランドマーク抽出部31、地図生成部33、自己位置推定部35、移動位置予測部37、移動経路計画部39、方向距離計算部41、観測尤度計算部43、視野内ランドマーク抽出部、観測評価部47、カメラ制御部49の機能を有する。
【0023】
ランドマーク抽出部31は、ステレオカメラ5のカメラ5A、5Bが撮影した2つの画像から、目印となる局所的な画像領域であるランドマークを抽出する。また、ランドマーク抽出部31は、ステレオカメラ5のカメラ5A、5Bが撮影した2つの画像に基づいて抽出したランドマークまでの距離を算出することにより、3次元位置を特定する。
【0024】
地図生成部33は、抽出したランドマークと特定した3次元位置とを関連付けた情報の集合であるランドマーク地図を生成し、ランドマーク地図55に記憶させる。このとき、地図生成部33は、ランドマーク地図55に記憶させたランドマークの3次元位置を特定したときに用いた画像を撮影した際の、ロボット1の位置および向き(以下、ロボット1の位置姿勢という)、ステレオカメラ5の角度を記臆させておくことが好ましい。また、地図生成部33は、各ランドマークを撮影可能なロボット1の位置に対応した位置姿勢を、各ランドマークに関連する代表位置として例えばランドマーク地図55に記憶させておく。代表位置は、例えば、各ランドマークを撮影したときのロボット1の位置の平均とすることが好ましい。
【0025】
自己位置推定部35は、ランドマーク抽出部31が抽出したランドマークの3次元位置と、ランドマーク地図55を参照することにより、ロボット1の自己位置を推定する。移動位置予測部37は、自己位置推定部35で推定された自己位置と、移動経路計画部39で計画される経路により、ロボット1の所定時間後の移動予測位置を算出する。移動経路計画部39は、ロボット1を移動させる経路を計画する。
【0026】
方向距離計算部41は、各ランドマークについて、ランドマーク地図55に記憶されている情報を参照し、各ランドマークから対応するそれぞれの代表位置への方向ベクトルを算出する。また、方向距離計算部41は、移動位置予測部37が予測した、ロボット1の将来の予測位置において観測可能な視野内の各ランドマークから、対応する予測位置への方向ベクトルを算出する。さらに方向距離計算部41は、算出した2つの方向ベクトルに基づき、2つの方向ベクトルの角度差と距離差とを算出する。なお、角度差と距離差の詳細については後述する。
【0027】
観測尤度計算部43は、方向距離計算部41が算出した角度差および距離差に基づき、各ランドマークに関する観測尤度を算出する。視野内ランドマーク抽出部45は、ステレオカメラ5の角度をパンチルト制御部9により変化させたときに撮影される画像内に含まれると判断される視野内ランドマークを、ステレオカメラ5のそれぞれの角度に応じて抽出する。また、このときのステレオカメラ5から見たランドマークLMの観測角度を算出する。なお、観測尤度および観測角度の詳細については後述する。
【0028】
観測評価部47は、移動位置予測部37が予測した予測位置においてステレオカメラ5の角度を変化させた際の各視野内ランドマークについて、観測尤度および観測角度に基づく評価値を算出する。観測評価部47は、算出した評価値に基づき、予測位置における最適なステレオカメラ5の角度を判別する。なお、評価値の詳細については後述する。カメラ制御部49は、観測評価部47で算出された最適な角度にステレオカメラ5を制御するように、パンチルト制御部9に制御のための信号を出力する。
【0029】
以下、図3から図13を参照しながら、第1の実施の形態によるロボット1の動作について説明する。第1の実施の形態によるロボット1の自己位置推定においては、まず、ランドマーク地図55を作成する。このようなロボット1では、ステレオカメラ5は、移動の際には姿勢をロボット1を正面方向に固定しているのが一般的である。よって、本実施の形態においても、自律移動を行なう前に、演算処理装置3は、パンチルト制御部9によりステレオカメラ5の姿勢をロボット1の正面方向に設定する。そしてその状態で、演算処理装置3は、車輪制御部11により車輪モータ13を介して車輪19を制御して、実運用での自律移動で使用する経路に沿って予めロボット1を動かし、ランドマークの3次元位置を記したランドマーク地図55を生成する。
【0030】
図3は、ランドマーク地図生成の動作を示すフローチャートである。ランドマーク地図55の作成時には、演算処理装置3は、車輪制御部11を介してロボット1を、使用する経路のスタート地点に配置し、時刻j=0とする(S101)。ここで、演算処理装置3は、ステレオカメラ5にステレオ画像を撮影させ、ランドマーク抽出部31は、撮影された画像においてランドマークを検出する(S102)。ランドマークの検出は、例えばパターマッチング法や特徴量抽出法により行なうことができる。
【0031】
演算処理装置3は、地図生成部33によりランドマークを検出したときのロボット1の位置姿勢と、ランドマークの位置とを同時に推定し、ランドマーク地図55を更新する(S103)。
【0032】
ここで、時刻jにおけるロボット1の位置姿勢は、位置姿勢(xr(j)、yr(j)、θr(j))と表す。ここで、座標xr(j)、yr(j)は、時刻jにおけるロボット1の、図2に示したxyz座標系におけるxy平面上の座標(xr(j)、yr(j))であり、角度θr(j)は、ロボット1の正面方向がx軸となす角度である。
【0033】
図2のxyz座標系は、ロボットが移動する空間において定める。例えば、z軸を鉛直方向とし、x、y軸を、z軸に垂直な平面内で互いに直交する軸として定める。このとき原点(0、0、0)は、例えば、ランドマーク地図55生成時のロボット1のスタート地点とすることができる。なお、撮影した画像を用いてロボット1の位置姿勢とランドマークの位置とを同時に推定する方法は、例えば非特許文献1の方法など、公知の方法を用いることができる。
【0034】
また、ランドマークの3次元位置は、例えば識別情報ID=i(i=1〜I:Iはランドマークの数)のランドマークをランドマークLMiとして、3次元位置(xl(i)、yl(i)、zl(i))と表す。ここで、座標xl(i)、yl(i)、zl(i)は、図2のxyz座標系における座標である。
【0035】
図4は、ランドマーク地図55の一例を示す図である。図4に示すように、例120においては、例えば、識別情報ID=1では、3次元位置(xl(1)、yl(1)、zl(1))=(4.5、1.2、1.0)である。また、識別情報ID=2に対しては、3次元位置(xl(2)、yl(2)、zl(2))=(5.0、−0.4、1.0)である。以下同様である。
【0036】
図3に戻って、演算処理装置3の自己位置推定部35は、時刻jにおける推定したロボット1の位置姿勢(xr(j)、yr(j)、θr(j))と、検出したランドマークLMiの識別情報IDのリストを、互いに関連付けて例えばランドマーク地図55に保存する(S104)。演算処理装置3は、j=j+1とし(S105)、経路の終点であるゴールへ付いたか否か判別する(S106)。ゴールへつかないと判別された場合には(S106:NO)、S102の処理に戻る。ゴールへついたと判別された場合には(S106:YES)、演算処理装置3は処理をS107に進める。
【0037】
S107では、演算処理装置3の地図生成部33は、まず、ランドマークLM(ランドマークLMiの総称)の識別情報ID=1とする。S108の処理では、地図生成部33は、識別情報ID=i(i=1〜I)のランドマークLMiを観測した全ての時刻jにおけるロボット1の位置姿勢(xr(j)、yr(j)、θr(j))の平均を求める。求めた平均を、ランドマークLMiを観測した際の、ロボット1の代表位置姿勢(xr(i)、yr(i)、θr(i))として決定する(S108)。さらに、地図生成部33は、識別情報ID=iの地図生成時における、ランドマークLMiから、対応する代表位置への観測方向ベクトル(dx(i)、dy(i)、dz(i))と観測距離d(i)とを計算する(S109)。なお、代表位置とは、代表位置位置姿勢(xrj、yrj、θrj)におけるロボット1の位置(xrj、yrj)である。
【0038】
図5は、観測方向ベクトル(dx(i)、dy(i)、dz(i))と、観測距離d(i)の一例を示す図である。図5に示す例では、ランドマークLMiを観測した場合のロボット1の代表位置が、代表位置姿勢(xr(i)、yr(i)、θr(i))である。このとき、観測方向ベクトル(dx(i)、dy(i)、dz(i))は、図5に示すベクトル62であり、ベクトル62の長さが、観測距離d(i)となる。
【0039】
演算処理装置3は、i=i+1とし(S110)、i>Iであるか否か、すなわち全てのランドマークLMiについてS108、109の処理が終了したか否か判別する(S111)。i≦Iである場合には(S111:NO)、演算処理装置3は、S108に戻って処理を繰り返し、i>Iの場合には(S111:YES)、ランドマーク地図生成処理を終了する。
【0040】
以上の処理により、ランドマーク地図55として、それぞれのランドマークLMの3次元位置(xl(i)、yl(i)、zl(i))が、ランドマークLMの識別情報IDと関連付けて記憶される。また、ランドマーク地図55には、各ランドマークLMに対応するロボット1の代表位置における代表位置姿勢(xr(i)、yr(i)、θr(i))が、識別情報IDと関連付けて記録されることが好ましい。また、ランドマーク地図55には、各ランドマークLMiに対応する観測方向ベクトル(dx(i)、dy(i)、dz(i))、観測距離d(i)を記録することが好ましい。
【0041】
次に、図6から図9を参照しながら、ロボット1による自己位置推定の処理について説明する。自律走行による自己位置推定は、ランドマークLMの検出数が多く、さらにいろいろ方向にあるランドマークLMを検出できた方が推定精度は高くなる。例えば、図6を参照しながら、以下の3つのケースの場合を考える。図6は、ランドマークの位置と推定される自己位置の関係を示す図である。ここで、(a)はランドマーク1個の場合、(b)は、ランドマーク2個が近接して観測された場合、(c)は、ランドマーク2個が所定距離離れて観測された場合、(d)は、ランドマーク3個が近接して観測された場合である。
【0042】
第1の場合として、図6(a)に示すように、ランドマーク61を1個、距離d、誤差±eで観測した場合には、ロボットの位置はランドマーク61を中心とした半径d−eと半径d+eの円の間の円環内63にあると位置を推定され、推定結果の広がりが大きいことになる。
【0043】
第2の場合として、図6(b)に示すように、近接したランドマーク65、67の2個をそれぞれ距離d、誤差±eで観測した場合には、ロボットの位置はそれぞれのランドマーク65、67を中心とした円環同士が重なった部分69として推定される。しかし、円環同士の重なりが大きいため、推定結果の広がりが大きい。
【0044】
第3の場合として、図6(c)に示すように、離れた位置にあるランドマーク71、73の2個をそれぞれ距離d、誤差±eで観測した場合には、ロボットの位置はそれぞれのランドマークを中心とした円環同士が重なった部分74として推定される。この場合には、円環同士の重なりが小さいため、推定結果の広がりが小さい。
【0045】
第4の場合として、図6(d)に示すように、3個のランドマーク75、77、79をそれぞれ距離d、誤差±eで観測した場合でも、互いに近接して観測されると、円環同士の重なった部分81が大きく、推定結果の広がりが大きい。
【0046】
このように自己位置推定は、ランドマークの検出数が多く、さらにいろいろな方向にあるランドマークを検出できた方が推定精度は高くなる。そこで、自律移動のロバスト性を高めるためには、ランドマークが見えない期間が長くなって位置をロストすることがないように、ランドマークが多く、多方向から観測できるように注視方向を決定して、自己位置を大きく見失うことがない状態を持続させるようにする。
【0047】
図7は、ロボット1による自己位置推定処理を示すフローチャートである。ここでは、ロボット1は、予め定められた経路に従い、自律走行を行うものとする。図7に示すように、まず、演算処理装置3の自己位置推定部35は、撮影された画像とランドマーク地図55とを参照してロボット1の自己位置を推定する(S150)。このとき、ステレオカメラ5の撮影方向は、初期状態においてはロボット1の正面方向に設定することが好ましい。このとき、ランドマーク地図55を参照しながら行なうS151における自己位置の推定は、例えば非特許文献2における方法等、公知の方法を用いて行う。
【0048】
演算処理装置3は、自己位置推定部35により推定された自己位置によりゴールに到着したか否かを判別し(S151)、ゴールに到着した場合には(S151:YES)、処理を終了する。ゴールに到着していない場合には(S151:NO)、演算処理装置3は処理をS152に進める。
【0049】
移動経路計画部39は、自己位置推定部35が推定した自己位置に基づき、移動経路を計画する。移動位置予測部37は、自己位置推定部35が推定した自己位置と、移動経路計画部39で計画された移動経路とから、一定時間後(例えば100ミリ秒後)のロボット1の予測位置を算出する(S152)。
【0050】
方向距離計算部41は、ランドマークLMの識別情報ID=1とする(S153)。方向距離計算部41は、S152で計算された予測位置へのランドマークLMiからの観測方向ベクトル(dxa(i)、dya(i)、dza(i))を算出する。方向距離計算部41は、ランドマークLMiから代表位置への観測方向ベクトル(dx(i)、dy(i)、dz(i))と、予測位置への観測方向ベクトル(dxa(i)、dya(i)、dza(i))とから、角度差φ(i)を計算する(S154)。角度差φ(i)は、以下の式で算出する。
φ(i)=arccos(dx(i)・dxa(i)+dy(i)・dya(i)+dz(i)・dza(i))
・・・式201
また、方向距離計算部41は、ランドマークLMiの代表位置(xr(i)、yr(i))からの観測距離d(i)と予測位置からの観測距離da(i)とから距離差δ(i)を計算する(S155)。
【0051】
観測尤度計算部43は、S154、S155で算出された角度差φ(i)と距離差δ(i)とから、観測尤度ρ(i)を決定する。観測尤度ρ(i)は、例えば以下の式202のようにφ(i)とδ(i)とが小さいほど尤度が大きくなる観測モデルを用いる。以下の式で算出する。ここで、σ1、σ2は係数である。
【0052】
【数1】

【0053】
観測尤度計算部43は、i=i+1とし(S157)、i>Iとなるまで、S154からS157の処理を繰り返す(S158:NO)。i>Iとなると(S158)、演算処理装置3は、処理をS159に進める。S159では、視野内ランドマーク抽出部45は、m=1とし、記憶部15においてパンチルト角度リストを参照する(S159)。
【0054】
図8は、パンチルト角度リストの一例を示す図である。上述したように、第1の実施の形態によるロボット1においては、ステレオカメラ5は、z軸に垂直な平面の方向にのみ角度を変化させており(パン角度)、y軸に垂直な平面の方向のチルト角度はゼロに設定している。図8の例では、m=1〜5に対応してパン角度=−0.52〜0.52(rad)の5段階の角度が設定されている。
【0055】
視野内ランドマーク抽出部45は、各mに対応してパン角度を変化させ、それぞれのパン角度で視野内に入るランドマークLM(以下、視野内ランドマークという)を抽出し、ランドマークIDリストΩを生成する(S160)。また、視野内ランドマークが観察される観測角度を算出する。観測角度とは、予測位置へのランドマークLMからの観測方向ベクトルのxy平面への投影成分が、ロボット1の正面方向となす鋭角である。
【0056】
図9は、リストΩの一例を示す図である。図9に示すように、リストΩの一例184は、例えばm=1のときには、ランドマークLM2、ランドマークLM3が観測されていることを示している。m=2のときには、ランドマークLM1、ランドマークLM2が観測され、m=3、4のときには、ランドマークLM1が観測されている。m=5のときには、ランドマークLM4、ランドマークLM5が観測されている。
【0057】
観測評価部47は、それぞれのパン角度pにおける視野内ランドマークについて、それぞれ上述の観測尤度ρ(i)の総和と、観測角度の標準偏差を算出する。観測評価部47は、算出された観測尤度ρ(i)の総和と、観測角度の標準偏差から、評価値P(p、t)を算出する。
【0058】
例えば評価値としては、α、βを係数として以下の式が適用可能である。
評価値P(p、t)
=α(係数)×(抽出されたランドマークLMの観測尤度ρ(i)の総和)
+β(係数)×(抽出されたランドマークLMの観測角度の標準偏差)
・・・式203
【0059】
続いて観測評価部47は、m=m+1と置き換え(S162)、m>M(Mは、パンチルト角度を変化させる種類の数)となるまで(S163:NO)、S160からS162の処理を繰り返す。m>Mとなると(S163:YES)、観測評価部47は、評価値P(p、t)が最大となるパンチルト角度p、t(パン角度pおよびチルト角度tの総称であり、本実施の形態においては、t=0)を求める。
【0060】
なお、抽出されたランドマークLMの観測尤度ρ(i)の総和が高いほど評価値P(p、t)が高く、抽出されたランドマークLMの観測角度の標準偏差が大きいほど評価値P(p、t)が高い。
【0061】
このように、評価値P(p、t)が最大となるパン角度pとチルト角度tの組み合わせを求めることでステレオカメラ5のパン角度pとチルト角度tを決定する。カメラ制御部49は、求めた角度にパンチルト制御部9がステレオカメラ5の角度を制御するように信号を出力する。
【0062】
以下、図10、11を参照しながら、具体的な評価値P(p、t)の算出例について説明する。図10は、ロボット1およびランドマークLMの位置関係の一例を示す図であり、図11は、評価値P(p、t)の算出例を示す図である。
【0063】
図10に示すように、ロボット1の現在位置は、例えばxyz座標系における位置(0.0、0.0、1.0)であるとする。このとき、ランドマークLM1(4.5、1.2、1.0)、ランドマークLM2(5.0、−0.6)、ランドマークLM3(3.5、−1.0、1.0)、ランドマークLM4(4.0、3.9、1.0)、ランドマークLM5(3.5、3.6、1.0)が存在しているとする。
【0064】
図11に示すように、移動位置予測部37は、図10の状態から所定時間後のロボット1の予測位置を位置(1.0、1.0、1.0)であると算出したとする。この位置で、方向距離計算部41は、それぞれのランドマークLMi(i=1〜5)について、上述のように角度差φ(i)および距離差δ(i)を算出する。また、方向距離計算部41は、それぞれのランドマークの観測角度を算出する。
【0065】
観測尤度計算部43は、算出した角度差φ(i)および距離差δ(i)に基づき、それぞれのランドマークLMi(i=1〜5)について、上述のように観測尤度ρ(i)を算出する。
【0066】
一例として、式202のパラメータを、σ1=1.0、σ2=0.2、式204のパラメータを、α=β=0.5とする。このとき、式201および式202から、ランドマークLM1〜ランドマークLM5の観測尤度および観測角度は以下のように算出される。
ランドマークLM1:観測尤度 0.244、観測角度=0.057(rad)
ランドマークLM2:観測尤度 0.260、観測角度=−0.381(rad)
ランドマークLM3:観測尤度 0.101、観測角度=−0.675(rad)
ランドマークLM4:観測尤度 0.293、観測角度=0.768(rad)
ランドマークLM5:観測尤度 0.293、観測角度=0.805(rad)
このとき、上記各ランドマークの観測尤度、観測角度に基づき式203を用いて、評価値P(p、t)を算出する。
【0067】
視野内ランドマーク抽出部45は、図8に示すm=1〜5に対応するパンチルト角度にステレオカメラ5を設定した場合について、視野内ランドマークを検出する。例えば図11は、m=1(p=0.52(rad)、t=0.00(rad))とした場合を示している。このとき、視野内ランドマークは、ランドマークLM2、ランドマークLM3である。以下、視野内ランドマーク抽出部45は、m=2〜5について、同様の処理を繰り返す。観測評価部47は、図8に示すm=1〜5に対応する評価値P(p、t)を算出する。
【0068】
1)m=1のとき(p=0.52(rad)、t=0.00(rad))
観測されるランドマーク:ランドマークLM2、LM3
このとき、評価値P(0.52、0)
=α×(ρ(2)+ρ(3))+β×標準偏差(−0.381、−0.675))
=0.5×0.361+0.5×0.147
=0.254
【0069】
2)m=2のとき(p=0.26(rad)、t=0.00(rad))
観測されるランドマーク:ランドマークLM1、LM2
評価値P(0.26、0)=0.362
【0070】
3)m=3のとき(p=0.0(rad)、t=0.00(rad))
観測されるランドマーク:ランドマークLM1
評価値P(0.0、0.0)=0.122
【0071】
4)m=4のとき(p=−0.26(rad)、t=0.00(rad))
観測されるランドマーク:ランドマークLM1
評価値P(−0.26、0)=0.122
【0072】
5)m=5のとき(p=−0.52(rad)、t=0.00(rad))
観測されるランドマーク:ランドマークLM4、LM5
評価値P(−0.52、0)=0.302
【0073】
以上のように、観測評価部47は、m=1〜5についてそれぞれ算出した評価値P(p、t)が最大となるパンチルト角度を判別する。上記の例では、m=2のときが最大である。よって求めるパンチルト角は、p=0.26(rad)、t=0.00(rad)となる。カメラ制御部49は、ステレオカメラ5を、求めたパンチルト角になるように制御するための信号をパンチルト制御部9に出力する。パンチルト制御部9は、求めたパンチルト角になるようにステレオカメラ5を設定して自律移動を継続する。
【0074】
以上詳細に説明したように、第1の実施の形態によるロボット1の地図生成部33は、利用する経路のランドマーク地図55を生成する。このとき、ランドマークLMの識別情報IDと、その3次元位置(xl(i)、yl(i)、zl(i))、および、ランドマークLMが観測された際のロボット1の代表位置姿勢(xr(j)、yr(j)、θr(j))が算出される。
【0075】
ロボット1の自律移動時には、移動位置予測部37は所定時間後の自己位置を予測して予測位置を算出する。方向距離計算部41は、各ランドマークLMiから予測位置への方向ベクトルと、ランドマークLMiから代表位置への方向ベクトルとの角度差φ(i)、距離差δ(i)を算出する。観測尤度計算部43は、各ランドマークLMの観測尤度ρ(i)を、角度差φ(i)、距離差δ(i)に基づいて算出する。視野内ランドマーク抽出部45は、視野内のランドマークLMを抽出し、それぞれのランドマークLMの観測角度を抽出する。観測評価部47は、視野内のランドマークLMの観測尤度ρ(i)および観測角度の分散に基づき評価値P(p、t)を算出する。算出した評価値P(p、t)が最も大きいパン角度を、ステレオカメラ5の設定角度として設定し、その状態で撮影されるステレオ画像およびランドマーク地図55に基づき自己位置を推定する。
【0076】
以上のように、第1の実施の形態によるロボット1によれば、自律移動の際には、生成されたランドマーク地図55と自律移動時に検出したランドマークLMとを照合して自己位置の推定を行うことができる。また、ランドマーク地図55に登録した時のロボット1の代表位置姿勢と自律移動中の現在のロボット1の位置姿勢情報とから、個々のランドマークが観測できるかを示す観測尤度ρ(i)とランドマークの観測角度の標準偏差(分散)との2つの指標を決定する。そして、これら組み合わせて評価値Pにより評価することで、いろいろな方向にあるランドマークをなるべく多く検出できるように、ステレオカメラ5の方向を決定することができる。よって、より正確に自己位置を推定可能なロボット1が提供される。
【0077】
また、検出されるランドマークLMの数が多くても、ランドマークLMが固まって存在する場合には、自己位置推定精度は良くない。しかし、上記のように、第1の実施の形態においては、評価値P(p、t)として個々のランドマークLMが観測できるか否かを示す観測尤度ρ(i)と、ランドマークLMの観測角度の標準偏差を組み合わせた指標を用いている。そして、近接したランドマークLMのみである場合には評価値P(p、t)を小さくようにすることにより、近接したランドマークLMが多いか否かの要因を評価することが可能となる。よって、ランドマークが近接して存在するケースを、自己位置推定精度が悪くなり、観測には適していないケースであると判断することが可能となる効果を生み出している。このように、多くのランドマークLMを観測可能とすることにより、ランドマークLMを見る位置が代表位置とは異なる場合にも、正確に自己位置推定を行うことが可能になる。
【0078】
(第2の実施の形態)
以下、図12および図13を参照しながら、第2の実施の形態によるロボット300について説明する。第2の実施の形態において、第1の実施の形態と同様の構成および動作については、同一の符号を付し、重複説明は省略する。
【0079】
第2の実施の形態は、ランドマークLMが人等の障害物により遮蔽された場合の対応を含む例である。第2の実施の形態においては、検出した障害物がランドマークを遮蔽するか否かを評価することで、障害物による遮蔽を考慮してステレオカメラ5の方向を決定する。
【0080】
図12は、第2の実施の形態によるロボット300の機能を示すブロック図である。ロボット300は、ロボット1に加え、人障害物検出部51および遮蔽評価部53を備えている。図12に示すように、人障害物検出部51は、ステレオカメラ5の視野内にある障害物を検出し、検出した障害物を円柱モデルに近似し、位置を計算する。遮蔽評価部53は、検出された障害物が、ランドマークLMを遮蔽しているか否か評価する。
【0081】
以下、図13を参照しながらロボット300の処理を説明するが、図13のフローチャートのS150〜S164は、第1の実施の形態による図7のフローチャートと同様であるので、説明を省略する。第2の実施の形態においては、ステレオカメラ5で撮影されたステレオ画像において、人障害物検出部51が、人障害物の位置と速度をパターン識別と3次元計測とを用いて検出して、円柱モデルに近似する(S170)。
【0082】
さらに、人障害物検出部51は、現在から所定時間後のロボット300の予測位置から見た人障害物の位置を、S170で検出した位置と速度から計算する(S171)。視野内ランドマーク抽出部45がパンチルト角度を確定すると、遮蔽評価部53は、検出した人障害物を近似した3次元モデルを、ステレオカメラ5の画像に投影する(S172)。
【0083】
視野内ランドマーク抽出部45が、ステレオカメラ5の視野内に入るランドマークLMのリストΩを作成すると、遮蔽評価部53は、各ランドマークLMをステレオカメラ5の画像面に投影して遮蔽を判定し、遮蔽されていると判定されると、リストΩから削除する(S173)。
【0084】
ロボット300は、遮蔽されたランドマークLMが削除されたリストΩに基づき、評価値P(p、t)を算出することにより、最適なパンチルト角度p、tを求め、ステレオカメラ5を制御する。
【0085】
以上説明したように、第2の実施の形態によるロボット300は、自律移動時に、ステレオカメラ5によるステレオ画像を用いてパターン認識と3次元計測を行って人障害物の位置とその速度を検出し、人障害物を円柱モデルで近似する。人障害物検出部51は、現在から所定時間後の予測したロボット300の位置における、ロボット300から見た障害物の位置を、人障害物の位置と速度から計算する。
【0086】
遮蔽評価部53は、リストΩにある各パン角度とチルト角度との組み合わせに対して、人障害物を画像上に投影し、遮蔽されるランドマークLMを視野内ランドマークのリストΩから削除する。観測評価部47は、遮蔽されたランドマークLMが削除されたリストΩに基づいて最適なパンチルト角を求め、カメラ制御部49は、求めたパンチルト角にステレオカメラ5を制御するための信号を出力する。
【0087】
以上説明したように、第2の実施の形態によるロボット300によれば、第1の実施の形態によるロボット1による効果に加え、障害物によりランドマークが遮蔽されている場合にも、視野内にランドマークを多く観測できる注視方向の決定が可能となる。この結果、ランドマークが見えずに自己位置推定の精度が悪化するのを防止することで、自律移動のロバスト性が高まる。よって、障害物がある場合にも、正確な自己位置推定が可能となる。
【0088】
上記第1および第2の実施の形態において、ロボット1は、自己位置推定装置の一例であり、ステレオカメラ5は、撮影部の一例であり、ランドマーク抽出部31は、距離算出部、および検出部の一例である。地図生成部33は、代表算出部の一例であり、方向距離計算部41は、ランドマーク位置取得部の一例であり、観測評価部47は、撮影角度変更部の一例であり、カメラ制御部49は、撮影制御部の一例である。また、人障害物位置検出部51は、障害物位置検出部の一例である。
【0089】
なお、本発明は、以上に述べた実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の構成または実施形態を採ることができる。
例えば、上記第1または第2の実施の形態においては、ステレオカメラ5は、2つのカメラ5A、5Bを有した構成としたが、1台のカメラと、距離計を備えるようにしてもよい。このとき、距離計としては、例えば2次元的にスキャンが可能なレーザによる距離計を用いることができる。上記第1および第2の実施の形態においては、チルト角度tはゼロとしたが、任意の角度に設定するようにしてもよい。また、ランドマークLMの数、パン角度pの種類は上記に限定されない。
【0090】
上記第1および第2の実施の形態において、観測尤度と観測角度の分散とを組み合わせて評価する評価値の算出方法は一例であり、他の方法による評価でもよい。観測尤度は、予測位置におけるランドマークの観測確率を反映した値であればよく、算出方法は上記に限定されない。さらに、観測角度を評価するために標準偏差を用いたが、分散が評価できるものであればこれに限定されない。
【0091】
ここで、上記第1および第2の実施の形態による自己位置推定処理の動作をコンピュータに行わせるために共通に適用されるコンピュータの例について説明する。図14は、標準的なコンピュータのハードウエア構成の一例を示すブロック図である。図14に示すように、コンピュータ400は、Central Processing Unit(CPU)402、メモリ404、入力装置406、出力装置408、外部記憶装置412、媒体駆動装置414、ネットワーク接続装置等がバス410を介して接続されている。
【0092】
CPU402は、コンピュータ400全体の動作を制御する演算処理装置である。メモリ404は、コンピュータ400の動作を制御するプログラムを予め記憶したり、プログラムを実行する際に必要に応じて作業領域として使用したりするための記憶部である。メモリ404は、例えばRandom Access Memory(RAM)、Read Only Memory(ROM)等である。入力装置406は、コンピュータの使用者により操作されると、その操作内容に対応付けられている使用者からの各種情報の入力を取得し、取得した入力情報をCPU402に送付する装置であり、例えばキーボード装置、マウス装置などである。出力装置408は、コンピュータ400による処理結果を出力する装置であり、表示装置などが含まれる。例えば表示装置は、CPU402により送付される表示データに応じてテキストや画像を表示する。
【0093】
外部記憶装置412は、例えば、ハードディスクなどの記憶装置であり、CPU402により実行される各種制御プログラムや、取得したデータ等を記憶しておく装置である。媒体駆動装置414は、可搬記録媒体416に書き込みおよび読み出しを行うための装置である。CPU402は、可搬型記録媒体416に記録されている所定の制御プログラムを、記録媒体駆動装置414を介して読み出して実行することによって、各種の制御処理を行うようにすることもできる。可搬記録媒体416は、例えばConpact Disc(CD)−ROM、Digital Versatile Disc(DVD)、Universal Serial Bus(USB)メモリ等である。
【0094】
上記第1および第2の実施の形態による自己位置推定方法をコンピュータに実行させるプログラムは、例えば外部記憶装置412に記憶させる。CPU402は、外部記憶装置412からプログラムを読み出し、コンピュータ400に自己位置推定の動作を行なわせる。このとき、まず、自己位置推定の処理をCPU402に行わせるための制御プログラムを作成して外部記憶装置412に記憶させておく。そして、入力装置406から所定の指示をCPU402に与えて、この制御プログラムを外部記憶装置412から読み出させて実行させるようにする。また、このプログラムは、可搬記録媒体416に記憶するようにしてもよい。
【0095】
以上の実施形態に関し、さらに以下の付記を開示する。
(付記1)
自己位置を推定する自己位置推定装置であって、
複数のランドマークの内の少なくとも一つのランドマークの画像を含む画像を撮影する画像取得部と、
前記自己位置推定装置から前記少なくとも一つのランドマークまでの距離を算出する距離算出部と、
前記少なくとも一つのランドマークの3次元位置を取得するランドマーク位置取得部と、
前記画像、前記距離、および前記少なくとも一つのランドマークの位置に基づき前記自己位置推定装置の自己位置を推定する自己位置推定部と、
前記自己位置推定部により推定された自己位置に基づき前記自己位置推定装置の移動時の将来の予測位置を算出する移動位置予測部と、
前記予測位置において前記少なくとも一つのランドマークが観測される観測尤度を算出する観測尤度計算部と、
前記予測位置において前記画像が撮影される際の撮影角度に応じて観測される前記少なくとも一つのランドマークのうちの視野内ランドマークを抽出するとともに、それぞれの前記視野内ランドマークの観測角度を算出する視野内ランドマーク抽出部と、
抽出された前記視野内ランドマークの前記観測尤度と前記観測角度とに応じて前記撮影部の撮影角度を変更する撮影角度変更部と、
変更後の前記撮影角度で前記画像が撮影されるように撮影を制御する撮影制御部と、
を有し、
前記自己位置推定部は、変更後の前記撮影角度で撮影された画像と前記ランドマーク位置取得部により取得される前記少なくとも一つのランドマークの位置とに基づき前記自己位置推定装置の現在位置を更新することを特徴とする自己位置推定装置。
(付記2)
前記ランドマーク位置取得部が取得した前記位置に前記ランドマークが観測された際の前記自己位置推定装置の位置を代表して対応付けられた代表位置を取得し、
前記位置および前記代表位置に基づき、前記少なくとも一つのランドマークからそれぞれの前記代表位置への第1の観測方向と第1の観測距離とを計算するとともに、
推定された前記自己位置に基づき前記自己位置推定装置の移動時の将来の予測位置を算出し、それぞれの前記少なくとも一つのランドマークから前記予測位置への第2の観測方向と第2の観測距離とを計算する方向距離計算部、
をさらに有し、
前記観測尤度計算部は、前記第1の観測方向と前記第2の観測方向との角度差と、前記第1の観測距離と前記第2の観測距離との距離差とに基づき、前記視野内ランドマークの各々に関して観測尤度を算出することを特徴とする付記1に記載の自己位置推定装置。
(付記3)
取得された前記画像および算出された前記距離に基づき、前記少なくとも一つのランドマークの位置を検出する検出部と、
前記少なくとも一つのランドマークを検出した際の前記自己位置推定装置の位置を代表する代表位置を前記少なくともひとつのランドマークのそれぞれについて算出する代表算出部と、
をさらに有することを特徴とする付記2に記載の自己位置推定装置。
(付記4)
前記撮影角度変更部は、前記撮影角度において撮影された画像おける前記視野内ランドマークの前記観測尤度の総和と、前記観測角度の分散とに基づき前記評価値を算出することを特徴とする付記1から付記3のいずれかに記載の自己位置推定装置。
(付記5)
障害物の位置を検出する障害物位置検出部と、
前記予測位置において前記障害物が前記少なくとも一つのランドマークを遮蔽するか否かを判別する遮蔽評価部と、
前記遮蔽評価部が、前記障害物が前記少なくとも一つのランドマークを遮蔽すると判別すると、前記抽出部は、抽出した前記視野内ランドマークから遮蔽される前記ランドマークを削除することを特徴とする付記1から付記4のいずれかに記載の自己位置推定装置。
(付記6)
前記遮蔽評価部は、前記障害物をモデル化し、前記撮影角度で撮影された画像において、前記モデル化された障害物が前記少なくとも一つのランドマークを遮蔽するか否かを判別することを特徴とする付記4に記載の自己位置推定装置。
(付記7)
複数のランドマーク内の少なくとも一つのランドマークの画像を含む画像を取得し、
自己位置推定装置から前記少なくとも一つのランドマークまでの距離を算出し、
前記少なくとも一つのランドマークの位置を取得し、
前記取得された画像、前記算出された距離、および前記取得された前記少なくとも一つのランドマークの位置に基づき自己位置を推定し、
前記推定された自己位置に基づき移動時の将来の予測位置を算出し、
前記予測位置において前記少なくとも一つのランドマークが観測される観測尤度を算出し、
前記予測位置において画像が撮影される撮影角度に応じて観測される前記少なくとも一つのランドマークのうちの視野内ランドマークを抽出するとともに、それぞれの前記視野内ランドマークの観測角度を算出し、
抽出された前記視野内ランドマークの前記観測尤度と前記観測角度とに応じて前記撮影角度を変更し、
変更後の前記撮影角度で前記画像が撮影されるように撮影を制御し、
変更後の前記撮影角度で撮影された画像と取得された前記少なくとも一つのランドマークの位置とに基づき前記自己位置推定装置の現在位置を更新することを特徴とする自己位置推定方法。
(付記8)
前記少なくとも一つのランドマークが観測された際の前記自己位置推定装置の代表位置を取得し、
前記位置および前記代表位置に基づき、前記少なくとも一つのランドマークからそれぞれの前記代表位置への第1の観測方向と第1の観測距離とを計算するとともに、
推定された前記自己位置に基づき前記自己位置推定装置の移動時の将来の予測位置を算出し、それぞれの前記少なくとも一つのランドマークから前記予測位置への第2の観測方向と第2の観測距離とを計算し、
前記第1の観測方向と前記第2の観測方向との角度差と、前記第1の観測距離と前記第2の観測距離との距離差とに基づき、前記視野内ランドマークの各々に関して観測尤度を算出することを特徴とする付記7に記載の自己位置推定方法。
(付記9)
取得された前記画像および算出された前記距離に基づき、前記少なくとも一つのランドマークの位置を検出し、
前記少なくとも一つのランドマークを検出した際の前記自己位置推定装置の位置を代表する代表位置を前記少なくともひとつのランドマークのそれぞれについて算出する、
ことを特徴とする付記8に記載の自己位置推定方法。
(付記10)
前記評価値は、前記視野内ランドマークの前記観測尤度の総和と、前記観測角度の分散とに基づき算出されることを特徴とする付記7から付記9のいずれかに記載の自己位置推定方法。
(付記11)
障害物の位置を検出し、
前記予測位置において前記障害物が前記少なくとも一つのランドマークを遮蔽するか否かを判別し、
前記障害物が前記少なくとも一つのランドマークを遮蔽すると判別されると、抽出した前記視野内ランドマークから遮蔽される前記ランドマークを削除することを特徴とする付記6から付記9のいずれかに記載の自己位置推定方法。
(付記12)
複数のランドマーク内の少なくとも一つのランドマークの画像を含む画像を取得し、
自己位置推定装置から前記少なくとも一つのランドマークまでの距離を算出し、
前記少なくとも一つのランドマークの位置を取得し、
前記取得された画像、前記算出された距離、および前記取得された前記少なくとも一つのランドマークの位置に基づき自己位置を推定し、
前記推定された自己位置に基づき移動時の将来の予測位置を算出し、
前記予測位置において前記少なくとも一つのランドマークが観測される観測尤度を算出し、
前記予測位置において画像が撮影される撮影角度に応じて観測される前記少なくとも一つのランドマークのうちの視野内ランドマークを抽出するとともに、それぞれの前記視野内ランドマークの観測角度を算出し、
抽出された前記視野内ランドマークの前記観測尤度と前記観測角度とに応じて前記撮影角度を変更し、
変更後の前記撮影角度で前記画像が撮影されるように撮影を制御し、
変更後の前記撮影角度で撮影された画像と取得された前記少なくとも一つのランドマークの位置とに基づき前記自己位置推定装置の現在位置を更新する処理をコンピュータに実行させることを特徴とするプログラム。
(付記13)
前記少なくとも一つのランドマークが観測された際の前記自己位置推定装置の代表位置を取得し、
前記位置および前記代表位置に基づき、前記少なくとも一つのランドマークからそれぞれの前記代表位置への第1の観測方向と第1の観測距離とを計算するとともに、
推定された前記自己位置に基づき前記自己位置推定装置の移動時の将来の予測位置を算出し、それぞれの前記少なくとも一つのランドマークから前記予測位置への第2の観測方向と第2の観測距離とを計算し、
前記第1の観測方向と前記第2の観測方向との角度差と、前記第1の観測距離と前記第2の観測距離との距離差とに基づき、前記視野内ランドマークの各々に関して観測尤度を算出することを特徴とする付記12に記載のプログラム。
(付記14)
取得された前記画像および算出された前記距離に基づき、前記少なくとも一つのランドマークの位置を検出し、
前記少なくとも一つのランドマークを検出した際の前記自己位置推定装置の位置を代表する代表位置を前記少なくともひとつのランドマークのそれぞれについて算出することを特徴とする付記13に記載のプログラム。
(付記15)
前記評価値は、前記視野内ランドマークの前記観測尤度の総和と、前記観測角度の分散とに基づき算出されることを特徴とする付記12から付記14のいずれかに記載のプログラム。
【符号の説明】
【0096】
1 ロボット
3 演算処理装置
5 ステレオカメラ
7 パンチルトモータ
9 パンチルト制御部
11 車輪制御部
13 車輪モータ
15 記憶部
17 本体
19 車輪
31 ランドマーク抽出部
33 地図生成部
35 自己位置推定部
37 移動位置予測部
39 移動経路計画部
41 方向距離計算部
43 観測尤度計算部
45 視野内ランドマーク抽出部
47 観測評価部
49 カメラ制御部
51 人障害物検出部
53 遮蔽評価部
55 ランドマーク地図

【特許請求の範囲】
【請求項1】
自己位置を推定する自己位置推定装置であって、
複数のランドマークの内の少なくとも一つのランドマークの画像を含む画像を撮影する撮影部と、
前記自己位置推定装置から前記少なくとも一つのランドマークまでの距離を算出する距離算出部と、
前記少なくとも一つのランドマークの位置を取得するランドマーク位置取得部と、
前記画像、前記距離、および前記少なくとも一つのランドマークの位置に基づき前記自己位置推定装置の自己位置を推定する自己位置推定部と、
前記自己位置推定部により推定された自己位置に基づき前記自己位置推定装置の移動時の将来の予測位置を算出する移動位置予測部と、
前記予測位置において前記少なくとも一つのランドマークが観測される観測尤度を算出する観測尤度計算部と、
前記予測位置において前記画像が撮影される際の撮影角度に応じて観測される前記少なくとも一つのランドマークのうちの視野内ランドマークを抽出するとともに、それぞれの前記視野内ランドマークの観測角度を算出する視野内ランドマーク抽出部と、
抽出された前記視野内ランドマークの前記観測尤度と前記観測角度とに応じて前記撮影部の撮影角度を変更する撮影角度変更部と、
変更後の前記撮影角度で前記画像が撮影されるように撮影を制御する撮影制御部と、
を有し、
前記自己位置推定部は、変更後の前記撮影角度で撮影された画像と前記ランドマーク位置取得部により取得される前記少なくとも一つのランドマークの位置とに基づき前記自己位置推定装置の現在位置を更新することを特徴とする自己位置推定装置。
【請求項2】
前記ランドマーク位置取得部が取得した前記位置に前記ランドマークが観測された際の前記自己位置推定装置の位置を代表して対応付けられた代表位置を取得し、
前記位置および前記代表位置に基づき、前記少なくとも一つのランドマークからそれぞれの前記代表位置への第1の観測方向と第1の観測距離とを計算するとともに、
推定された前記自己位置に基づき前記自己位置推定装置の移動時の将来の予測位置を算出し、それぞれの前記少なくとも一つのランドマークから前記予測位置への第2の観測方向と第2の観測距離とを計算する方向距離計算部、
をさらに有し、
前記観測尤度計算部は、前記第1の観測方向と前記第2の観測方向との角度差と、前記第1の観測距離と前記第2の観測距離との距離差とに基づき、前記視野内ランドマークの各々に関して観測尤度を算出することを特徴とする請求項1に記載の自己位置推定装置。
【請求項3】
取得された前記画像および算出された前記距離に基づき、前記少なくとも一つのランドマークの位置を検出する検出部と、
前記少なくとも一つのランドマークを検出した際の前記自己位置推定装置の位置を代表する代表位置を前記少なくともひとつのランドマークのそれぞれについて算出する代表算出部と、
をさらに有することを特徴とする請求項2に記載の自己位置推定装置。
【請求項4】
前記撮影角度変更部は、前記撮影角度において撮影された画像おける前記視野内ランドマークの前記観測尤度の総和と、前記観測角度の分散とに基づき前記評価値を算出することを特徴とする請求項1から請求項3のいずれかに記載の自己位置推定装置。
【請求項5】
障害物の位置を検出する障害物位置検出部と、
前記予測位置において前記障害物が前記少なくとも一つのランドマークを遮蔽するか否かを判別する遮蔽評価部と、
前記遮蔽評価部が、前記障害物が前記少なくとも一つのランドマークを遮蔽すると判別すると、前記抽出部は、抽出した前記視野内ランドマークから遮蔽される前記ランドマークを削除することを特徴とする請求項1から請求項4のいずれかに記載の自己位置推定装置。
【請求項6】
前記遮蔽評価部は、前記障害物をモデル化し、前記撮影角度で撮影された画像において、前記モデル化された障害物が前記少なくとも一つのランドマークを遮蔽するか否かを判別することを特徴とする請求項4に記載の自己位置推定装置。
【請求項7】
複数のランドマーク内の少なくとも一つのランドマークの画像を含む画像を取得し、
自己位置推定装置から前記少なくとも一つのランドマークまでの距離を算出し、
前記少なくとも一つのランドマークの位置を取得し、
前記取得された画像、前記算出された距離、および前記取得された前記少なくとも一つのランドマークの位置に基づき自己位置を推定し、
前記推定された自己位置に基づき移動時の将来の予測位置を算出し、
前記予測位置において前記少なくとも一つのランドマークが観測される観測尤度を算出し、
前記予測位置において画像が撮影される撮影角度に応じて観測される前記少なくとも一つのランドマークのうちの視野内ランドマークを抽出するとともに、それぞれの前記視野内ランドマークの観測角度を算出し、
抽出された前記視野内ランドマークの前記観測尤度と前記観測角度とに応じて前記撮影角度を変更し
変更後の前記撮影角度で前記画像が撮影されるように撮影を制御し、
変更後の前記撮影角度で撮影された画像と取得された前記少なくとも一つのランドマークの位置とに基づき前記自己位置推定装置の現在位置を更新することを特徴とする自己位置推定方法。
【請求項8】
複数のランドマーク内の少なくとも一つのランドマークの画像を含む画像を取得し、
自己位置推定装置から前記少なくとも一つのランドマークまでの距離を算出し、
前記少なくとも一つのランドマークの位置を取得し、
前記取得された画像、前記算出された距離、および前記取得された前記少なくとも一つのランドマークの位置に基づき自己位置を推定し、
前記推定された自己位置に基づき移動時の将来の予測位置を算出し、
前記予測位置において前記少なくとも一つのランドマークが観測される観測尤度を算出し、
前記予測位置において画像が撮影される撮影角度に応じて観測される前記少なくとも一つのランドマークのうちの視野内ランドマークを抽出するとともに、それぞれの前記視野内ランドマークの観測角度を算出し、
抽出された前記視野内ランドマークの前記観測尤度と前記観測角度とに応じて前記撮影角度を変更し
変更後の前記撮影角度で前記画像が撮影されるように撮影を制御し、
変更後の前記撮影角度で撮影された画像と取得された前記少なくとも一つのランドマークの位置とに基づき前記自己位置推定装置の現在位置を更新する処理をコンピュータに実行させることを特徴とするプログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2013−25401(P2013−25401A)
【公開日】平成25年2月4日(2013.2.4)
【国際特許分類】
【出願番号】特願2011−157099(P2011−157099)
【出願日】平成23年7月15日(2011.7.15)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成23年度、独立行政法人新エネルギー・産業技術総合開発機構、「次世代ロボット知能化技術開発プロジェクト 移動知能(サービス産業分野)の開発 動的視覚認識に基づく移動知能モジュール群の研究開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000005223)富士通株式会社 (25,993)
【Fターム(参考)】