説明

複数のシフトレールを制御するための液圧アッセンブリ

本発明は、トランスミッション、特にツインクラッチ式のトランスミッションの複数のシフトレール(3,5,7,9)を制御可能な液圧アッセンブリ(1)であって、シフトレール毎に、それぞれのシフトレールを往復移動可能に制御可能な複動型のシリンダ(11,13,15,17)を備える液圧アッセンブリに関する。液圧アッセンブリの改良された制御を可能にするために、複数のシフトレールの上流に接続され、第1の出口(37)及び第2の出口(39)を備える、シフトレールを制御するための第1の切換圧及び第2の切換圧を形成可能な第1の液圧装置(33)と、第1の液圧装置とシフトレールのうちの2つのシフトレール(3,5)との間に接続される、選択的に2つのシフトレールの複動型のシリンダ(11,13)の一方に第1の液圧装置の第1の出口を、かつ2つのシフトレールの他方の複動型のシリンダ(13)に第1の液圧装置の第2の出口を割り当て可能であり、かつ選択的に交差させて割り当て可能な第2の液圧装置(41)と、が設けられている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、トランスミッション、特にツインクラッチ式のトランスミッションの複数のシフトレールを制御可能な液圧アッセンブリであって、シフトレール毎に、それぞれのシフトレールを往復移動可能に制御可能な複動型のシリンダを備える、液圧アッセンブリに関する。
【0002】
トランスミッションを液圧式に制御し、液圧を供給するための液圧アッセンブリは、公知である。
【0003】
液圧式の制御部、すなわちアクチュエータ制御部、例えばクラッチアクチュエータ制御部又はシフトアクチュエータ制御部と、冷却/潤滑油供給部とを備えるオートマチックトランスミッション、例えば有段式のオートマチックトランスミッション、CVT型のトランスミッション又はツインクラッチ式のトランスミッションにおいては、オイル供給部(大抵の場合、ポンプ駆動装置を備えるポンプ)が必要である。
【0004】
大抵の場合、ポンプ駆動装置は、内燃機関に連結されている機械式のポンプ駆動装置である。昨今のトランスミッションにおいては、これらの機械式のポンプ駆動装置は、電動ポンプアッセンブリ(すなわち、ポンプを備える電動モータ)によって補足されている場合がある。
【0005】
さらに、トランスミッション/クラッチアクチュエータのために、機械式に駆動されるポンプなしで済ませるオイル供給部が公知である。しかし、この場合は、クラッチの構造形態(すなわち、乾式クラッチ)に基づいて、冷却油の必要性は生じない。
【0006】
ツインクラッチ式のトランスミッションでは、ギヤ段を入れたり外したりするために、いわゆるシフトレールが使用される。これらのシフトレールは、その機能を充足するために、すなわちギヤ段を入れるために、軸線に沿って両方向で移動可能でなければならない。この移動は、例えば液圧式のアクチュエータにより実施可能である。液圧式のアクチュエータは、適当に液圧式に制御されなければならない。シフトレールは、実施可能なストロークの中央にニュートラル位置を有し、ストロークのそれぞれの終端近傍に、あるギヤ段のためのシフト位置を有していることができる。
【0007】
シフトレールの移動のための上述の液圧式のアクチュエータは、単動型のシリンダ又は複動型のシリンダとして形成可能である。シフトレール毎に、シリンダ内に形成されている2つの液圧式の作用面が必要とされる。シフトレール毎の液圧式の作用面は、同じ大きさであるか、又はそれぞれ異なる大きさである場合がある。面積のコンセプト次第で、種々異なる液圧式の制御が必要である。その際、液圧式の作用面は、2つの独立したシリンダ内にか、又は1つの複動型のシリンダ内に配置可能である。
【0008】
しかし、トランスミッションアクチュエータあるいはシフトレールによる部分トランスミッションの制御時に生じる運転状態は、極めて多様である。高い所要体積流量及び低い所要圧力を伴う状況もあれば、高い所要圧力及び低い所要体積流量を伴う状況もある。すなわち、シフト動作時、まず大きなストロークが低圧(すなわち、低圧での高い体積流量)で実施され、同期の開始からギヤ段を入れる直前に極小さなストロークがより高い抵抗(すなわち、高圧での低い体積流量)で実施されなければならない。
【0009】
第1の部分トランスミッション及び第2の部分トランスミッションを備えるツインクラッチ式のトランスミッションを液圧式に制御するための液圧システムの公知のアッセンブリにおいて、このようなアッセンブリの作用面は、それぞれ1つの弁‐(機能‐)群によって制御される。作用面毎の圧力制御及び体積流量制御が予定される場合、従来では、例えば8つのギヤ段(7つの前進ギヤ段及び1つの後進ギヤ段)のための4つのシフトレールにおいて、8つの必要な弁が生じる。この機能を5つの弁によってか、又は1つの弁と1つのマルチプレクサ(例えばいわゆる回転弁の形態のマルチプレクサ)とによって実現するアッセンブリも公知である。これらの端緒は、コスト面及び/又は機能面で不利である。
【0010】
本発明の課題は、可及的少ない液圧コンポーネントによりトランスミッション、特にツインクラッチ式のトランスミッションの制御を可能にする改良された液圧システムを提供することである。
【0011】
この課題は、トランスミッション、特にツインクラッチ式のトランスミッションの複数のシフトレールを制御可能な液圧アッセンブリであって、シフトレール毎に、それぞれのシフトレールを往復移動可能に制御可能な複動型のシリンダを備える液圧アッセンブリにおいて、複数のシフトレールの上流に接続され、第1の出口及び第2の出口を備える、シフトレールを制御するための第1の切換圧及び第2の切換圧を形成可能な第1の液圧装置と、第1の液圧装置とシフトレールのうちの2つのシフトレールとの間に接続される、選択的に2つのシフトレールの複動型のシリンダの一方に第1の液圧装置の第1の出口を、かつ2つのシフトレールの他方の複動型のシリンダに第1の液圧装置の第2の出口を割り当て可能であり、かつ選択的に交差させて割り当て可能な第2の液圧装置と、を備える液圧アッセンブリにより解決される。好ましくは、第1の液圧装置により、シフトレールの制御のために必要な切換圧が形成可能である。切換圧は、好ましくは第2の液圧装置によって、トランスミッションのギヤ段あるいは走行段が制御可能であるように複動型のシリンダに接続可能である。好ましくは、上述の2つの出口は、直接的にか、又は選択的に交差させて割り当て可能である。その結果、好ましくは、ギヤ段を入れるために必要な組み合わせが生じる。第2の液圧装置の各々の切換位置で、第1の液圧装置により、2つの切換圧は、トランスミッションのギヤ段の2つを入れることができるように調節可能である。全体として、第2の液圧装置の2つの切換位置により、トランスミッションの計4つのギヤ段が制御可能である。切換圧の例は、例えばシステム圧の減少により形成可能な第1のより高い圧力及び例えば無圧のタンクへの接続により形成可能な第2のより低い圧力であってよい。
【0012】
液圧アッセンブリの一態様では、第1の液圧装置の第2の出口が、第2の液圧装置によって選択的に2つのシフトレールの2つの複動型のシリンダのうちの一方の第1の作用面に割り当て可能であり、かつ複動型のシリンダの、第1の作用面とは逆向きに作用するそれぞれ1つの第2の作用面に割り当てられてなる。複動型のシリンダの各々は、それぞれ、第1の作用面と、第1の作用面に対して逆向きに作用する第2の作用面とを有している。第2の作用面は両者等しく、第1の液圧装置の第2の出口に割り当てられている。好ましくは、選択的に一方の複動型のシリンダの第1の作用面か、又は他方の複動型のシリンダの第1の作用面が、選択的にやはり第2の出口に割り当て可能である。これにより、好ましくは、それぞれ両作用面でもって第1の液圧装置の第2の出口に割り当てられた複動型のシリンダが、両作用面が同じ大きさである場合、短絡可能あるいは無力に切換可能である。このことは、面積が同じ第1及び第2の作用面を備える一方の複動型のシリンダに該当し、同じ圧力を加えたとき、力は相殺されるか、あるいは液圧的な力の均衡が生じる。その結果、複動型のシリンダは静止する。好ましくは、第2の作用面だけが第1の液圧装置の第2の出口に接続されているその都度他方の複動型のシリンダが、その第1の作用面において、別の圧力で付勢可能である。相応に割り当てられたシフトレールの調節あるいは運動が可能である。
【0013】
液圧アッセンブリの別の態様では、第2の液圧装置によって付加的に選択的に、2つのシフトレールの複動型のシリンダの両第1の作用面が、第1の液圧装置の第2の出口に、かつ同時に、2つのシフトレールの複動型のシリンダの両第2の作用面が、第1の液圧装置の第2の出口に割り当て可能であるようになっている。好ましくは、付加的に、第2の液圧装置によって、複動型のシリンダの両第1の作用面が第2の出口に割り当てられている切換位置が達成可能である。さらに複動型のシリンダの第2の作用面も、第2の出口に、特に直接、つまり別の液圧要素の介在なしに割り当てられている。好ましくは、この切換位置において、両複動型のシリンダの短絡が可能であり、2つのシフトレールのいずれも操作されない。好ましくは、この切換位置は、トランスミッションのギヤチェンジが不要な期間で使用可能である。
【0014】
液圧アッセンブリの別の態様では、シフトレールのそれぞれ2つのシフトレールのためのそれぞれ2つの複動型のシリンダの上流に、第2の液圧装置と同様に形成され、かつ接続される別の液圧装置が接続されてなる。好ましくは、2つの複動型のシリンダのペアのそれぞれの上流に、第2の液圧装置か、又は別の液圧装置のうちの1つが接続可能である。好ましくは、こうして、無制限の数の複動型のシリンダのペアが、それぞれ1つの液圧装置によって制御可能である。その際、好ましくは、第2の出口を直接にか、又は十字路あるいは交差路を介して第1の作用面に選択的に接続することにより、それぞれのペアを制御可能である。ペア状に合流接続された残りの複動型のシリンダは、このような切換動作時、それぞれ上流に接続された液圧装置により短絡されている。このとき、それぞれの残りの第1及び第2の作用面は、それぞれすべて一括して、第1の液圧装置の第2の出口に割り当てられている。好ましくは、こうして、切換圧を提供する第1の液圧装置と、それぞれペア状に合流接続された複動型のシリンダの上流に接続された液圧装置との制御により、トランスミッション全体の制御が実施可能である。トランスミッションは、例えば、計4つのシフトレールを備えるツインクラッチ式のトランスミッションであってよい。この場合、制御のために、第1の液圧装置、第2の液圧装置、及び別の液圧装置のうちの1つが必要である。つまり、好ましくは、計8つのギヤ段、例えば7つの前進ギヤ段及び1つの後進ギヤ段を制御可能な4つのシフトレールを制御するために、3つの液圧装置が必要であるにすぎない。
【0015】
液圧アッセンブリの別の態様では、第1、第2及び別の液圧装置が同一に形成されてなる。好ましくは、すべての液圧装置は、同じ回路図を有していてよく、それゆえ、好ましくは、同一部品として比較的多数の個数で、ひいては安価に製造可能である。
【0016】
液圧アッセンブリの別の態様では、第1の液圧装置が付加的に、切換圧を形成可能な2つの圧力フィードバックを備えてなる。第1の液圧装置は、好ましくは、2つの圧力フィードバックに接続可能であり、それぞれの複動型のシリンダの第1の作用面及び第2の作用面を制御するために必要な切換圧を形成可能である。
【0017】
液圧アッセンブリの別の態様では、第1の液圧装置が、切換圧を形成可能な、別個の圧力制御兼減少弁と、圧力制御兼減少弁の下流に接続される切換弁とを備えてなる。好ましくは、別個の圧力制御兼減少弁により、複動型のシリンダの作用面の1つを付勢するのに必要な圧力を提供可能である。下流に接続された切換弁により、この提供された圧力は、切換圧として選択的に第1の作用面又は第2の作用面に割り当て可能である。対応する別の作用面は、好ましくは切換弁により液圧アッセンブリのタンクに割り当て可能であるか、あるいはこれにより無圧に切換可能である。好ましくは、切換弁は、第2の液圧装置又は別の液圧装置と同じ構造を有していてよい。こうして、好ましくは、2つの作用面を中央の切換位置でタンクに接続することも可能である。
【0018】
さらに上記課題は、前述の液圧アッセンブリを備えるトランスミッション、特にツインクラッチ式のトランスミッションにおいて解決される。上述の利点が生じる。
【0019】
その他の利点、特徴及び詳細は、以下の説明から看取可能である。以下の説明において、場合によっては図面を参照しながら、少なくとも一実施の形態について詳細に説明する。説明及び/又は図示する特徴は、単独でも、又は任意の有意義な組み合わせでも、場合によっては請求項からも独立して、発明の対象を形成し、特に付加的に単数又は複数の別の出願の対象ともなり得る。同一、類似及び/又は機能同一の部材には、同一の符号を付した。
【図面の簡単な説明】
【0020】
【図1】ツインクラッチ式のトランスミッションの8つのギヤ段を制御可能な液圧アッセンブリの回路図である。
【図2】図1に示した液圧アッセンブリと類似の、ただし図1に示した液圧アッセンブリとは異なり別個の圧力減少兼制御弁が設けられている液圧アッセンブリの回路図である。
【0021】
図1は、液圧アッセンブリ1を示している。液圧アッセンブリ1により、第1のシフトレール3、第2のシフトレール5、第3のシフトレール7及び第4のシフトレール9が制御可能である。シフトレール3乃至9の各々には、それぞれ1つの複動型のシリンダが配設されており、第1のシフトレール3には、第1の複動型のシリンダ11が、第2のシフトレール5には、第2の複動型のシリンダ13が、第3のシフトレール7には、第3の複動型のシリンダ15が、そして第4のシフトレール9には、第4の複動型のシリンダ17が配設されている。
【0022】
複動型のシリンダ11乃至17の各々は、それぞれ1つの第1の作用面19及び第2の作用面21を有している。それぞれの複動型のシリンダ11乃至17の作用面19及び21は、同じ面積を有しているか、あるいは同じに作用する。その結果、第1の作用面19及び第2の作用面21に同じ液圧を加えると、液圧的な力の均衡が、それぞれの複動型のシリンダ11乃至17において生じる。
【0023】
第1のシフトレール3及び第2のシフトレール5並びに対応する第1の複動型のシリンダ11及び第2の複動型のシリンダ13は、図1に符号25で概略的にのみ示したツインクラッチ式のトランスミッション25の第1の部分トランスミッション23に割り当てられている。ツインクラッチ式のトランスミッション25の第1の部分トランスミッション23は、偶数のギヤ段をシフトするために設計されている。ツインクラッチ式のトランスミッション25は、第2の部分トランスミッション27を有している。第2の部分トランスミッション27により、奇数のギヤ段が制御可能である。第2の部分トランスミッション27は、第3のシフトレール7及び第4のシフトレール9あるいは対応する第3の複動型のシリンダ15及び第4の複動型のシリンダ17により制御可能である。
【0024】
液圧エネルギあるいは圧力下にある液圧媒体を提供するために、液圧アッセンブリ1は、液圧的なエネルギ源29を有している。液圧的なエネルギ源29は、例えば機械式、電気式かつ/又はハイブリッド式に駆動可能な液圧ポンプとして設計可能である。さらに液圧アッセンブリ1は、無圧のタンク31を有している。タンク31内には、液圧的なエネルギ源29により圧送された液圧媒体が還流可能である。液圧的なエネルギ源29の下流には、第1の液圧装置33が接続されている。第1の液圧装置33とタンク31との間には、逆止弁35が接続されている。逆止弁35は、下流に接続された液圧管路が空になることを防止可能である。第1の液圧装置1は、2つの入口を有している。両入口は、液圧的なエネルギ源29と逆止弁35とに割り当てられている。さらに第1の液圧装置33は、第1の出口37及び第2の出口39を有している。第1の液圧装置33の2つの入口は、図1に示した第1の切換位置において、十字路あるいは交差路を介して2つの出口37及び39に割り当て可能あるいは接続可能である。中央の第2の切換位置において、液圧的なエネルギ源29は遮断可能である。さらに、第1の液圧装置33の中央の第2の切換位置において、第1の出口37及び第2の出口39は、合流接続されて、逆止弁35を介してタンク31に割り当てられている。第3の切換位置において、第1の液圧装置33の2つの入口は、やはり第1の出口37及び第2の出口39に割り当て可能、ただし直接に、つまり十字路を介さずに割り当て可能である。
【0025】
第1の液圧装置33の第2の出口39は、計4つの複動型のシリンダ11乃至17の上流に接続されている、すなわち、直接すべての第2の作用面21に割り当てられている。
【0026】
第1の液圧装置33の下流に接続されて、液圧アッセンブリ1は、第2の液圧装置41及び第3の液圧装置43を有している。液圧装置41及び43は、並列接続されており、それぞれ2つの入口を有している。入口は、それぞれ、第1の液圧装置33の第1の出口37及び第2の出口39の下流に接続されている。第2の液圧装置41及び第3の液圧装置43は、第1の液圧装置33と同様に形成されており、やはり、それぞれ3つの切換状態を取ることができる。これらの切換状態については、第1の液圧装置33の説明を参照されたい。第2の液圧装置41の第1の出口37は、第1の複動型のシリンダ11の第1の作用面19の上流に接続されている。第2の液圧装置41の第2の出口39は、第2の複動型のシリンダ13の第1の作用面19の上流に接続されている。これにより第2の液圧装置41は、第1の部分トランスミッション23に割り当てられるか、あるいは第1の部分トランスミッション23の上流に接続されており、第1の液圧装置33とともに、ツインクラッチ式のトランスミッション25の第1の部分トランスミッション23の偶数のギヤ段を制御するためにか、あるいは偶数のギヤ段を入れるために役立つ。
【0027】
これと同様に、第3の液圧装置43は、第2の部分トランスミッション27の上流あるいは第3の複動型のシリンダ15及び第4の複動型のシリンダ17の上流に接続されている。このために第3の液圧装置43の第1の出口37は、第3の複動型のシリンダ15の第1の作用面19に割り当てられている。第3の液圧装置43の第2の出口39は、第4の複動型のシリンダ17の第1の作用面19に割り当てられている。第3の液圧装置43は、第1の液圧装置33とともに、第2の部分トランスミッション27を制御可能、つまりツインクラッチ式のトランスミッション25の奇数のギヤ段を入れることができる。
【0028】
以下に、例示的に、ツインクラッチ式のトランスミッション25のギヤ段1乃至3を入れることについて詳細に説明する。これに加えて、第2の液圧装置41及び第3の液圧装置43についても同様に当てはまる、第1の液圧装置33について前述したそれぞれ異なる切換位置を参照されたい。液圧装置33,41,43のそれぞれの第1の切換位置は、図1に示されている。その左隣りには、それぞれ、中央の切換位置があり、そのさらに左隣りには、第3の切換位置がある。
【0029】
第2の部分トランスミッション27を用いて第1のギヤ段を入れるために、液圧アッセンブリ1の液圧装置33,41,43は、第3の複動型のシリンダ15の第1の作用面19のみに切換圧が加えられているように切り換えられる。すべてのその他の作用面は、無圧に切り換えられているか、あるいは逆止弁35を介してタンク31に割り当てられている。逆止弁35が開放圧を有する場合は、残りの作用面は、無圧に切り換えられているのではなく、タンク31と開放圧との間の相応の差圧により付勢されている。第1のギヤ段を入れるために、第3の複動型のシリンダ15の第1の作用面19に圧力が加えられると、第3のシフトレール7は、図1の位置関係で見て右方向に運動する。このことを達成するために、第1の液圧装置33は第3の切換位置にあり、第2の液圧装置41は第2の切換位置にあり、第3の液圧装置43は第3の切換位置にある。複動型のシリンダ11,13,17は、液圧的に短絡されており、第1の液圧装置33の第2の出口39を介してタンク31に割り当てられている。第3の複動型のシリンダ15の第1の作用面19のみが、第3の液圧装置43の第1の出口37及び第1の液圧装置33の第1の出口37を介して液圧的なエネルギ源29に割り当てられている。
【0030】
好ましくは、この割り当ては、直接実施されず、第1の圧力フィードバック45を用いて圧力及び/又は体積流量制御されてもよい。好ましくは、第1の圧力フィードバック45を用いて、第1の液圧装置は、第1のギヤ段及び場合によってはその他のギヤ段を入れるための圧力及び/又は体積流量制御を可能にするように切り換えられてもよい。第1の圧力フィードバック45は、第1の出口37の圧力を第1の液圧装置33にフィードバックする。
【0031】
第1の圧力フィードバック45と同様に、第1の液圧装置33は、第2の圧力フィードバック47を有している。第2の圧力フィードバック47は、第2の出口39の圧力を第1の液圧装置33にフィードバックする。これに応じて、第2の出口39も圧力及び/又は体積流量制御可能である。好ましくは、第1の液圧装置33は、双圧力及び/又は体積流量制御弁(Doppeldruck‐ und/oder Volumenstromregelventil)として設計されている。
【0032】
第1のギヤ段が入れられると直ちに、つまり、第3のシフトレール7が図1の位置関係で見て右方向に動かされると直ちに、第3の複動型のシリンダ15の第1の作用面19も、無圧に切り換えられてよい。その結果、ツインクラッチ式のトランスミッション25のすべての作用面19,21は、無圧である。好ましくは、無圧の状態にあっても、第1のギヤ段は入れられたままである。このことを達成するために、第1の液圧装置33は第2の切換位置に調節される。付加的に第3の液圧装置43も第2の切換位置に移動可能である。
【0033】
第2のギヤ段を入れるためにも、同様の方法がとられる。第1の複動型のシリンダ11の第1の圧力面19にのみ圧力が加えられる。このために、第1の液圧装置33は第3の切換位置に、第2の液圧装置41は第3の切換位置に、第3の液圧装置43は第2の切換位置に移動される。その際、偶数のギヤ段を入れるために設けられている第1の部分トランスミッション23の第1のシフトレール3が、図1の位置関係で見て右方向に移動する。第2のギヤ段が入れられると直ちに、つまり、第1のシフトレール3が相応に移動されると直ちに、改めてツインクラッチ式のトランスミッション25のすべての作用面19,21が無圧に切り換えられてもよい。このとき、少なくとも第1の液圧装置33が、又は場合によっては第2及び第3の液圧装置41,43も、第2の切換位置に移動される。
【0034】
第3のギヤ段を入れるために、第3のシフトレール7は、図1の位置関係で見て左方向に移動しなければならない。このために、まず、第1の複動型のシリンダ11及び第2の複動型のシリンダ13は、液圧的に短絡可能である。このことは、第2の液圧装置41の第2の切換位置に該当する。第3の液圧装置43は、第3の切換位置に移動される。さらに第1の液圧装置33は、図1に示す第1の切換位置にもたらされる。その際、第2の出口39には、第2の圧力フィードバック47により制御されてシステム圧が加えられる。したがって、複動型のシリンダ11乃至17の、第1の液圧装置33の第2の出口39の下流に接続されたすべての第2の作用面に、切換圧が加えられている。さらに、第2の液圧装置41の第2の切換位置により、第1及び第2の複動型のシリンダ11,13の第1の作用面19にも、切換圧が加えられている。第3の複動型のシリンダ15の第1の作用面19にのみ切換圧が加えられておらず、第3の複動型のシリンダ15の第1の作用面19は、第3の液圧装置43の第1の出口37と、第1の液圧装置33の第1の出口37と、逆止弁35とを介して無圧のタンク31に割り当てられている。これにより、第3のシフトレール7が、図1の位置関係で見て左方向に運動することが看取可能である。このことは、ツインクラッチ式のトランスミッション25の第3のギヤ段を入れることに相当する。第3のギヤ段が入れられると直ちに、すべての複動型のシリンダ11乃至17のすべての作用面19,21は、無圧に切り換えられてもよい。このとき、液圧装置33,41,43は、その中央の切換位置に走行可能である。
【0035】
その他のギヤ段の入れ方は、同様に行われるので、ギヤ段1乃至3の説明を参照されたい。
【0036】
図1に示すようにすべてのシフトレール3乃至9が中央の位置にある場合、ツインクラッチ式のトランスミッション25は、無負荷運転の状態、つまり、いずれのギヤも入れられていない状態にある。
【0037】
図2は、図1に示した液圧アッセンブリ1と同様に形成されている別の液圧アッセンブリ1を示している。その限りにおいては図1を参照されたい。唯一の相違点として、第1の液圧装置33は、単純な切換弁49、つまり圧力フィードバック45,47を有しない切換弁49を有している。
【0038】
しかしながら、ツインクラッチ式のトランスミッション25のギヤ段を入れるために必要な切換圧を提供するために、液圧的なエネルギ源29と、第1の液圧装置33の切換弁49との間に、圧力制御兼減少弁(Druckregel‐ und Minderventil)51が接続されている。圧力制御兼減少弁51は、圧力フィードバックを備える比例弁として設計されており、制御され減圧された圧力を提供可能である。
【0039】
本発明により、複動型のシリンダ11乃至17の第2の作用面21は、特にペア状に統合されている。このために、第2の作用面21は、1つの共通の管路により接続されており、第1の液圧装置33の第2の出口39に割り当てられている。好ましくは、これにより複数の弁が省略可能である。第2の作用面21は、同じ方向に作用するように、つまり、図1及び図2の位置関係で見て、それぞれシフトレール3乃至9を左方向に運動させるように接続されていてよい。対向して位置する第1の作用面19は、好ましくは、適当にペア状に第2の液圧装置41及び第3の液圧装置43により制御可能である。好ましくは、その都度制御されないシフトレールは液圧的に短絡可能である。好ましくは、第2の液圧装置41及び第3の液圧装置43は、それぞれ、本実施の形態では電気的にかつばね復帰式に操作可能な単純な切換弁を有している。双圧力制御器(Doppeldruckregler)として設計された第1の液圧装置33により、ギヤ段を入れるために必要な切換圧が提供可能である。図2の実施の形態では、シフトのために必要な切換圧が、圧力制御兼減少弁51により提供され、第1の液圧装置33のやはり単純な切換弁により適当に下流に案内あるいは下流に接続される。好ましくは、シフトレール3乃至9のすべての制御は、図1に示した実施の形態では3つの弁のみで可能であり、図2に示した実施の形態では4つの弁のみで可能である。好ましくは、スペース及びコストが節減可能である。合流接続されている第2の作用面21は、第1の液圧装置33により切換圧で付勢されるか、又は逆止弁35を介してタンク31に接続される。このとき逆止弁35は、液圧的な作用面19,21に通じる液圧的な区間が空になることを防止する。例えば、接続された作用面に第1の液圧装置33を介してタンク31のタンク圧が作用しているとき、一方の部分トランスミッション23,27内で、対向して位置する第1の作用面19の1つに切換圧を加えることにより、シフトレール3乃至9の1つのポジションチェンジが実施可能である。部分トランスミッション23,27の各々には、シフトレール3乃至9のそれぞれ2つが配設されている。それぞれ2つのシフトレールの上流には、第2の液圧装置41あるいは第3の液圧装置43が接続されている。接続された第2の作用面21に第1の液圧装置33により切換圧が加えられるとき、好ましくは、第1の作用面19の1つに、第2の液圧装置41又は第3の液圧装置43によりタンク圧を作用させることができる。このとき、好ましくは、適当に接続された複動型のシリンダ11乃至17あるいは対応するシフトレール3乃至9が、図1及び図2の位置関係で見て左方向に動かされる。
【0040】
図2の実施の形態では、液圧的なエネルギ源29あるいは体積流量源と切換弁49との間に圧力制御兼減少弁51が接続されている。この配置は、液圧装置33,41,43あるいはそれらの弁の非通電状態において、すべての液圧式の作用面19,21がタンク圧レベルにあるようにされているという利点を有している。任意選択的には、タンク31の相応のタンク接続部に、図2にやはり図示した逆止弁35が設けられていてもよい。逆止弁35は、圧力制御兼減少弁51の経路を介して、液圧式の作用面19,21に通じる液圧的な区間が空になることを防止することもできる。
【0041】
本発明により、シフトレール3乃至9毎に同じ大きさの液圧式の作用面19,21を有する、ツインクラッチ式のトランスミッション25のシフトレール3乃至9、特に4つのシフトレール、特に少なくとも4つのシフトレールの液圧式の制御が提供される。好ましくは、液圧装置33,41,43の3つの同一構造の弁を介した制御、及びそれぞれの3つの切換位置による適当な液圧的な接続が実施される。
【0042】
シフトレール3乃至9において特にそれぞれ同一の作用方向を有する、第2の液圧式の作用面21がまとめられる。対向する第1の作用面19は、第2の液圧装置41及び第3の液圧装置43の2つの体積流量制御弁により適当に制御される。より詳細には、1つの部分トランスミッション23,27のシフトレールは、1つの弁により制御される。すなわち、部分トランスミッション23,27の各々には、それぞれ、1つの弁あるいは1つの液圧装置41,43を備える2つのシフトレール3乃至9が配設されている。
【符号の説明】
【0043】
1 液圧アッセンブリ
3 第1のシフトレール
5 第2のシフトレール
7 第3のシフトレール
9 第4のシフトレール
11 第1の複動型のシリンダ
13 第2の複動型のシリンダ
15 第3の複動型のシリンダ
17 第4の複動型のシリンダ
19 第1の作用面
21 第2の作用面
23 第1の部分トランスミッション
25 ツインクラッチ式のトランスミッション
27 第2の部分トランスミッション
29 液圧的なエネルギ源
31 タンク
33 第1の液圧装置
35 逆止弁
37 第1の出口
39 第2の出口
41 第2の液圧装置
43 第3の液圧装置
45 第1の圧力フィードバック
47 第2の圧力フィードバック
49 切換弁
51 圧力制御兼減少弁

【特許請求の範囲】
【請求項1】
トランスミッション、特にツインクラッチ式のトランスミッション(25)の複数のシフトレール(3,5,7,9)を制御可能な液圧アッセンブリ(1)であって、
‐前記シフトレール(3,5,7,9)毎に、それぞれのシフトレール(3,5,7,9)を往復移動可能に制御可能な複動型のシリンダ(11,13,15,17)を備える、
液圧アッセンブリ(1)において、
‐前記複数のシフトレール(3,5,7,9)の上流に接続され、第1の出口(37)及び第2の出口(39)を備える、前記シフトレール(3,5,7,9)を制御するための第1の切換圧及び第2の切換圧を形成可能な第1の液圧装置(33)と、
‐該第1の液圧装置(33)と前記シフトレール(3,5,7,9)のうちの2つのシフトレール(3,5)との間に接続される、選択的に前記2つのシフトレール(3,5)の複動型のシリンダ(11,13)の一方に前記第1の液圧装置(33)の前記第1の出口(37)を、かつ前記2つのシフトレール(3,5)の他方の複動型のシリンダ(13)に前記第1の液圧装置(33)の前記第2の出口(39)を割り当て可能であり、かつ選択的に交差させて割り当て可能な第2の液圧装置(41)と、
を備えることを特徴とする、液圧アッセンブリ。
【請求項2】
前記第1の液圧装置(33)の前記第2の出口(39)が、前記第2の液圧装置(41)によって選択的に前記2つのシフトレール(3,5)の2つの複動型のシリンダ(11,13)のうちの一方の第1の作用面(19)に割り当て可能であり、かつ前記複動型のシリンダ(11,13)の、前記第1の作用面(19)とは逆向きに作用するそれぞれ1つの第2の作用面(21)に割り当てられている、請求項1記載の液圧アッセンブリ。
【請求項3】
前記第2の液圧装置(41)によって付加的に選択的に、前記2つのシフトレール(3,5)の前記複動型のシリンダ(11,13)の両第1の作用面(19)が、前記第1の液圧装置(33)の前記第2の出口(39)に、かつ同時に、前記2つのシフトレール(3,5)の前記複動型のシリンダ(11,13)の両第2の作用面が、前記第1の液圧装置(33)の前記第2の出口(39)に割り当て可能である、請求項1又は2記載の液圧アッセンブリ。
【請求項4】
前記シフトレール(3,5;7,9)のそれぞれ2つのシフトレールのためのそれぞれ2つの複動型のシリンダ(11,13;15,17)の上流に、前記第2の液圧装置(41)と同様に形成され、かつ接続される別の液圧装置(43)が接続されている、請求項1から3までのいずれか1項記載の液圧アッセンブリ。
【請求項5】
前記第1、第2及び別の液圧装置(33,41,43)が同一に形成されている、請求項1から4までのいずれか1項記載の液圧アッセンブリ。
【請求項6】
前記第1の液圧装置(33)が付加的に、切換圧を形成可能な2つの圧力フィードバック(45,47)を備える、請求項1から5までのいずれか1項記載の液圧アッセンブリ。
【請求項7】
前記第1の液圧装置(33)が、切換圧を形成可能な、別個の圧力制御兼減少弁(51)と、該圧力制御兼減少弁(51)の下流に接続される切換弁(49)とを備える、請求項1から5までのいずれか1項記載の液圧アッセンブリ。
【請求項8】
トランスミッション、特にツインクラッチ式のトランスミッション(25)であって、請求項1から7までのいずれか1項記載の液圧アッセンブリ(1)を備えることを特徴とする、トランスミッション。

【図1】
image rotate

【図2】
image rotate


【公表番号】特表2013−508628(P2013−508628A)
【公表日】平成25年3月7日(2013.3.7)
【国際特許分類】
【出願番号】特願2012−534537(P2012−534537)
【出願日】平成22年10月18日(2010.10.18)
【国際出願番号】PCT/DE2010/001228
【国際公開番号】WO2011/047667
【国際公開日】平成23年4月28日(2011.4.28)
【出願人】(512006239)シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト (59)
【氏名又は名称原語表記】Schaeffler Technologies AG & Co. KG
【住所又は居所原語表記】Industriestrasse 1−3, D−91074 Herzogenaurach, Germany
【Fターム(参考)】