説明

転がり軸受

【課題】高いヤング率に起因した寿命の低下を抑制しつつ、耐摩耗性や耐食性を向上することが可能な転がり軸受を提供する。
【解決手段】ターボポンプのタービン軸を、タービン軸に対向するように配置される部材に対して回転自在に支持するアンギュラ玉軸受1を構成する玉13は、Si6−ZAl8−Zの組成式で表され、0.1≦z≦3.5を満たすβサイアロンを主成分とし、残部不純物からなる焼結体から構成され、ヤング率が180GPa以上270GPa以下となっている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、転がり軸受に関し、より特定的には、βサイアロンを主成分とする焼結体からなる構成部品を備えた転がり軸受に関するものである。
【背景技術】
【0002】
液体燃料を用いるロケットエンジンに関して、燃料を高圧燃焼させるために液体燃料をターボポンプで昇圧させてからエンジンへ供給する、ポンプ式と呼ばれる方式が提案されている。ここで、ポンプ式のエンジンの動作原理について簡略化して説明すると、たとえばターボポンプ中の回転するインデューサやインペラを有する遠心型ポンプ中に液体燃料を導入し、回転による遠心力などを利用して液体燃料を昇圧させる。この昇圧された液体燃料が、たとえばターボポンプ中のタービンに導入され、圧力を利用してタービン軸を回転させる。するとこの回転するタービン軸が再び上記遠心型ポンプ中に導入された液体燃料を昇圧させる。以上のようにポンプ式のロケットエンジンは、液体燃料を用いて、ターボポンプにて回転エネルギーと圧力によるエネルギーとの変換を繰り返しながら駆動させる。
【0003】
ロケットエンジンのターボポンプの、上記タービン軸を、そのタービン軸に対向するように配置される部材に対して回転自在に支持するためには、たとえばアンギュラ玉軸受が用いられる。しかし、ロケットエンジンに用いる液体燃料とは、後述するようにたとえば液体水素や液体酸素であるため、圧縮された液体燃料が導入されるタービン軸に用いられる軸受は、液化ガスにより冷却される極低温環境下において使用される。したがって、軸受に対して潤滑油などの流動性潤滑剤を使用することが困難であるため、軸受を構成する各部品の摩耗を促進する可能性がある。そこで、たとえば特許文献1には、軸受を構成する内輪、外輪および転動体としての複数の玉が、強靭性を備えたマルテンサイト系ステンレス鋼で形成されていることが記載されている。
【特許文献1】特開2002−147462号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかし、ロケットエンジンのタービン軸のように、高速回転する環境下において使用される転がり軸受の転動体として、窒化珪素製の転動体が採用される場合がある。窒化珪素は、転動体の素材として一般的に採用される鋼に比べて耐摩耗性や耐食性に優れることから、機械性能向上のため、近年は窒化珪素を使用するケースが増加している。
【0005】
しかしながら、窒化珪素は、鋼に比べてヤング率が大きく、弾性変形しにくいという特徴がある。そのため、鋼製の転動体に比べて、窒化珪素製の転動体と軌道部材との接触面積は小さくなり、接触面圧が大きくなる傾向にある。そのため、転がり軸受の転動体として窒化珪素製の転動体が採用されている場合、たとえばタービン軸を回転させる時に転がり軸受に衝撃が作用すると、軌道部材の摩耗や損傷を促進しやすくなる。軌道部材の損傷を抑制するために、一般的には軸受の動作を潤滑にさせる潤滑油が使用されるが、上述したとおり、ロケットエンジンのターボポンプに用いられる軸受に対して、一般的に軸受の動作を潤滑にさせるための潤滑油を使用することは困難である。結果的に、摩耗の促進により軌道部材の寿命の低下を招くことがあるという問題があった。
【0006】
そこで、本発明の目的は、高いヤング率に起因した寿命の低下を抑制しつつ、耐摩耗性や耐食性を向上することが可能な転がり軸受を提供することである。
【課題を解決するための手段】
【0007】
本発明に従った転がり軸受は、液化ガスにより冷却される環境下において使用される転がり軸受である。この転がり軸受は、軌道部材と、軌道部材に接触し、円環状の軌道上に配置される転動体とを備えている。そして、転動体は、窒化珪素からなる場合に比べて軌道部材に対する衝撃を抑制することが可能なセラミックスからなっている。より具体的には、たとえば転動体は、窒化珪素からなる場合に比べてヤング率が小さくなるセラミックスからなっている。
【0008】
また、本発明に従った、液化ガスにより冷却される環境下において使用される転がり軸受としては、たとえばターボポンプのタービン軸を、タービン軸に対向するように配置される部材に対して回転自在に支持する転がり軸受を挙げることができる。この転がり軸受は、軌道部材と、軌道部材に接触し、円環状の軌道上に配置される転動体とを備えている。そして、転動体は、窒化珪素からなる場合に比べて軌道部材に対する衝撃を抑制することが可能なセラミックスからなっている。より具体的には、たとえば転動体は、窒化珪素からなる場合に比べてヤング率が小さくなるセラミックスからなっている。
【0009】
上述した本発明の転がり軸受によれば、衝撃が作用した場合でも軌道部材における摩耗や損傷が抑制されるため、耐衝撃性を向上させつつ耐摩耗性や耐食性を向上させたガイドローラ軸受を提供することができる。
【0010】
本発明の一の局面における転がり軸受は、液化ガスにより冷却される環境下において使用される転がり軸受である。この転がり軸受は、軌道部材と、軌道部材に接触し、円環状の軌道上に配置される転動体とを備え、転動体は、βサイアロンを主成分とし、残部不純物からなる焼結体から構成される、転がり軸受である。
【0011】
本発明の他の局面における転がり軸受は、液化ガスにより冷却される環境下において使用される転がり軸受である。この転がり軸受は、軌道部材と、軌道部材に接触し、円環状の軌道上に配置される転動体とを備え、転動体は、βサイアロンを主成分とし、残部焼結助剤および不純物からなる焼結体から構成される、転がり軸受である。
【0012】
本発明の一の局面における、液化ガスにより冷却される環境下において使用される転がり軸受においては、転動体に絶縁体であるβサイアロン焼結体(βサイアロンを主成分とする焼結体)が採用されている。βサイアロン焼結体は、窒化珪素(Si)やアルミナ(Al)などの一般的なセラミックスからなる焼結体に比べてヤング率が小さい。そのため、転動体のヤング率が高いことに起因して軌道部材との接触面圧が大きくなることによる、衝撃等による軌道部材の寿命の低下を抑制することができる。また、サイアロン焼結体を用いることにより、転動体として鋼の代わりに窒化珪素を用いた場合と同様に、転動体の耐摩耗性や耐食性を向上させる効果をも奏する。以上のように、本発明の一の局面における転がり軸受によれば、高いヤング率に起因した寿命の低下を抑制しつつ、耐摩耗性や耐食性を向上することが可能な転がり軸受を提供することができる。
【0013】
また、本発明の他の局面における、液化ガスにより冷却される環境下において使用される転がり軸受は、基本的には上記本発明の一の局面における転がり軸受と同様の構成を有し、同様の作用効果を奏する。しかし、本発明の他の局面における転がり軸受では、焼結体が焼結助剤を含む点で上記本発明の一の局面における転がり軸受とは異なっている。本発明の他の局面における転がり軸受によれば、焼結助剤の採用により、焼結体の気孔率を低下させやすくなり、十分な耐久性を安定して確保することが可能な転がり軸受を容易に提供することができる。
【0014】
なお、焼結助剤としては、マグネシウム(Mg)、アルミニウム(Al)、珪素(Si)、チタン(Ti)、希土類元素の酸化物、窒化物、酸窒化物のうち少なくとも一種類以上を採用することができる。また、上記本発明の一の局面における転がり軸受と同等の作用効果を奏するためには、焼結助剤は、焼結体のうち20質量%以下とすることが望ましい。
【0015】
上述した本発明の一の局面における転がり軸受としては、たとえばターボポンプのタービン軸を、タービン軸に対向するように配置される部材に対して回転自在に支持する転がり軸受を挙げることができる。この転がり軸受は、軌道部材と、軌道部材に接触し、円環状の軌道上に配置される転動体とを備えている。そして、転動体は、βサイアロンを主成分とし、残部不純物からなる焼結体から構成される。
【0016】
また、上述した本発明の他の曲面における転がり軸受としても、たとえばターボポンプのタービン軸を、タービン軸に対向するように配置される部材に対して回転自在に支持する転がり軸受を挙げることができる。この転がり軸受は、軌道部材と、軌道部材に接触し、円環状の軌道上に配置される転動体とを備えている。そして、転動体は、βサイアロンを主成分とし、残部焼結助剤および不純物からなる焼結体から構成される。なお、以上のターボポンプとしては、たとえば液体ロケットエンジンのターボポンプであり、上記転がり軸受は、たとえば液体ロケットエンジンのターボポンプ用軸受に適用することができる。ただしその他にも、たとえば液体窒素やLNGの搬送ポンプ用軸受などの極低温環境用軸受や、ガスタービン、ターボチャージャーなどの高温環境用軸受としても、上記転がり軸受を用いることができる。したがって、たとえば転動体としてβサイアロンを主成分とする焼結体を用いれば、窒化珪素よりもヤング率が低いことにより軌道部材に摩耗や圧痕などの損傷が発生することに起因した寿命の低下を抑制しつつ、鋼の代わりに窒化珪素を用いた場合の耐摩耗性や耐食性などの効果を維持することができるという効果を奏する。
【0017】
上記転がり軸受において好ましくは、上記βサイアロンは、Si6−ZAl8−Zの組成式で表され、0.1≦z≦3.5を満たす。
【0018】
本発明者は、βサイアロン焼結体からなる転動体の転動疲労寿命とβサイアロンの組成との関係を詳細に調査した。その結果、以下の知見が得られた。βサイアロンは、燃焼合成を含む製造工程を採用することにより、上記zの値(以下、z値という)が0.1以上となる種々の組成を有するものを安価に製造することができる。そして、一般に転動疲労寿命に大きな影響を与える硬度は、製造の容易なz値4.0以下の範囲において、ほとんど変化しない。しかしながら、βサイアロン焼結体からなる転動体の転動疲労寿命とz値との関係を詳細に調査したところ、z値が3.5を超えると転動体の転動疲労寿命が低下することが分かった。
【0019】
より具体的には、z値が0.1以上3.5以下の範囲においては、転動疲労寿命はほぼ同等で、転がり軸受の運転時間が所定時間を超えると、転動体の表面に剥離が発生して破損する。これに対し、z値が3.5を超えると転動体が摩耗しやすくなり、これに起因して転動疲労寿命が低下する。つまり、z値が3.5となる組成を境界として、βサイアロンからなる転動体の破損モードが変化し、z値が3.5を超えると転動疲労寿命が低下するという現象が明らかとなった。したがって、βサイアロン焼結体からなる転動体において、安定して十分な寿命を確保するためには、z値を3.5以下とすることが好ましい。以上のように、上記βサイアロンを0.1≦z≦3.5を満たすものとすることにより、安価で、かつ耐久性に優れた転がり軸受を提供することができる。
【0020】
上記転がり軸受において好ましくは、上記βサイアロンは、Si6−ZAl8−Zの組成式で表され、0.5≦z≦3.0を満たす。
【0021】
これにより、振動や衝撃が作用した場合における転がり軸受の耐久性を一層向上させることができる。
【0022】
上記転がり軸受において好ましくは、上記転動体のヤング率は180GPa以上270GPa以下である。
【0023】
転動体のヤング率が高くなると、転動体を構成する素材(βサイアロン焼結体)の強度が上昇する傾向にある。しかし、その反面、転動体のヤング率が高くなると、転動体が弾性変形しにくくなるため、転動体同士の接触面積が小さくなり、接触面圧が高くなる。その結果、相手部材に損傷が発生し易くなる。一方、転動体のヤング率が低くなると、転動体が弾性変形しやすくなるため、転動体同士の接触面積が大きくなり、接触面圧が低くなる。しかし、その反面、転動体のヤング率が低くなると、これに伴って転動体を構成する素材の強度が低下する傾向にある。そのため、転動体のヤング率は、転動体を構成する素材の強度と転動体同士の接触面圧の低減とのバランスを確保可能な範囲とすることが必要である。
【0024】
より具体的には、βサイアロン焼結体からなる転動体のヤング率が180GPa未満の場合、転動体を構成する素材の強度低下の影響が接触面圧の低減の効果を上回り、転動体の転動疲労寿命が低下する。また、転動体同士の接触面積が増大することに伴い、転動体間に作用する摩擦力が増加して軸受トルクが上昇し、使用時に転動体の表面に容易に剥離が生じるという問題も発生する。したがって、βサイアロン焼結体からなる転動体のヤング率は、180GPa以上であることが好ましく、220GPa以上であることがより好ましい。
【0025】
一方、βサイアロン焼結体からなる転動体のヤング率が270GPaを超えると、接触面圧の増加の影響が転動体を構成する素材の強度上昇の効果を上回り、相手部材の転走面に損傷が発生しやすくなる。その結果、転がり軸受の寿命が低下する。したがって、βサイアロン焼結体からなる転動体のヤング率は、270GPa以下であることが好ましく、260GPa以下であることが好ましい。
【0026】
上記転がり軸受においては、軌道部材は鋼からなるものとすることができる。この場合、当該軌道部材の表面硬度はHV680以上であることが好ましい。これにより、振動や衝撃が作用した場合における軌道部材の損傷を抑制することができる。
【0027】
上記転がり軸受において好ましくは、上記転動体は、軌道部材と接触する面である転走面を含む領域に、内部よりも緻密性の高い層である緻密層を有している。
【0028】
上述のβサイアロン焼結体からなる転動体においては、その緻密性が転動疲労寿命に大きく影響する。これに対し、上記構成によれば、転走面を含む領域に内部よりも緻密性の高い層である緻密層が形成されていることにより、転動疲労寿命が向上する。その結果、十分な耐久性を安定して確保することが可能な転がり軸受を提供することができる。
【0029】
ここで、緻密性の高い層とは、焼結体において空孔率の低い(密度の高い)層であって、たとえば以下のように調査することができる。まず、βサイアロン焼結体からなる転動体の表面に垂直な断面において転動体を切断し、当該断面を鏡面ラッピングする。その後、鏡面ラッピングされた断面を光学顕微鏡の斜光(暗視野)にて、たとえば50〜100倍程度で撮影し、300DPI(Dot Per Inch)以上の画像として記録する。このとき、白色の領域として観察される白色領域は、空孔率の高い(密度の低い)領域に対応する。したがって、白色領域の面積率が低い領域は、当該面積率が高い領域に比べて緻密性が高い。そして、記録された画像を、画像処理装置を用いて輝度閾値により2値化処理した上で白色領域の面積率を測定し、当該面積率により、撮影された領域の緻密性を知ることができる。
【0030】
つまり、上記転がり軸受において好ましくは、上記焼結体は、転走面を含む領域に内部よりも白色領域の面積率の低い層である緻密層が形成されている。なお、上記撮影は、ランダムに5箇所以上で行ない、上記面積率は、その平均値で評価することが好ましい。また、上記焼結体の内部における上記白色領域の面積率は、たとえば15%以上である。また、βサイアロン焼結体からなる転動体の転動疲労寿命を一層向上させるためには、上記緻密層は100μm以上の厚みを有していることが好ましい。
【0031】
上記転がり軸受において好ましくは、緻密層の断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は7%以下である。
【0032】
白色領域の面積率が7%以下となる程度に上記緻密層の緻密性を向上させることで、βサイアロン焼結体からなる転動体の転動疲労寿命がより向上する。したがって、上記構成により、本発明の転がり軸受の耐久性を一層向上させることができる。
【0033】
上記転がり軸受において好ましくは、緻密層の表面を含む領域には、緻密層内の他の領域よりもさらに緻密性の高い層である高緻密層が形成されている。
【0034】
緻密性のさらに高い高緻密層が緻密層の表面を含む領域に形成されることにより、βサイアロン焼結体からなる転動体の転動疲労に対する耐久性がより向上し、転がり軸受の寿命を一層向上させることができる。
【0035】
上記転がり軸受において好ましくは、高緻密層の断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は3.5%以下である。
【0036】
白色領域の面積率が3.5%以下となる程度に上記高緻密層の緻密性を向上させることで、βサイアロン焼結体からなる転動体の転動疲労寿命がより向上する。したがって、上記構成により、本発明の転がり軸受の耐久性を一層向上させることができる。
【発明の効果】
【0037】
以上の説明から明らかなように、本発明の転がり軸受によれば、高いヤング率に起因した寿命の低下を抑制しつつ、耐摩耗性や耐食性を向上することが可能な転がり軸受を提供することができる。
【発明を実施するための最良の形態】
【0038】
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
【0039】
図1は、本発明の一実施の形態における転がり軸受としてのアンギュラ玉軸受を含むターボポンプの構成を示す概略断面図である。以下、図1を参照して、本発明の一実施の形態における転がり軸受を含むターボポンプについて説明する。
【0040】
図1を参照して、本実施の形態におけるターボポンプ40は、液体水素/液体酸素2段燃焼式ロケットエンジンの液体酸素側を圧縮するものである。ターボポンプ40は大きく分けると、タービン室9、主ポンプ室30およびプリバーナポンプ室31から構成される。なお、図示は省略するが、液体水素/液体酸素2段燃焼式ロケットエンジンは、液体水素側を圧縮する同様のターボポンプも備えている。
【0041】
上述した遠心型ポンプとしての役割を有する主ポンプ室30には、案内羽根38および羽根車39を備えており、これらが回転する軸を、その軸に対向するように配置される部材に対して回転自在に支持するアンギュラ玉軸受1が備えられている。液体酸素は、主ポンプ入口36から主ポンプ室30の内部に流入し、インデューサ37を経て案内羽根38および羽根車39に達する。そして、案内羽根38および羽根車39の回転による遠心力により、流入した液体酸素は圧縮され、主ポンプ出口20からいったんターボポンプ40の外部へ流出する。
【0042】
主ポンプ出口20からターボポンプ40の外部へ流出した液体酸素は、ガス入口32からタービン室9およびプリバーナポンプ室31の内部へ流入する。タービン室9においては、ガス入口32からガス出口33へ流れるプリバーナからの一次燃焼ガスによりタービン動翼34が駆動され、約18000rpmの高速回転に達する。その回転がタービン軸35によりアンギュラ玉軸受1に伝達される。また、プリバーナポンプ室31側のアンギュラ玉軸受1には、プリバーナポンプ入口21から液体酸素が流入する。
【0043】
以上より、ターボポンプ40の内部に備えられる各アンギュラ玉軸受1には、液体酸素が流入するため、これらのアンギュラ玉軸受1は、氷点下183℃の極低温環境において使用されることになる。したがって、これらのアンギュラ玉軸受1に対して潤滑油などの流動性潤滑剤を使用することが困難であるため、これらのアンギュラ玉軸受1は、極低温環境下において、無潤滑に近い潤滑条件にて高速回転を支持することになる。このため、軸受を構成する各部品の摩耗を促進する可能性があるので、本発明の実施の形態において、高いヤング率に起因した寿命の低下を抑制しつつ、耐摩耗性や耐食性を向上することが可能な転がり軸受を提供した。
【0044】
次に、上記アンギュラ玉軸受1について説明する。図2は、本実施の形態における転がり軸受としてのアンギュラ玉軸受の構成を示す概略断面図である。また、図3は、図2の要部を拡大して示した概略部分断面図である。
【0045】
図2および図3を参照して、アンギュラ玉軸受1は、第1軌道部材としての外輪11と、第2軌道部材としての内輪12と、複数の転動体としての玉13と、保持器14とを備えている。外輪11の内周面には、円環状の第1転走面としての外輪転走面11Aが形成されている。内輪12の外周面には、外輪転走面11Aに対向する円環状の第2転走面としての内輪転走面12Aが形成されている。また、複数の玉13には、転動体転走面としての玉転走面13A(玉13の表面)が形成されている。そして、当該玉13は、外輪転走面11Aおよび内輪転走面12Aの各々に玉転走面13Aにおいて接触し、円環状の保持器14により周方向に所定のピッチで配置されることにより円環状の軌道上に転動自在に保持されている。これにより、外輪11と内輪12とは互いに相対的に回転可能となっている。
【0046】
ここで、アンギュラ玉軸受1においては、玉13と外輪11との接触点と、玉13と内輪12との接触点とを結ぶ直線は、ラジアル方向(アンギュラ玉軸受1の回転軸に垂直な方向)に対して角度をなしている。そのため、ラジアル方向の荷重だけでなく、アキシャル方向の荷重をも受けることが可能であるとともに、ラジアル方向の荷重が負荷されると、アキシャル方向(アンギュラ玉軸受1の回転軸の方向)への分力が生じる。本実施の形態のターボポンプ40では、全てのアンギュラ玉軸受1に加わるアキシャル方向への分力を互いに相殺しあうように配置されている。
【0047】
そして、本実施の形態における転動体としての玉13は、Si6−ZAl8−Zの組成式で表され、0.1≦z≦3.5を満たすβサイアロンを主成分とし、残部不純物からなる焼結体から構成され、ヤング率が180GPa以上270GPa以下となっている。
【0048】
さらに、図3を参照して、玉13の転走面である玉転走面13Aを含む領域には、内部13Cよりも緻密性の高い層である玉緻密層13Bが形成されている。この玉緻密層13Bの断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は7%以下である。そのため、本実施の形態おけるアンギュラ玉軸受1は、トラブル発生時における軌道部材の損傷を抑制しつつ、転動体の軽量化および耐焼付性の向上を達成することが可能な、極低温環境下において使用される転がり軸受となっている。上記不純物は、原料に由来するもの、あるいは製造工程において混入するものを含む不可避的不純物を含む。
【0049】
さらに、図3を参照して、玉緻密層13Bの表面である玉転走面13Aを含む領域には、玉緻密層13B内の他の領域よりもさらに緻密性の高い層である玉高緻密層13Dが形成されている。玉高緻密層13Dの断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は3.5%以下となっている。これにより、玉13の転動疲労に対する耐久性がより向上し、アンギュラ玉軸受1の耐久性が一層向上している。
【0050】
なお、上記本実施の形態においては、アンギュラ玉軸受1を構成する玉13は、βサイアロンを主成分とし、残部焼結助剤および不純物からなる焼結体から構成されていてもよい。焼結助剤を含むことで、焼結体の気孔率を低下させやすくなり、十分な耐久性を安定して確保することが可能なアンギュラ玉軸受1を、容易に提供することができる。上記不純物は、原料に由来するもの、あるいは製造工程において混入するものを含む不可避的不純物を含む。
【0051】
次に、本実施の形態における転がり軸受の製造方法について説明する。図4は、本発明の一実施の形態における転がり軸受の製造方法の概略を示す図である。また、図5は、本発明の一実施の形態におけるβサイアロン焼結体からなる転動体の製造方法の概略を示す図である。
【0052】
図4を参照して、本実施の形態における転がり軸受の製造方法においては、まず、軌道部材を製造する軌道部材製造工程と、転動体を製造する転動体製造工程とが実施される。具体的には、軌道部材製造工程では、外輪11、内輪12などが製造される。一方、転動体製造工程では、玉13などが製造される。
【0053】
そして、軌道部材製造工程において製造された軌道部材と、転動体製造工程において製造された転動体とを組み合わせることにより、転がり軸受を組立てる組立工程が実施される。具体的には、たとえば外輪11および内輪12と、玉13とを組み合わせることにより、アンギュラ玉軸受1が組立てられる。そして、転動体製造工程は、たとえば以下のβサイアロン焼結体からなる転動体の製造方法を用いて実施される。
【0054】
図5を参照して、本実施の形態におけるβサイアロン焼結体からなる転動体の製造方法においては、まず、βサイアロンの粉末を準備するβサイアロン粉末準備工程が実施される。βサイアロン粉末準備工程においては、たとえば燃焼合成法を採用した製造工程により、安価にβサイアロンの粉末を製造することができる。
【0055】
次に、βサイアロン粉末準備工程において準備されたβサイアロンの粉末に、焼結助剤を添加して混合する混合工程が実施される。この混合工程は、焼結助剤を添加しない場合、省略することができる。
【0056】
次に、図5を参照して、上記βサイアロンの粉末またはβサイアロンの粉末と焼結助剤との混合物を、転動体の概略形状に成形する成形工程が実施される。具体的には、上記βサイアロンの粉末またはβサイアロンの粉末と焼結助剤との混合物に、プレス成形、鋳込み成形、押し出し成形、転動造粒などの成形手法を適用することにより、玉13などの概略形状に成形された成形体が作製される。
【0057】
次に、上記成形体の表面が加工されることにより、当該成形体が焼結後に所望の転動体の形状により近い形状になるよう成形される焼結前加工工程が実施される。具体的には、グリーン体加工などの加工手法を適用することにより、上記成形体が焼結後に玉13などの形状により近い形状になるように加工される。この焼結前加工工程は、成形工程において上記成形体が成形された段階で、焼結後に所望の転動体の形状に近い形状が得られる状態である場合には省略することができる。
【0058】
次に、図5を参照して、上記成形体が焼結される焼結工程が実施される。具体的には、上記成形体が、たとえば1MPa以下の圧力下でヒータ加熱、マイクロ波やミリ波による電磁波加熱などの加熱方法により加熱されて焼結されることにより、玉13などの概略形状を有する焼結体が作製される。焼結は、不活性ガス雰囲気中または窒素と酸素との混合ガス雰囲気中において、1550℃以上1800℃以下の温度域に上記成形体が加熱されることにより実施される。不活性ガスとしては、ヘリウム、ネオン、アルゴン、窒素などが採用可能であるが、製造コスト低減の観点から、窒素が採用されることが好ましい。
【0059】
次に、焼結工程において作製された焼結体の表面が加工され、当該表面を含む領域が除去される仕上げ加工が実施されることにより、転動体を完成させる仕上げ工程が実施される。具体的には、焼結工程において作製された焼結体の表面を研磨することにより、転動体としての玉13などを完成させる。以上の工程により、本実施の形態におけるβサイアロン焼結体からなる転動体は完成する。
【0060】
ここで、上記焼結工程における焼結により、焼結体の表面から厚み500μm程度の領域には、内部よりも緻密性が高く、断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率が7%以下である緻密層が形成される。さらに、焼結体の表面から厚み150μm程度の領域には、緻密層内の他の領域よりもさらに緻密性が高く、断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率が3.5%以下である高緻密層が形成される。したがって、仕上げ工程においては、除去される焼結体の厚みは、特に転走面となるべき領域において150μm以下とすることが好ましい。これにより、玉転走面13Aを含む領域に、高緻密層を残存させ、玉13の転動疲労寿命を向上させることができる。
【0061】
なお、上記焼結工程は、βサイアロンの分解を抑制するため、0.01MPa以上の圧力下で行なうことが好ましく、低コスト化を考慮すると大気圧以上の圧力下で行なうことがより好ましい。また、製造コストを抑制しつつ緻密層を形成するためには、焼結工程は1MPa以下の圧力下で行なうことが好ましい。また、βサイアロン焼結体からなる転動体のヤング率を180GPa以上270GPa以下の所望の値に調整するためには、たとえばβサイアロン粉末準備工程において準備されるβサイアロン粉末のz値を、0.1≦z≦3.5の範囲で調節すればよい。より具体的には、z値を増加させることにより、βサイアロン焼結体のヤング率を低下させることができる。
【0062】
また、上記実施の形態における外輪11および内輪12の素材としては、たとえばJIS規格SUJ2などの高炭素クロム軸受鋼、SCM420などの機械構造用合金鋼、S53Cなどの機械構造用炭素鋼などの鋼を採用することができる。
【0063】
上記実施の形態においては、本発明の転がり軸受の一例としてアンギュラ玉軸受について説明したが、本発明の転がり軸受はこれに限られず、深溝玉軸受を始めとする玉軸受や、円筒ころ軸受を代表とするころ軸受に採用することができる。また、上記各実施の形態においては、液化ガスにより冷却される環境下において使用される、たとえばロケットエンジンのターボポンプのタービン軸の回転を支持する転がり軸受について説明した。しかし本発明の転がり軸受の用途はこれに限られず、たとえば液体窒素やLNGの搬送ポンプ用軸受において使用される転がり軸受など、極低温環境下において使用される種々の転がり軸受として採用することができる。これらの実施の形態においては、本発明の転がり軸受の軌道部材として、外輪および内輪が採用される場合について説明したが、軌道部材は、転動体が表面を転走するように使用される軸、ハウジングなどの部材であってもよい。すなわち、軌道部材は、転動体が転走するための転走面が形成された部材であればよい。
【実施例1】
【0064】
以下、本発明の実施例1について説明する。種々のz値を有するβサイアロン焼結体からなる転動体を有する転がり軸受を作製し、z値と転動疲労寿命(耐久性)との関係を調査する試験を行なった。試験の手順は以下のとおりである。
【0065】
まず、試験の対象となる試験軸受の作製方法について説明する。はじめに、燃焼合成法でz値を0.1〜4の範囲で作製したβサイアロンの粉末を準備し、上記実施の形態において図5に基づいて説明した転動体の製造方法と基本的に同様の方法で、z値が0.1〜4である転動体を作製した。具体的な作製方法は以下のとおりである。まず、サブミクロンに微細化されたβサイアロン粉末と、焼結助剤としての酸化アルミニウム(住友化学株式会社製、AKP30)および酸化イットリウム(H.C.Starck社製、Yttriumoxide grade C)とをボールミルを用いて湿式混合により混合した。その後、スプレードライヤーにて造粒を実施し、造粒粉を製造した。当該造粒粉を金型で球体に成形し、さらに冷間静水圧成形(CIP)で加圧を行ない、球状の成形体を得た。
【0066】
引き続き当該成形体に対して1次焼結として常圧焼結を行なった後、圧力200MPaの窒素雰囲気中でHIP(Hot Isostatic Press;熱間静水圧焼結)処理することで、焼結球体を製造した。次に、当該焼結球体にラッピング加工を行ない、3/8インチセラミック球(JIS等級 G5)とした。そして、別途準備した軸受鋼(JIS規格SUJ2)製の軌道輪と組み合わせて、JIS規格6206型番の軸受を作製した(実施例A〜J)。また、比較のため、窒化珪素からなる転動体、すなわちz値が0である転動体も上記βサイアロンからなる転動体と同様の方法で作製し、同様に軸受に組立てた(比較例A)。
【0067】
次に、試験条件について説明する。上述のように作製されたJIS規格6206型番の軸受に対し、最大接触面圧Pmax:3.2GPa、軸受回転数:2000rpm、潤滑:タービン油VG68(清浄油)の循環給油、試験温度:室温、の条件の下で運転する疲労試験を行なった。そして、振動検出装置により運転中の軸受の振動を監視し、転動体に破損が発生して軸受の振動が所定値を超えた時点で試験を中止するとともに、運転開始から中止までの時間を当該軸受の寿命として記録した。また、試験中止後、軸受を分解して転動体の破損状態を確認した。
【0068】
【表1】

【0069】
表1に本実施例の試験結果を示す。表1においては、各実施例および比較例における寿命が、比較例A(窒化珪素)における寿命を1とした寿命比で表されている。また、破損形態は、転動体の表面に剥離が発生した場合「剥離」、剥離が発生することなく表面が摩耗して試験が中止された場合「摩耗」と記載されている。
【0070】
表1を参照して、z値が0.1以上3.5以下となっている本発明の実施例A〜Hでは、窒化珪素(比較例A)と比較して遜色ない寿命を有している。また、破損形態も窒化珪素の場合と同様に「剥離」となっている。これに対し、z値が3.5を超える実施例Iでは、寿命が低下するとともに、転動体に摩耗が観察される。すなわち、z値が3.8である実施例Iでは、最終的には転動体に剥離が発生しているものの、転動体における摩耗が影響し、寿命が低下したものと考えられる。さらに、z値が4である実施例Jにおいては、短時間に転動体の摩耗が進行し、転がり軸受の耐久性がさらに低下している。
【0071】
以上のように、z値が0.1以上3.5以下の範囲においては、βサイアロン焼結体からなる転動体を備えた転がり軸受の耐久性は、窒化珪素の焼結体からなる転動体を備えた転がり軸受とほぼ同等である。これに対し、z値が3.5を超えると転動体が摩耗しやすくなり、これに起因して転動疲労寿命が低下する。さらに、z値が大きくなると、βサイアロンからなる転動体の破損原因が「剥離」から「摩耗」に変化し、転動疲労寿命が一層低下することが明らかとなった。このように、z値を0.1以上3.5以下とすることにより、安価で、かつ耐久性に優れたβサイアロン焼結体からなる転動体が得られることが確認された。
【0072】
なお、表1を参照して、z値が3を超える3.5の実施例Hにおいては、転動体には僅かな摩耗が発生しており、寿命も実施例A〜Gに比べて低下している。このことから、十分な耐久性をより安定して確保するためには、z値は3以下とすることが望ましいといえる。
【0073】
また、上記実験結果より、窒化珪素からなる転動体と同等以上の耐久性(寿命)を得るには、z値は2以下とすることが好ましく、1.5以下とすることが、より好ましい。一方、燃焼合成を採用した製造工程によるβサイアロン粉体の作製の容易性を考慮すると、十分に自己発熱による反応が期待できる0.5以上のz値を採用することが好ましい。
【実施例2】
【0074】
以下、本発明の実施例2について説明する。種々のz値を有するβサイアロン焼結体からなる転動体を有する転がり軸受を作製し、当該転がり軸受に対して衝撃が作用する環境下におけるz値と転動疲労寿命との関係を調査する試験を行なった。試験の手順は以下のとおりである。
【0075】
まず、試験の対象となる試験軸受の作製方法について説明する。はじめに、燃焼合成法でz値を0.1〜3.5の範囲で作製したβサイアロンの粉末を準備し、上記実施例1と同様の方法で、z値が0.1〜3.5である転動体を作製した。そして、別途準備した様々な鋼材を素材として製作した軌道輪と組み合わせて、JIS規格6206型番の軸受を作製した(実施例A〜J)。軌道輪を構成する鋼としては、JIS規格SUJ2、SCM420、SCr420、S53C、S45C、S40CおよびAISI規格M50を採用した。また、比較のため、窒化珪素からなる転動体、すなわちz値が0である転動体も上記βサイアロンからなる転動体と同様の方法で作製し、同様に軸受に組立てた(比較例A)。
【0076】
次に、試験条件について説明する。上述のように作製されたJIS規格6206型番の軸受に対し、最大接触面圧Pmax:2.5GPa、軸受回転数:500rpm、潤滑:タービン油VG68循環給油、加振条件:2500N(50Hz)、試験温度:室温の条件の下で運転する加振衝撃疲労試験を行なった。そして、振動検出装置により運転中の軸受の振動を監視し、軸受に破損が発生して軸受の振動が所定値を超えた時点で試験を中止するとともに、運転開始から中止までの時間を当該軸受の寿命として記録した。また、試験中止後、軸受を分解して軸受の破損状態を確認した。
【0077】
【表2】

【0078】
表2に本実施例の試験結果を示す。表2においては、各欄内の上段に各実施例および比較例における寿命が、軌道輪の材質をSUJ2とした場合の比較例A(窒化珪素)の寿命を1とした寿命比で表されている。また、各欄内の下段には、軸受の破損部位(軌道輪または玉)が記載されている。
【0079】
表2を参照して、z値が0.5以上3.0以下となっている本発明の実施例C〜Hは、窒化珪素(比較例A)と比較して明確に長寿命となっている。ここで、表2に示すように、破損部位は窒化珪素の場合と同様に軌道部材(軌道輪)となっており、破損形態は剥離であった。これに対し、z値が3.0を超える実施例IおよびJでは、寿命が低下するとともに、転動体(玉)の破損(剥離)が先行する。すなわち、z値が3.25である実施例Iでは、衝撃の影響によりβサイアロン焼結体からなる軸受部品(玉)に損傷が生じ、寿命が低下したものと考えられる。さらに、z値が3.5である実施例Jおいては、さらに短時間に転動体の剥離が生じ、転がり軸受の耐久性が一層低下している。
【0080】
一方、z値が0.5より小さい実施例AおよびBでは、寿命が比較例Aとほぼ同じ程度にまで低下するとともに、軌道部材の破損(剥離)が先行する。すなわち、z値が0.25である実施例Bでは、z値が0(窒化珪素)である比較例Aとの物性の差が小さくなる。そのため、βサイアロン焼結体からなる玉と、当該玉に相対する軌道部材との衝突によって、一方的に軌道部材側に損傷が生じ、窒化珪素焼結体からなる玉を採用した比較例A並みにまで寿命が低下したものと考えられる。
【0081】
さらに、表2を参照して、z値が0.5以上3.0以下となっている場合であっても、相対する軌道輪の硬度(表面硬度)がHV680未満である場合、軌道輪の硬度がHV680以上の場合に比べて寿命が低下する傾向にある。これは、軌道輪の硬度が低い場合、βサイアロン焼結体からなる玉と、当該玉に相対する軌道部材との衝突によって、軌道部材側に損傷が生じ易くなるためであると考えられる。
【0082】
以上のように、z値が3.0を超えるとβサイアロン焼結体からなる軸受部品自身が破損し易くなる一方、z値が0.5未満では、相手部材との間の接触面圧が増加し、相手部材に損傷が発生しやすくなる。そして、z値を0.5以上3.0以下とすることにより、転動体を構成する素材の強度と、軌道部材との間の接触面圧の低減とのバランスが確保される。その結果、軸受に対して衝撃が作用する環境下において、βサイアロン焼結体からなる転動体を含む転がり軸受の寿命が向上することが確認された。特に、軌道部材が鋼からなる場合、軌道部材の物性と転動体の物性とがほどよく調和して、衝撃、振動等による損傷の発生を抑制することができる。このように、転動体を構成するβサイアロンのz値を0.5以上3.0以下とすることにより、振動や衝撃が作用した場合における転がり軸受の耐久性を向上させることができることが確認された。
【0083】
また、軌道部材が鋼からなる場合、当該軌道部材の損傷を抑制するため、軌道部材の表面硬度はHV680以上とすることが好ましいことが確認された。
【実施例3】
【0084】
以下、本発明の実施例3について説明する。本発明の転がり軸受を構成するβサイアロンからなる転動体の緻密層および高緻密層の形成状態を調査する試験を行なった。試験の手順は以下のとおりである。
【0085】
はじめに、燃焼合成法で作製した組成がSiAlONであるβサイアロンの粉末(株式会社イスマンジェイ製、商品名メラミックス)を準備し、上記実施の形態において図5に基づいて説明した転動体の製造方法と同様の方法で、一辺が約10mmの立方体試験片を作製した。具体的な製造方法は次のとおりである。まず、サブミクロンに微細化されたβサイアロン粉末と、焼結助剤としての酸化アルミニウム(住友化学株式会社製、AKP30)および酸化イットリウム(H.C.Starck社製、Yttriumoxide grade C)とをボールミルを用いて湿式混合により混合した。その後、スプレードライヤーにて造粒を実施し、造粒粉を製造した。当該造粒粉を金型で所定の形状に成形し、さらに冷間静水圧成形(CIP)で加圧を行ない、成形体を得た。引き続き当該成形体を圧力0.4MPaの窒素雰囲気中で1650℃に加熱して焼結することで(常圧焼結)、上記立方体試験片を製造した。
【0086】
その後、当該試験片を切断し、切断された面をダイヤモンドラップ盤でラッピングした後、酸化クロムラップ盤による鏡面ラッピングを実施することにより、立方体の中心を含む観察用の断面を形成した。そして、当該断面を光学顕微鏡(株式会社ニコン製、マイクロフォト−FXA)の斜光で観察し、倍率50倍のインスタント写真(フジフイルム株式会社製 FP−100B)を撮影した。その後、得られた写真の画像を、スキャナーを用いて(解像度300DPI)パーソナルコンピューターに取り込んだ。そして、画像処理ソフト(三谷商事株式会社製 WinROOF)を用いて輝度閾値による2値化処理を行なって(本実施例での2値化分離閾値:140)、白色領域の面積率を測定した。
【0087】
次に、試験結果について説明する。図6は、試験片の上記観察用の断面を光学顕微鏡の斜光で撮影した写真である。また、図7は、図6の写真の画像を、画像処理ソフトを用いて輝度閾値により2値化処理した状態を示す一例である。また、図8は、図6の写真の画像を、画像処理ソフトを用いて輝度閾値により2値化処理して白色領域の面積率を測定する際に、画像処理を行なう領域(評価領域)を示す図である。図6において、写真上側が試験片の表面側であり、上端が表面である。
【0088】
図6および図7を参照して、上記実施の形態と同様の製造方法により作製された本実施例における試験片は、表面を含む領域に内部よりも白色領域の少ない層が形成されていることがわかる。そして、図8に示すように、撮影された写真の画像を試験片の最表面からの距離に応じて3つの領域(最表面からの距離が150μm以内の領域、150μmを超え500μm以内の領域、500μmを超え800μm以内の領域)に分け、領域毎に画像解析を行なって白色領域の面積率を算出したところ、表3に示す結果が得られた。表3においては、図8に示した各領域を1視野として、無作為に撮影された5枚の写真から得られる5視野における白色領域の面積率の、平均値と最大値とが示されている。
【0089】
【表3】

【0090】
表3を参照して、本実施例における白色領域の面積率は、内部において18.5%であったのに対し、表面からの深さが500μm以下である領域においては3.7%、表面からの深さが150μm以下の領域においては1.2%となっていた。このことから、上記実施の形態と同様の上記製造方法により作製された本実施例における試験片においては、表面を含む領域に内部よりも白色領域の少ない緻密層および高緻密層が形成されていることが確認された。
【実施例4】
【0091】
以下、本発明の実施例4について説明する。本発明の転がり軸受を構成するβサイアロン焼結体からなる転動体の転動疲労寿命を確認する試験を行なった。試験の手順は以下のとおりである。
【0092】
まず、試験の対象となる試験軸受の作製方法について説明する。はじめに、燃焼合成法で作製した組成がSiAlONであるβサイアロンの粉末(株式会社イスマンジェイ製、商品名メラミックス)を準備し、上記実施の形態において図5に基づいて説明した転動体の製造方法と同様の方法で直径9.525mmの3/8インチセラミック球を作製した。具体的な製造方法は次のとおりである。まず、サブミクロンに微細化されたβサイアロン粉末と、焼結助剤としての酸化アルミニウム(住友化学株式会社製、AKP30)および酸化イットリウム(H.C.Starck社製、Yttriumoxide grade C)とをボールミルを用いて湿式混合により混合した。その後、スプレードライヤーにて造粒を実施し、造粒粉を製造した。当該造粒粉を金型で球体に成形し、さらに冷間静水圧成形(CIP)で加圧を行ない球状の成形体を得た。
【0093】
次に、当該成形体に対して焼結後の加工代が所定の寸法となるようにグリーン体加工を行ない、引き続き当該成形体を圧力0.4MPaの窒素雰囲気中で1650℃に加熱して焼結することで、焼結球体を製造した。次に、当該焼結球体にラッピング加工を行ない、3/8インチセラミック球(転動体;JIS等級 G5)とした。そして、別途準備した軸受鋼(JIS規格SUJ2)製の軌道輪と組み合わせて、JIS規格6206型番の軸受を作製した。ここで、上記焼結球体に対するラッピング加工により除去される焼結球体の厚み(加工代)を8段階に変化させ、8種類の軸受を作製した(実施例A〜H)。一方、比較のため、窒化珪素および焼結助剤からなる原料粉末を用いて加圧焼結法により焼結した焼結球体(日本特殊陶業株式会社製 EC141)に対して、上述と同様にラッピング加工を行ない、別途準備した軸受鋼(JIS規格SUJ2)製の軌道輪と組み合わせて、JIS規格6206型番の軸受を作製した(比較例A)。ラッピング加工による加工代は0.25mmとした。
【0094】
次に、試験条件について説明する。上述のように作製されたJIS規格6206型番の軸受に対し、最大接触面圧Pmax:3.2GPa、軸受回転数:2000rpm、潤滑:タービン油VG68(清浄油)の循環給油、試験温度:室温、の条件の下で運転する疲労試験を行なった。そして、振動検出装置により運転中の軸受の振動を監視し、転動体に破損が発生して軸受の振動が所定値を超えた時点で試験を中止するとともに、運転開始から中止までの時間を当該軸受の寿命として記録した。なお、試験数は実施例、比較例ともに15個ずつとし、そのL10寿命を算出した上で、比較例Aに対する寿命比で耐久性を評価した。
【0095】
【表4】

【0096】
表4に本実施例の試験結果を示す。表4を参照して、実施例の軸受の寿命は、その製造コスト等を考慮するといずれも良好であるといえる。そして、加工代を0.5mm以下とすることにより転動体の表面に緻密層を残存させた実施例D〜Gの軸受の寿命は、比較例Aの寿命の1.5〜2倍程度となっていた。さらに、加工代を0.15mm以下とすることにより転動体の表面に高緻密層を残存させた実施例A〜Cの軸受の寿命は、比較例Aの寿命の3倍程度となっていた。このことから、本発明の転がり軸受は、耐久性において優れていることが確認された。そして、本発明の転がり軸受は、βサイアロン焼結体からなる転動体の加工代を0.5mm以下として、表面に緻密層を残存させることにより寿命が向上し、加工代を0.15mm以下として、表面に高緻密層を残存させることにより寿命がさらに向上することが分かった。
【0097】
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
【図面の簡単な説明】
【0098】
【図1】本発明の一実施の形態における転がり軸受としてのアンギュラ玉軸受を含むターボポンプの構成を示す概略断面図である。
【図2】本実施の形態における転がり軸受としてのアンギュラ玉軸受の構成を示す概略断面図である。
【図3】図2の要部を拡大して示した概略部分断面図である。
【図4】本発明の一実施の形態における転がり軸受の製造方法の概略を示す図である。
【図5】本発明の一実施の形態におけるβサイアロン焼結体からなる転動体の製造方法の概略を示す図である。
【図6】試験片の上記観察用の断面を光学顕微鏡の斜光で撮影した写真である。
【図7】図6の写真の画像を、画像処理ソフトを用いて輝度閾値により2値化処理した状態を示す一例である。
【図8】図6の写真の画像を、画像処理ソフトを用いて輝度閾値により2値化処理して白色領域の面積率を測定する際に、画像処理を行なう領域(評価領域)を示す図である。
【符号の説明】
【0099】
1 アンギュラ玉軸受、9 タービン室、11 外輪、11A 外輪転走面、12 内輪、12A 内輪転走面、13 玉、13A 玉転走面、13B 玉緻密層、13C 内部、13D 玉高緻密層、14 保持器、20 主ポンプ出口、21 プリバーナポンプ入口、30 主ポンプ室、31 プリバーナポンプ室、32 ガス入口、33 ガス出口、34 タービン動翼、35 タービン軸、 36 主ポンプ入口、37 インデューサ、38 案内羽根、39 羽根車、40 ターボポンプ。

【特許請求の範囲】
【請求項1】
液化ガスにより冷却される環境下において使用される転がり軸受であって、
軌道部材と、
前記軌道部材に接触し、円環状の軌道上に配置される転動体とを備え、
前記転動体は、窒化珪素からなる場合に比べて前記軌道部材に対する衝撃を抑制することが可能なセラミックスからなっている、転がり軸受。
【請求項2】
ターボポンプのタービン軸を、前記タービン軸に対向するように配置される部材に対して回転自在に支持する転がり軸受であって、
軌道部材と、
前記軌道部材に接触し、円環状の軌道上に配置される転動体とを備え、
前記転動体は、窒化珪素からなる場合に比べて前記軌道部材に対する衝撃を抑制することが可能なセラミックスからなっている、転がり軸受。
【請求項3】
前記転動体は、βサイアロンを主成分とし、不純物からなる焼結体から構成される、請求項1または2に記載の転がり軸受。
【請求項4】
前記転動体は、βサイアロンを主成分とし、残部焼結助剤および不純物からなる焼結体から構成される、請求項1または2に記載の転がり軸受。
【請求項5】
前記βサイアロンは、Si6−ZAl8−Zの組成式で表され、0.1≦z≦3.5を満たす、請求項3または4のいずれか1項に記載の転がり軸受。
【請求項6】
前記βサイアロンは、Si6−ZAl8−Zの組成式で表され、0.5≦z≦3.0を満たす、請求項3または4のいずれか1項に記載の転がり軸受。
【請求項7】
前記転動体のヤング率は180GPa以上270GPa以下である、請求項1〜6のいずれか1項に記載の転がり軸受。
【請求項8】
前記転動体のヤング率は220GPa以上260GPa以下である、請求項1〜6のいずれか1項に記載の転がり軸受。
【請求項9】
前記軌道部材は鋼からなり、
前記軌道部材の表面硬度はHV680以上となっている、請求項1〜8のいずれか1項に記載の転がり軸受。
【請求項10】
前記転動体は、前記軌道部材と接触する面である転走面を含む領域に、内部よりも緻密性の高い層である緻密層を有している、請求項1〜9のいずれか1項に記載の転がり軸受。
【請求項11】
前記緻密層の断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は7%以下である、請求項10に記載の転がり軸受。
【請求項12】
前記緻密層の表面を含む領域には、前記緻密層内の他の領域よりもさらに緻密性の高い層である高緻密層が形成されている、請求項10または11に記載の転がり軸受。
【請求項13】
前記高緻密層の断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は3.5%以下である、請求項12に記載の転がり軸受。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−1988(P2010−1988A)
【公開日】平成22年1月7日(2010.1.7)
【国際特許分類】
【出願番号】特願2008−161870(P2008−161870)
【出願日】平成20年6月20日(2008.6.20)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】