説明

透明でガスバリア性の高い基材及びその製造方法

高いガスバリア性能を持ち、環境耐久性に優れ、かつ曲げてもそのバリア性能が劣化しない透明ハイバリアフィルムが生産性良く提供される。基材の製造方法として、支持体上に少なくとも有機層および無機層を有する基材の製造方法において、前記無機層が、大気圧又はその近傍の圧力下、放電空間に薄膜形成ガスを含有するガスを供給し前記放電空間に高周波電界を印加し前記ガスを励起し基材を励起した前記ガスに晒すことで形成され、前記高周波電界は、第1の高周波電界および第2の高周波電界を重畳したものであり、前記第1の高周波電界の周波数ω1より前記第2の高周波電界の周波数ω2が高く、前記第1の高周波電界の強さV、前記第2の高周波電界の強さVと放電開始電界の強さIVとがV≧IV>VまたはV>IV≧Vを満たし、前記第2の高周波電界の出力密度が1W/cm以上であることを特徴とする基材の製造方法である。

【発明の詳細な説明】
【技術分野】
本発明は、光学部材、エレクトロニクス部材、一般包装部材、薬品包装部材などの幅広い用途に応用が可能な透明でガスバリア性の高い基材及びこれを用いたエレクトロルミネッセンス用ディスプレイ基板に関する。
【背景技術】
従来より、プラスチック基板やフィルムの表面に酸化アルミニウム、酸化マグネシウム、酸化珪素等の金属酸化物の薄膜を形成したガスバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変質を防止するための包装用途に広く用いられている。また、包装用途以外にも液晶表示素子、太陽電池、エレクトロルミネッセンス(EL)基板等で使用されている。特に液晶表示素子、EL素子などへの応用が進んでいる透明基材には、近年、軽量化、大型化という要求に加え、長期信頼性や形状の自由度が高いこと、曲面表示が可能であること等の高度な要求が加わり、重く割れやすく大面積化が困難なガラス基板に代わって透明プラスチック等のフィルム基材が採用され始めている。
また、プラスチックフィルムは上記要求に応えるだけでなく、ロールトゥロール方式が可能であることからガラスよりも生産性が良くコストダウンの点でも有利である。しかしながら、透明プラスチック等のフィルム基材はガラスに対しガスバリア性が劣るという問題がある。ガスバリア性が劣る基材を用いると、水蒸気や空気が浸透し、例えば液晶セル内の液晶を劣化させ、表示欠陥となって表示品位を劣化させてしまう。
この様な問題を解決するためにフィルム基板上に金属酸化物薄膜を形成してガスバリア性フィルム基材とすることが知られている。包装材や液晶表示素子に使用されるガスバリア性フィルムとしてはプラスチックフィルム上に酸化珪素を蒸着したもの(特許文献1)や酸化アルミニウムを蒸着したもの(特許文献2)が知られており、いずれも1g/m/day程度の水蒸気バリア性を有する。
近年では、さらなるガスバリア性が要求される有機ELディスプレイや、液晶ディスプレイの大型化、高精細ディスプレイ等の開発によりフィルム基板へのガスバリア性能について水蒸気バリアで0.1g/m/day程度まで要求が上がってきている。これに応えるためにより高いバリア性能が期待できる手段として、低圧条件下でグロー放電させて生じるプラズマを用いて薄膜を形成させるスパッタリング法やCVD法による成膜検討が行われている。また、有機層/無機層の交互積層構造を有するバリア膜を真空蒸着法により作製する技術が特許文献3に提案されている。しかしながら、これらの薄膜形成法は低圧条件下で処理を行う必要があり、低圧を得るために、容器は高価な真空チャンバーを必要とし、さらに真空排気装置を設置する必要がある。また、真空中で処理するため大面積の基板に処理しようとすると、大きな真空容器を使用しなければならず、かつ、真空排気装置も大出力のものが必要となる。その結果、設備が極めて高価なものになると同時に、吸水率の高いプラスチック基板の表面処理を行う場合、吸水した水分が気化するため、真空引きに長時間を用し、処理コストが高くなるという問題点もあった。さらに、一回処理を行う毎に、真空容器の真空を壊して取り出し、有機層を形成するなどの次工程を大気圧下で行う必要があるため、特に、水蒸気バリア性を得るために、有機層、無機層を多層化すればするほど、生産性が大きく損なわれていた。
一方、大気圧近傍の圧力下で放電プラズマを発生させる方法があり、例えば、特許文献4のような、大気圧近傍のヘリウムとケトンの混合雰囲気下で発生させたプラズマを用いて処理を行う方法や、特許文献5のような、アルゴン並びにヘリウム又はアセトンからなる大気圧近傍の雰囲気下で発生させたプラズマに上り処理を行う方法等が開示されている。さらに、特許文献6,7には、大気圧近傍の圧力下で、金属化合物を含むガス雰囲気中で電界を印加することにより、放電プラズマを発生させ金属含有薄膜を形成する方法が開示されている。これらの中には、安価に生産性良く、無機膜を作製できるものもあるが、ガスバリア性の付与を目的とするものではなく、特にフレキシブル表示デバイスに応用するための条件である曲げに対するバリア性の劣化については十分なものではなかった。
特許文献8には、大気圧の近傍下、放電プラズマ処理を利用することにより作製された有機層/無機層の交互積層構造を有するバリア膜を形成する方法が開示されているが、放電ガスに高価なアルゴンを用いているためコストアップの原因になる。また、放電プラズマ処理条件として、特許文献9に記載されている公知の単周波数のパルス電界を用いる処理条件を使用している為、プラズマ密度が低く、良質な膜が得られないばかりか、製膜速度も遅く、生産性が非常に低い。
[特許文献1]特公昭53−12953号公報
[特許文献2]特開昭58−217344号公報
[特許文献3]世界公開第00/026973号パンフレット
[特許文献4]特公平2−48626号公報
[特許文献5]特開平4−74525号公報
[特許文献6]特開平10−106387号公報
[特許文献7]特開2001−49443号公報
[特許文献8]特開2003−191370号公報
[特許文献9]特開2001−49443号公報
本発明の目的は、従来よりも高いガスバリア性能を持ち、環境耐久性に優れ、かつ曲げてもそのバリア性能が劣化しない透明ハイバリアフィルムを生産性良く提供することにある。
【発明の開示】
すなわち本発明は、以下の構成により達成されるものである。
(構成1) 支持体の上に少なくとも1層の有機層と少なくとも1層の無機層とを有する基材の製造方法において、前記無機層の少なくとも1層を、大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガスを含有するガスを供給し、前記放電空間に高周波電界を印加することにより前記ガスを励起し、励起した前記ガスに基材を晒すことにより形成し、前記高周波電界が、第1の高周波電界および第2の高周波電界を重畳したものであり、前記第1の高周波電界の周波数ω1より前記第2の高周波電界の周波数ω2が高く、前記第1の高周波電界の強さV、前記第2の高周波電界の強さVおよび放電開始電界の強さIVとの関係が、
≧IV>V
または V>IV≧V を満たし、
前記第2の高周波電界の出力密度が、1W/cm以上であることを特徴とする基材の製造方法。
(構成2) 前記放電空間が、対向する第1電極と第2電極とで構成されることを特徴とする構成1に記載の基材の製造方法。
(構成3) 前記第2の高周波電界の出力密度が、50W/cm以下であることを特徴とする構成1に記載の基材の製造方法。
(構成4) 前記第2の高周波電界の出力密度が、20W/cm以下であることを特徴とする構成3に記載の基材の製造方法。
(構成5) 前記第1の高周波電界の出力密度が1W/cm以上であることを特徴とする構成1に記載の基材の製造方法。
(構成6) 前記第1の高周波電界の出力密度が、50W/cm以下であることを特徴とする構成5に記載の基材の製造方法。
(構成7) 前記第1の高周波電界および前記第2の高周波電界がサイン波であることを特徴とする構成1に記載の基材の製造方法。
(構成8) 前記第1の高周波電界を前記第1電極に印加し、前記第2の高周波電界を前記第2電極に印加することを特徴とする構成2に記載の基材の製造方法。
(構成9) 前記放電空間に供給されるガスが放電ガスを含み、供給される全ガス量の90〜99.9体積%が放電ガスであることを特徴とする構成1に記載の基材の製造方法。
(構成10) 前記放電ガスが、50〜100体積%の窒素ガスを含有することを特徴とする構成9に記載の基材の製造方法。
(構成11) 前記放電ガスが、50体積%未満の希ガスを含有することを特徴とする構成10に記載の基材の製造方法。
(構成12) 前記薄膜形成ガスが、有機金属化合物、ハロゲン化金属、金属水素化合物から選ばれる少なくとも一つを含有することを特徴とする構成1に記載の基材の製造方法。
(構成13) 前記有機金属化合物が、有機珪素化合物、有機チタン化合物、有機錫化合物、有機亜鉛化合物、有機インジウム化合物および有機アルミニウム化合物から選ばれる少なくとも一つの化合物を含有することを特徴とする構成12に記載の基材の製造方法。
(構成14) 前記有機層と前記無機層が隣接して積層されたことを特徴とする構成1に記載の基材の製造方法。
(構成15) 前記有機層と前記無機層が交互に積層されたことを特徴とする構成14に記載の基材の製造方法。
(構成16) 構成1〜15の何れか1構成に記載の基材の製造方法により製造された基材。
【図面の簡単な説明】
第1図は本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。
第2図は本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。
第3図は導電性の金属質母材とその上に被覆されている誘電体を有するロール回転電極の一例を示す斜視図である。
第4図は角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。
【発明を実施するための最良の形態】
次に本発明を実施するための最良の形態について説明するが、本発明はこれにより限定されるものではない。以下、本発明を詳細に説明する。
本発明で用いられる「無機層」とは、膜中の金属原子(Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等)の含有率が原子数濃度として5%を超えている層であり、好ましくは10%以上、更に好ましくは20%以上の層である。無機膜の金属原子濃度については、XPS表面分析装置により測定することができる。
大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガスを含有するガスを供給し、前記放電空間に高周波電界を印加することにより前記ガスを励起し、基材を励起した前記ガスに晒すことにより形成される。
前記高周波電界が、第1の高周波電界および第2の高周波電界を重畳したものであり、前記第1の高周波電界の周波数ω1より前記第2の高周波電界の周波数ω2が高く、前記第1の高周波電界の強さV、前記第2の高周波電界の強さVおよび放電開始電界の強さIVとの関係が、
≧IV>V
または V>IV≧V を満たし、かつ、
前記第2の高周波電界の出力密度が、1W/cm以上であることを特徴とする。
次に、放電空間に供給するガスについて説明する。供給するガスは、少なくとも放電ガスおよび薄膜形成ガスを含有する。放電ガスと薄膜形成ガスは混合して供給してもよいし、別々に供給してもかまわない。放電ガスとは、薄膜形成可能なグロー放電を起こすことのできるガスである。放電ガスとしては、窒素、希ガス、空気、水素ガス、酸素などがあり、これらを単独で放電ガスとして用いても、混合して用いてもかまわない。本発明において、放電ガスとして好ましいのは窒素である。放電ガスの50〜100体積%が窒素ガスであることが好ましい。このとき、放電ガスとして窒素以外の放電ガスとしては、希ガスを50体積%未満含有することが好ましい。また、放電ガスの量は、放電空間に供給する全ガス量に対し、90〜99.9体積%含有することが好ましい。薄膜形成ガスとは、それ自身が励起して活性となり、基材上に化学的に堆積して薄膜を形成する原料のことである。
次に、本発明に使用する薄膜を形成するために放電空間に供給するガスについて説明する。基本的に放電ガスと薄膜形成ガスであるが、更に、添加ガスを加えることもある。放電空間に供給する全ガス量中、放電ガスを90〜99.9体積%含有することが好ましい。本発明に使用する薄膜形成ガスとしては、有機金属化合物、ハロゲン金属化合物、金属水素化合物等を挙げることができる。
本発明に有用な有機金属化合物は下記の一般式(I)で示すものが好ましい。
一般式(I)
xMRyR
式中、Mは金属、Rはアルキル基、Rはアルコキシ基、Rはβ−ジケトン配位基、β−ケトカルボン酸エステル配位基、β−ケトカルボン酸配位基及びケトオキシ基(ケトオキシ配位基)から選ばれる基であり、金属Mの価数をmとした場合、x+y+z=mであり、x=0〜m、またはx=0〜m−1であり、y=0〜m、z=0〜mで、何れも0または正の整数である。Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基等を挙げることができる。Rのアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、3,3,3−トリフルオロプロポキシ基等を挙げることができる。またアルキル基の水素原子をフッ素原子に置換したものでもよい。Rのβ−ジケトン配位基、β−ケトカルボン酸エステル配位基、β−ケトカルボン酸配位基及びケトオキシ基(ケトオキシ配位基)から選ばれる基としては、β−ジケトン配位基として、例えば、2,4−ペンタンジオン(アセチルアセトンあるいはアセトアセトンともいう)、1,1,1,5,5,5−ヘキサメチル−2,4−ペンタンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、1,1,1−トリフルオロ−2,4−ペンタンジオン等を挙げることができ、β−ケトカルボン酸エステル配位基として、例えば、アセト酢酸メチルエステル、アセト酢酸エチルエステル、アセト酢酸プロピルエステル、トリメチルアセト酢酸エチル、トリフルオロアセト酢酸メチル等を挙げることができ、β−ケトカルボン酸配位基として、例えば、アセト酢酸、トリメチルアセト酢酸等を挙げることができ、またケトオキシとして、例えば、アセトオキシ基(またはアセトキシ基)、プロピオニルオキシ基、ブチリロキシ基、アクリロイルオキシ基、メタクリロイルオキシ基等を挙げることができる。これらの基の炭素原子数は、上記例有機金属示化合物を含んで、18以下が好ましい。また例示にもあるように直鎖または分岐のもの、また水素原子をフッ素原子に置換したものでもよい。
本発明において取り扱いの問題から、爆発の危険性の少ない有機金属化合物が好ましく、分子内に少なくとも一つ以上の酸素を有する有機金属化合物が好ましい。このようなものとしてRのアルコキシ基を少なくとも一つを含有する有機金属化合物、またRのβ−ジケトン配位基、β−ケトカルボン酸エステル配位基、β−ケトカルボン酸配位基及びケトオキシ基(ケトオキシ配位基)から選ばれる基を少なくとも一つ有する金属化合物が好ましい。
具体的な有機金属化合物について以下に示す。有機珪素化合物としては、例えば、テトラエチルシラン、テトラメチルシラン、テトライソプロピルシラン、テトラブチルシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルシランジ(2,4−ペンタンジオナート)、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン等、珪素水素化合物としては、テトラ水素化シラン、ヘキサ水素化ジシラン等、ハロゲン化珪素化合物としては、テトラクロロシラン、メチルトリクロロシラン、ジエチルジクロロシラン等を挙げることができ、何れも本発明において好ましく用いることができる。また、前記フッ素化合物を使用することができる。これらの薄膜形成性ガスを2種以上を同時に混合して使用することができる。
本発明に有用な薄膜形成性ガスに使用するチタン化合物としては、有機チタン化合物、チタン水素化合物、ハロゲン化チタン等があり、有機チタン化合物としては、例えば、トリエトキシチタン、トリメトキシチタン、トリイソプロポキシチタン、トリブトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、メチルジメトキシチタン、エチルトリエトキシチタン、メチルトリイソプロポキシチタン、トリエチルチタン、トリイソプロピルチタン、トリブチルチタン、テトラエチルチタン、テトライソプロピルチタン、テトラブチルチタン、テトラジメチルアミノチタン、ジメチルチタンジ(2,4−ペンタンジオナート)、エチルチタントリ(2,4−ペンタンジオナート)、チタントリス(2,4−ペンタンジオナート)、チタントリス(アセトメチルアセタート)、トリアセトキシチタン、ジプロポキシプロピオニルオキシチタン等、ジブチリロキシチタン、チタン水素化合物としてはモノチタン水素化合物、ジチタン水素化合物等、ハロゲン化チタンとしては、トリクロロチタン、テトラクロロチタン等を挙げることができ、何れも本発明において好ましく用いることができる。またこれらの薄膜形成性ガスを2種以上を同時に混合して使用することができる。
本発明において、放電空間に供給するガスには、放電ガス、薄膜形成性ガスの他に、薄膜形成の反応を促進する添加ガスを混合してもよい。添加ガスとしては、酸素、オゾン、過酸化水素、二酸化炭素、一酸化炭素、水素、アンモニア等を挙げることができるが、酸素、一酸素化炭素及び水素が好ましく、これらから選択される成分を混合させるのが好ましい。その含有量はガス全量に対して0.01〜5体積%含有させることが好ましく、それによって反応促進され、且つ、緻密で良質な薄膜を形成することができる。
本発明において、薄膜形成性ガスに使用する有機金属化合物、ハロゲン化金属、金属水素化合物の金属として、Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等を挙げることができる。本発明の薄膜形成方法で、上記のような有機金属化合物、ハロゲン金属化合物、金属水素化合物等の金属化合物を放電ガスと共に使用することにより様々な無機薄膜を得ることができる。本発明の無機薄膜の例を以下に示すが、本発明はこれに限られるものではない。例えばSi、Al、In、Sn、Zn、Ti、Cu、Ce、Ta、Zr、Nb等の1種以上を含む酸化物もしくは窒化物もしくは酸化窒化物などを用いることができる。
また、薄膜には、上記金属化合物以外に、炭素化合物、窒素化合物、水素化合物等の不純物が含有されてもよい。
本発明の無機膜には有機無機ハイリッド膜を用いることもできる。有機無機ハイブリッド膜は、薄膜形成性ガスとして前記の有機金属化合物、またはハロゲン金属化合物、または金属水素化合物とプラズマ重合可能な有機物の混合ガスを用いることで容易に形成できる。プラズマ重合可能な有機物としては、炭化水素、ビニル化合物、含ハロゲン化合物、含窒素化合物を挙げることができる。炭化水素としては、例えば、エタン、エチレン、メタン、アセチレン、シクロヘキサン、ベンゼン、キシレン、フェニルアセチレン、ナフタレン、プロピレン、カンフォー、メントール、トルエン、イソブチレン等を挙げることができる。ビニル化合物としては、例えば、アクリル酸、メチルアクリレート、エチルアクリレート、メチルメタクリレート、アリルメタクリレート、アクリルアミド、スチレン、α−メチルスチレン、ビニルピリジン、酢酸ビニル、ビニルメチルエーテル等を挙げることができる。含ハロゲン化合物としては、四フッ化メタン、四フッ化エチレン、六フッ化プロピレン、フロロアルキルメタクリレート等を挙げることができる。含窒素化合物としては、例えば、ピリジン、アリルアミン、ブチルアミン、アクリロニトリル、アセトニトリル、ベンゾニトリル、メタクリロニトリル、アミノベンゼン等を挙げることができる。有機無機ハイブリッドにおいては有機成分が多くなるとバリア膜の柔軟性が増し、曲げによるクラックの発生は改良されるがバリア性能が劣化するので膜の炭素含有率(質量%)として30%以下が好ましい。
無機層の厚みに関しても特に限定しないが、厚すぎると曲げ応力によるクラックの恐れがあり、薄すぎると膜が島状に分布するため、いずれも水蒸気バリア性が悪くなる傾向がある。上記のことより、それぞれの無機層の厚みは5nm〜1000nmの範囲が好ましく、さらに好ましくは、10nm〜1000nmであり、最も好ましくは、10nm〜200nmである。また、2層以上の場合の無機層は各々が同じ組成でも別の組成でも良く制限はない。ガスバリア性と高透明性を両立させるには無機層として珪素酸化物や珪素酸化窒化物を使うのが好ましく、最も好ましくは、珪素酸化窒化物である。珪素酸化物はSiOxと表記され、たとえば、無機物層としてSiOxを用いる場合、良好なガスバリア性と高い光線透過率を両立させるためには、1.6<x<1.9であることが望ましい。珪素酸化窒化物はSiOxNyと表記されるが、このxとyの比率は密着性向上を重視する場合、酸素リッチの膜とし、1<x<2、0<y<1が好ましく、ガスバリア性向上を重視する場合、窒素リッチの膜とし、0<x<0.8、0.8<y<1.3が好ましい。
本発明において、プラズマ放電処理は、大気圧もしくはその近傍の圧力下で行われるが、大気圧もしくはその近傍の圧力とは20kPa〜110kPa程度であり、本発明に記載の良好な効果を得るためには、93kPa〜104kPaが好ましい。
本発明の薄膜形成方法において、対向電極間(放電空間)に供給するガスは、少なくとも、電界により励起する放電ガスと、そのエネルギーを受け取ってプラズマ状態あるいは励起状態になり薄膜を形成する薄膜形成ガスを含んでいる。しかしながら、上記の薄膜形成方法では、ヘリウムやアルゴン等の希ガスの放電ガスでは、薄膜を形成する際の生産コストが放電ガスのコストに依存するところが多く、また環境的な見地からも代替の放電ガスの使用を本発明者らは検討していた。その代替の放電ガスとして、空気、酸素、窒素、二酸化炭素、水素等を検討した結果、これらのガスであっても同様に高密度プラズマを発生できる条件を求め、且つ薄膜形成性に優れ、形成した薄膜が緻密且つ均一となる条件及び方法を検討した結果、本発明に至ったものである。
本発明における放電条件は、放電空間に、前記第1の高周波電界と第2の高周波電界とを重畳し、前記第1の高周波電界の周波数ω1より前記第20高周波電界の周波数ω2が高く、且つ、前記第1の高周波電界の強さV、前記第2の高周波電界の強さVおよび放電開始電界の強さIVとの関係が、
≧IV>V
または V>IV≧V を満たし、
前記第2の高周波電界の出力密度が、1W/cm以上である。高周波とは、少なくとも0.5kHzの周波数を有するものを言う。
重畳する高周波電界が、ともにサイン波である場合、第1の高周波電界の周波数ω1と該周波数ω1より高い第2の高周波電界の周波数ω2とを重ね合わせた成分となり、その波形は周波数ω1のサイン波上に、それより高い周波数ω2のサイン波が重なった鋸歯状の波形となる。本発明において、放電開始電界の強さとは、実際の薄膜形成方法に使用される放電空間(電極の構成など)および反応条件(ガス条件など)において放電を起こすことのできる最低電界強度のことを指す。放電開始電界強度は、放電空間に供給されるガス種や電極の誘電体種または電極間距離などによって多少変動するが、同じ放電空間においては、放電ガスの放電開始電界強度に支配される。上記で述べたような高周波電界を放電空間に印加することによって、薄膜形成可能な放電を起こし、高品位な薄膜形成に必要な高密度プラズマを発生することができると推定される。
ここで重要なのは、このような高周波電界が対向する電極に印加され、すなわち、同じ放電空間に印加されることである。特開平11−16696号公報のように、印加電極を2つ併置し、離間した異なる放電空間それぞれに、異なる高周波電界を印加する方法では、本発明の薄膜形成は達成できない。上記でサイン波等の連続波の重畳について説明したが、これに限られるものではなく、両方パルス波であっても、一方が連続波でもう一方がパルス波であってもかまわない。また、更に第3の電界を有していてもよい。
上記本発明の高周波電界を、同一放電空間に印加する具体的な方法としては、対向電極を構成する第1電極に周波数ω1であって電界強度Vである第1の高周波電界を印加する第1電源を接続し、第2電極に周波数ω2であって電界強度Vである第2の高周波電界を印加する第2電源を接続した大気圧プラズマ放電処理装置を用いることである。上記の大気圧プラズマ放電処理装置には、対向電極間に、放電ガスと薄膜形成ガスとを供給するガス供給手段を備える。更に、電極の温度を制御する電極温度制御手段を有することが好ましい。
また、第1電極、第1電源またはそれらの間の何れかには第1フィルタを、また第2電極、第2電源またはそれらの間の何れかには第2フィルタを接続することが好ましく、第1フィルタは第1電源から第1電極への第1の高周波電界の電流を通過しやすくし、第2の高周波電界の電流をアースして、第2電源から第1電源への第2の高周波電界の電流を通過しにくくする。また、第2フィルタはその逆で、第2電源から第2電極への第2の高周波電界の電流を通過しやすくし、第1の高周波電界の電流をアースして、第1電源から第2電源への第1の高周波電界の電流を通過しにくくする機能が備わっているものを使用する。ここで、通過しにくいとは、好ましくは、電流の20%以下、より好ましくは10%以下しか通さないことをいう。逆に通過しやすいとは、好ましくは電流の80%以上、より好ましくは90%以上を通すことをいう。更に、本発明の大気圧プラズマ放電処理装置の第1電源は、第2電源より高い高周波電界強度を印加できる能力を有していることが好ましい。ここで、本発明でいう高周波電界強度(印加電界強度)と放電開始電界強度は、下記の方法で測定されたものをいう。
高周波電界強度V及びV(単位:kV/mm)の測定方法: 各電極部に高周波電圧プローブ(P6015A)を設置し、該高周波電圧プローブの出力信号をオシロスコープ(Tektronix社製、TDS3012B)に接続し、電界強度を測定する。
放電開始電界強度IV(単位:kV/mm)の測定方法: 電極間に放電ガスを供給し、この電極間の電界強度を増大させていき、放電が始まる電界強度を放電開始電界強度IVと定義する。測定器は上記高周波電界強度測定と同じである。
なお、上記測定に使用する高周波電圧プローブとオシロスコープの位置関係については、後述の第1図に示してある。
本発明で規定する放電条件をとることにより、例え窒素ガスのように高い放電開始電界強度を要する放電ガスでも、放電を開始し、高密度で安定なプラズマ状態を維持でき、高性能な薄膜形成を行うことができる。上記の測定により放電ガスを窒素ガスとした場合、その放電開始電界強度IV(1/2Vp−p)は3.7kV/mm程度であり、従って、上記の関係において、第1の高周波電界強度を、V≧3.7kV/mmとして印加することによって窒素ガスを励起し、プラズマ状態にすることができる。ここで、第1電源の周波数としては、200kHz以下が好ましく用いることができる。下限は1kHz程度が望ましい。またこの電界波形としては、連続波でもパルス波でもよい。一方、第2電源の周波数としては、800kHz以上が好ましく用いられる。この第2電源の周波数が高い程、プラズマ密度が高くなり、緻密で良質な薄膜が得られる。上限は200MHz程度が望ましい。このような2つの電源から高周波電界を印加することは、第1の高周波電界によって高い放電開始電界強度を有する放電ガスの放電を開始するのに必要であり、また第2の高周波電界の高い周波数および高い出力密度によりプラズマ密度を高くして緻密で良質な薄膜を形成することが本発明の重要な点である。また、第1の高周波電界の出力密度を高くすることで、放電の均一性を維持したまま、第2の高周波電界の出力密度を向上させることができる。これにより、更なる均一高密度プラズマが生成でき、更なる製膜速度の向上と、膜質の向上が両立できる。
本発明に用いられる大気圧プラズマ放電処理装置において、前記第1フィルタは、第1電源から第1電極への第1の高周波電界の電流を通過しやすくし、第2の高周波電界の電流をアースして、第2電源から第1電源への第2の高周波電界の電流を通過しにくくする。また、第2フィルタはその逆で、第2電源から第2電極への第2の高周波電界の電流を通過しやすくし、第1の高周波電界の電流をアースして、第1電源から第2電源への第1の高周波電界の電流を通過しにくくする。本発明において、かかる性質のあるフィルタであれば制限無く使用できる。例えば、第1フィルタとしては、第2電源の周波数に応じて数10pF〜数万pFのコンデンサ、もしくは数μH程度のコイルを用いることができる。第2フィルタとしては、第1電源の周波数に応じて10μH以上のコイルを用い、これらのコイルまたはコンデンサを介してアース接地することでフィルタとして使用できる。
本発明に用いられる大気圧プラズマ放電処理装置は、上述のように、対向電極の間で放電させ、前記対向電極間に導入したガスをプラズマ状態とし、前記対向電極間に静置あるいは電極間を移送される基材を該プラズマ状態のガスに晒すことによって、該基材の上に薄膜を形成させるものである。また他の方式として、大気圧プラズマ放電処理装置は、上記同様の対向電極間で放電させ、該対向電極間に導入したガスを励起しまたはプラズマ状態とし、該対向電極外にジェット状に励起またはプラズマ状態のガスを吹き出し、該対向電極の近傍にある基材(静置していても移送されていてもよい)を晒すことによって該基材の上に薄膜を形成させるジェット方式の装置がある。
第1図は、本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。ジェット方式の大気圧プラズマ放電処理装置は、プラズマ放電処理装置、二つの電源を有する電界印加手段の他に、第1図では図示してない(後述の第2図に図示してある)が、ガス供給手段、電極温度調節手段を有している装置である。プラズマ放電処理装置10は、第1電極11と第2電極12から構成されている対向電極を有しており、該対向電極間に、第1電極11からは第1電源21からの周波数ω1、電界強度V、電流Iの第1の高周波電界が印加され、また第2電極12からは第2電源22からの周波数ω2、電界強度V、電流Iの第2の高周波電界が印加されるようになっている。第1電源21は第2電源22より高い高周波電界強度(V>V)を印加でき、また第1電源21の第1の周波数ω1は第2電源22の第2の周波数ω2より低い周波数を印加できる。第1電極11と第1電源21との間には、第1フィルタ23が設置されており、第1電源21から第1電極11への電流を通過しやすくし、第2電源22からの電流をアースして、第2電源22から第1電源21への電流が通過しにくくなるように設計されている。また、第2電極12と第2電源22との間には、第2フィルター24が設置されており、第2電源22から第2電極への電流を通過しやすくし、第1電源21からの電流をアースして、第1電源21から第2電源への電流を通過しにくくするように設計されている。第1電極11と第2電極12との対向電極間(放電空間)13に、後述の第2図に図示してあるようなガス供給手段からガスGを導入し、第1電極11と第2電極12から高周波電界を印加して放電を発生させ、ガスGをプラズマ状態にしながら対向電極の下側(紙面下側)にジェット状に吹き出させて、対向電極下面と基材Fとで作る処理空間をプラズマ状態のガスG°で満たし、図示してない基材の元巻き(アンワインダー)から巻きほぐされて搬送して来るか、あるいは前工程から搬送して来る基材Fの上に、処理位置14付近で薄膜を形成させる。薄膜形成中、後述の第2図に図示してあるような電極温度調節手段から媒体が配管を通って電極を加熱または冷却する。プラズマ放電処理の際の基材の温度によっては、得られる薄膜の物性や組成等は変化することがあり、これに対して適宜制御することが望ましい。温度調節の媒体としては、蒸留水、油等の絶縁性材料が好ましく用いられる。プラズマ放電処理の際、幅手方向あるいは長手方向での基材の温度ムラができるだけ生じないように電極の内部の温度を均等に調節することが望まれる。また、第1図に前述の高周波電界強度(印加電界強度)と放電開始電界強度の測定に使用する測定器を示した。25及び26は高周波電圧プローブであり、27及び28はオシロスコープである。ジェット方式の大気圧プラズマ放電処理装置を複数基接して直列に並べて同時に同じプラズマ状態のガスを放電させることができるので、何回も処理され高速で処理することもできる。また各装置が異なったプラズマ状態のガスをジェット噴射すれば、異なった層の積層薄膜を形成することもできる。
第2図は本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。本発明の大気圧プラズマ放電処理装置は、少なくとも、プラズマ放電処理装置30、二つの電源を有する電界印加手段40、ガス供給手段50、電極温度調節手段60を有している装置である。第2図は、ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との対向電極間(放電空間)32で、基材Fをプラズマ放電処理して薄膜を形成するものである。ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との間の放電空間(対向電極間)32に、ロール回転電極(第1電極)35には第1電源41から周波数ω1、電界強度V、電流Iの第1の高周波電界を、また角筒型固定電極群(第2電極)36には第2電源42から周波数ω2、電界強度V、電流Iの第2の高周波電界をかけるようになっている。ロール回転電極(第1電極)35と第1電源41との間には、第1フィルタ43が設置されており、第1フィルタ43は第1電源41から第1電極への電流を通過しやすくし、第2電源42からの電流をアースして、第2電源42から第1電源への電流を通過しにくくするように設計されている。また、角筒型固定電極群(第2電極)36と第2電源42との間には、第2フィルタ44が設置されており、第2フィルター44は、第2電源42から第2電極への電流を通過しやすくし、第1電源41からの電流をアースして、第1電源41から第2電源への電流を通過しにくくするように設計されている。なお、本発明においては、ロール回転電極35を第2電極、また角筒型固定電極群36を第1電極としてもよい。何れにしろ第1電極には第1電源が、また第2電極には第2電源が接続される。第1電源は第2電源より高い高周波電界強度(V>V)を印加することが好ましい。また、周波数はω1<ω2となる能力を有している。
また、電流はI<Iとなることが好ましい。第1の高周波電界の電流Iは、好ましくは0.3mA/cm〜20mA/cm、さらに好ましくは1.0mA/cm〜20mA/cmである。また、第2の高周波電界の電流Iは、好ましくは10mA/cm〜100mA/cm、さらに好ましくは20mA/cm〜100mA/cmである。
ガス供給手段50のガス発生装置51で発生させたガスGは、流量を制御して給気口52よりプラズマ放電処理容器31内に導入する。基材Fを、図示されていない元巻きから巻きほぐして搬送されて来るか、または前工程から搬送されて来て、ガイドロール64を経てニップロール65で基材に同伴されて来る空気等を遮断し、ロール回転電極35に接触したまま巻き回しながら角筒型固定電極群36との間に移送し、ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との両方から電界をかけ、対向電極間(放電空間)32で放電プラズマを発生させる。基材Fはロール回転電極35に接触したまま巻き回されながらプラズマ状態のガスにより薄膜を形成する。基材Fは、ニップロール66、ガイドロール67を経て、図示してない巻き取り機で巻き取るか、次工程に移送する。放電処理済みの処理排ガスG′は排気口53より排出する。薄膜形成中、ロール回転電極(第1電極)35及び角筒型固定電極群(第2電極)36を加熱または冷却するために、電極温度調節手段60で温度を調節した媒体を、送液ポンプPで配管61を経て両電極に送り、電極内側から温度を調節する。なお、68及び69はプラズマ放電処理容器31と外界とを仕切る仕切板である。
第3図は、第2図に示したロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。第3図において、ロール電極35aは導電性の金属質母材35Aとその上に誘電体35Bが被覆されたものである。プラズマ放電処理中の電極表面温度を制御するため、温度調節用の媒体(水もしくはシリコンオイル等)が循環できる構造となっている。
第4図は、角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。第4図において、角筒型電極36aは、導電性の金属質母材36Aに対し、第3図同様の誘電体36Bの被覆を有しており、該電極の構造は金属質のパイプになっていて、それがジャケットとなり、放電中の温度調節が行えるようになっている。なお、角筒型固定電極の数は、上記ロール電極の円周より大きな円周上に沿って複数本設置されていおり、該電極の放電面積はロール回転電極35に対向している全角筒型固定電極面の面積の和で表される。第4図に示した角筒型電極36aは、円筒型電極でもよいが、角筒型電極は円筒型電極に比べて、放電範囲(放電面積)を広げる効果があるので、本発明に好ましく用いられる。第3図及び第4図において、ロール電極35a及び角筒型電極36aは、それぞれ導電性の金属質母材35A及び36Aの上に誘電体35B及び36Bとしてのセラミックスを溶射後、無機化合物の封孔材料を用いて封孔処理したものである。セラミックス誘電体は片肉で1mm程度被覆あればよい。溶射に用いるセラミックス材としては、アルミナ・窒化珪素等が好ましく用いられるが、この中でもアルミナが加工し易いので、特に好ましく用いられる。また、誘電体層が、ライニングにより無機材料を設けたライニング処理誘電体であってもよい。
導電性の金属質母材35A及び36Aとしては、チタン金属またはチタン合金、銀、白金、ステンレススティール、アルミニウム、鉄等の金属等や、鉄とセラミックスとの複合材料またはアルミニウムとセラミックスとの複合材料を挙げることができるが、後述の理由からはチタン金属またはチタン合金が特に好ましい。
対向する第1電極および第2電極の電極間距離は、電極の一方に誘電体を設けた場合、該誘電体表面ともう一方の電極の導電性の金属質母材表面との最短距離のことを言う。双方の電極に誘電体を設けた場合、誘電体表面同士の距離の最短距離のことを言う。電極間距離は、導電性の金属質母材に設けた誘電体の厚さ、印加電界強度の大きさ、プラズマを利用する目的等を考慮して決定されるが、いずれの場合も均一な放電を行う観点から0.1〜20mmが好ましく、特に好ましくは0.5〜2mmである。
本発明に有用な導電性の金属質母材及び誘電体についての詳細については後述する。プラズマ放電処理容器31はパイレックス(R)ガラス製の処理容器等が好ましく用いられるが、電極との絶縁がとれれば金属製を用いることも可能である。例えば、アルミニウムまたは、ステンレススティールのフレームの内面にポリイミド樹脂等を張り付けても良く、該金属フレームにセラミックス溶射を行い絶縁性をとってもよい。第1図において、平行した両電極の両側面(基材面近くまで)を上記のような材質の物で覆うことが好ましい。
本発明の大気圧プラズマ放電処理装置に設置する第1電源(高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
A1 神鋼電機 3kHz SPG3−4500
A2 神鋼電機 5kHz SPG5−4500
A3 春日電機 15kHz AGI−023
A4 神鋼電機 50kHz SPG50−4500
A5 ハイデン研究所 100kHz* PHF−6k
A6 パール工業 200kHz CF−2000−200k
A7 パール工業 400kHz CF−2000−400k
等の市販のものを挙げることができ、何れも使用することができる。
また、第2電源(高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
B1 パール工業 800kHz CF−2000−800k
B2 パール工業 2MHz CF−2000−2M
B3 パール工業 13.56MHz CF−5000−13M
B4 パール工業 27MHz CF−2000−27M
B5 パール工業 150MHz CF−2000−150M
等の市販のものを挙げることができ、何れも好ましく使用できる。
なお、上記電源のうち、*印はハイデン研究所インパルス高周波電源(連続モードで100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。本発明においては、このような電界を印加して、均一で安定な放電状態を保つことができる電極を大気圧プラズマ放電処理装置に採用することが好ましい。
本発明において、対向する電極間に印加する電力は、第2電極(第2の高周波電界)に1W/cm以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発生させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。第2電極に供給する電力の上限値としては、好ましくは50W/cm、より好ましくは20W/cmである。下限値は、好ましくは1.2W/cmである。なお、放電面積(cm)は、電極において放電が起こる範囲の面積のことを指す。また、第1電極(第1の高周波電界)にも、1W/cm以上の電力(出力密度)を供給することにより、第2の高周波電界の均一性を維持したまま、出力密度を向上させることができる。これにより、更なる均一高密度プラズマを生成でき、更なる製膜速度の向上と膜質の向上が両立できる。好ましくは5W/cm以上である。第1電極に供給する電力の上限値は、好ましくは50W/cmである。ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続サイン波状の連続発振モードと、パルスモードと呼ばれるON/OFFを断続的に行う断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第2電極側(第2の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好ましい。このような大気圧プラズマによる薄膜形成法に使用する電極は、構造的にも、性能的にも過酷な条件に耐えられるものでなければならない。このような電極としては、金属質母材上に誘電体を被覆したものであることが好ましい。
本発明に使用する誘電体被覆電極においては、様々な金属質母材と誘電体との間に特性が合うものが好ましく、その一つの特性として、金属質母材と誘電体との線熱膨張係数の差が10×10−6/℃以下となる組み合わせのものである。好ましくは8×10−6/℃以下、更に好ましくは5×10−6/℃以下、更に好ましくは2×10−6/℃以下である。なお、線熱膨張係数とは、周知の材料特有の物性値である。線熱膨張係数の差が、この範囲にある導電性の金属質母材と誘電体との組み合わせとしては、
1:金属質母材が純チタンまたはチタン合金で、誘電体がセラミックス溶射被膜
2:金属質母材が純チタンまたはチタン合金で、誘電体がガラスライニング
3:金属質母材がステンレススティールで、誘電体がセラミックス溶射被膜
4:金属質母材がステンレススティールで、誘電体がガラスライニング
5:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がセラミックス溶射被膜
6:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がガラスライニング
7:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がセラミックス溶射皮膜
8:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がガラスライニング等がある。線熱膨張係数の差という観点では、上記1項または2項および5〜8項が好ましく、特に1項が好ましい。本発明において、金属質母材は、上記の特性からはチタンまたはチタン合金が特に有用である。金属質母材をチタンまたはチタン合金とすることにより、誘電体を上記とすることにより、使用中の電極の劣化、特にひび割れ、剥がれ、脱落等がなく、過酷な条件での長時間の使用に耐えることができる。本発明に有用な電極の金属質母材は、チタンを70質量%以上含有するチタン合金またはチタン金属である。本発明において、チタン合金またはチタン金属中のチタンの含有量は、70質量%以上であれば、問題なく使用できるが、好ましくは80質量%以上のチタンを含有しているものが好ましい。本発明に有用なチタン合金またはチタン金属は、工業用純チタン、耐食性チタン、高力チタン等として一般に使用されているものを用いることができる。工業用純チタンとしては、TIA、TIB、TIC、TID等を挙げることができ、何れも鉄原子、炭素原子、窒素原子、酸素原子、水素原子等を極僅か含有しているもので、チタンの含有量としては、99質量%以上を有している。耐食性チタン合金としては、T15PBを好ましく用いることができ、上記含有原子の他に鉛を含有しており、チタン含有量としては、98質量%以上である。また、チタン合金としては、鉛を除く上記の原子の他に、アルミニウムを含有し、その他バナジウムや錫を含有しているT64、T325、T525、TA3等を好ましく用いることができ、これらのチタン含有量としては、85質量%以上を含有しているものである。これらのチタン合金またはチタン金属はステンレススティール、例えばAISI316に比べて、熱膨張係数が1/2程度小さく、金属質母材としてチタン合金またはチタン金属の上に施された後述の誘電体との組み合わせがよく、高温、長時間での使用に耐えることができる。
一方、誘電体の求められる特性としては、具体的には、比誘電率が6〜45の無機化合物であることが好ましく、また、このような誘電体としては、アルミナ、窒化珪素等のセラミックス、あるいは、ケイ酸塩系ガラス、ホウ酸塩系ガラス等のガラスライニング材等がある。この中では、後述のセラミックスを溶射したものやガラスライニングにより設けたものが好ましい。特にアルミナを溶射して設けた誘電体が好ましい。
または、上述のような大電力に耐える仕様の一つとして、誘電体の空隙率が10体積%以下、好ましくは8体積%以下であることで、好ましくは0体積%を越えて5体積%以下である。なお、誘電体の空隙率は、BET吸着法や水銀ポロシメーターにより測定することができる。後述の実施例においては、島津製作所製の水銀ポロシメーターにより金属質母材に被覆された誘電体の破片を用い、空隙率を測定する。誘電体が、低い空隙率を有することにより、高耐久性が達成される。このような空隙を有しつつも空隙率が低い誘電体としては、後述の大気プラズマ溶射法等による高密度、高密着のセラミックス溶射被膜等を挙げることができる。更に空隙率を下げるためには、封孔処理を行うことが好ましい。
上記、大気プラズマ溶射法は、セラミックス等の微粉末、ワイヤ等をプラズマ熱源中に投入し、溶融または半溶融状態の微粒子として被覆対象の金属質母材に吹き付け、皮膜を形成させる技術である。プラズマ熱源とは、分子ガスを高温にし、原子に解離させ、更にエネルギーを与えて電子を放出させた高温のプラズマガスである。このプラズマガスの噴射速度は大きく、従来のアーク溶射やフレーム溶射に比べて、溶射材料が高速で金属質母材に衝突するため、密着強度が高く、高密度な被膜を得ることができる。詳しくは、特開2000−301655号に記載の高温被曝部材に熱遮蔽皮膜を形成する溶射方法を参照することができる。この方法により、上記のような被覆する誘電体(セラミック溶射膜)の空隙率にすることができる。
また、大電力に耐える別の好ましい仕様としては、誘電体の厚みが0.5〜2mmであることである。この膜厚変動は、5%以下であることが望ましく、好ましくは3%以下、更に好ましくは1%以下である。
誘電体の空隙率をより低減させるためには、上記のようにセラミックス等の溶射膜に、更に、無機化合物で封孔処理を行うことが好ましい。前記無機化合物としては、金属酸化物が好ましく、この中では特に酸化ケイ素(SiOx)を主成分として含有するものが好ましい。
封孔処理の無機化合物は、ゾルゲル反応により硬化して形成したものであることが好ましい。封孔処理の無機化合物が金属酸化物を主成分とするものである場合には、金属アルコキシド等を封孔液として前記セラミック溶射膜上に塗布し、ゾルゲル反応により硬化する。無機化合物がシリカを主成分とするものの場合には、アルコキシシランを封孔液として用いることが好ましい。ここでゾルゲル反応の促進には、エネルギー処理を用いることが好ましい。エネルギー処理としては、熱硬化(好ましくは200℃以下)や、紫外線照射などがある。更に封孔処理の仕方として、封孔液を希釈し、コーティングと硬化を逐次で数回繰り返すと、よりいっそう無機質化が向上し、劣化の無い緻密な電極ができる。本発明に係る誘電体被覆電極の金属アルコキシド等を封孔液として、セラミックス溶射膜にコーティングした後、ゾルゲル反応で硬化する封孔処理を行う場合、硬化した後の金属酸化物の含有量は60モル%以上であることが好ましい。封孔液の金属アルコキシドとしてアルコキシシランを用いた場合には、硬化後のSiOx(xは2以下)含有量が60モル%以上であることが好ましい。硬化後のSiOx含有量は、XPS(X線光電子分光法)により誘電体層の断層を分析することにより測定する。
本発明の薄膜形成方法に係る電極においては、電極の少なくとも基材と接する側のJIS B 0601で規定される表面粗さの最大高さRmaxが10μm以下になるように調整することが、本発明に記載の効果を得る観点から好ましいが、更に好ましくは、表面粗さの最大値が8μm以下であり、特に好ましくは、7μm以下に調整することである。このように誘電体被覆電極の誘電体表面を研磨仕上げする等の方法により、誘電体の厚み及び電極間のギャップを一定に保つことができ、放電状態を安定化できること、更に熱収縮差や残留応力による歪やひび割れを無くし、且つ、高精度で、耐久性を大きく向上させることができる。誘電体表面の研磨仕上げは、少なくとも基材と接する側の誘電体において行われることが好ましい。更にJIS B 0601で規定される中心線平均表面粗さRaは0.5μm以下が好ましく、更に好ましくは0.1μm以下である。
本発明に使用する誘電体被覆電極において、大電力に耐える他の好ましい仕様としては、耐熱温度が100℃以上であることである。更に好ましくは120℃以上、特に好ましくは150℃以上である。また上限は500℃である。なお、耐熱温度とは、大気圧プラズマ処理で用いられる電圧において絶縁破壊が発生せず、正常に放電できる状態において耐えられる最も高い温度のことを指す。このような耐熱温度は、上記のセラミックス溶射や、泡混入量の異なる層状のガラスライニングで設けた誘電体を適用したり、上記金属質母材と誘電体の線熱膨張係数の差の範囲内の材料を適宜選択する手段を適宜組み合わせることによって達成可能である。
本発明で用いられる「有機層」とは、膜中の炭素の含有率が原子数濃度として5%を超えている層であり、好ましくは10%以上、更に好ましくは15%以上の層である。膜中の炭素原子濃度については、XPS表面分析装置により測定することができる。有機膜は、ガスバリア膜付きのフィルムに反りが無く、曲げてもそのバリア性能を劣化させず、且つ良好な無機層の密着性が得られるものであれば良く、例えば、アクリロイル基またはメタクリロイル基を有するモノマーを架橋させて得られる架橋反応による体積収縮率が10%より小さい高分子を主成分とするものを用いることが好ましい。有機層の架橋反応による体積収縮率が10%を越える場合は、架橋反応時の体積変化による収縮応力が大きく発生し、フィルムの反りや付着界面での応力集中による密着不良やバリア層のクラック等の構造欠陥が発生する恐れがある。また、無機層だけではなくしきれない層構造の欠陥部分を有機層で埋め、ガスバリア性を高めることも可能である。アクリロイル基またはメタクリロイル基を有するモノマーを架橋させて得られる架橋反応による体積収縮率が10%より小さい高分子を主成分とする有機層としては、特に限定しないが、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、イソシアヌル酸(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、エチレングリコール(メタ)アクリレート、ポリエステル(メタ)アクリレートなどのうち、2官能以上のアクリロイル基またはメタクリロイル基を有するモノマーを架橋させて得られる高分子を主成分とすることが好ましい。これらの2官能以上のアクリロイル基またはメタクリロイル基を有するモノマーは2種類以上を混合して用いても、また1官能の(メタ)アクリレートを混合して用いてもよい。また、ディスプレイ用途に要求される耐熱性、耐溶剤性の観点から、特に架橋度が高く、ガラス転移温度が200℃以上である、イソシアヌル酸アクリレート、エポキシアクリレート、ウレタンアクリレートを主成分とすることがさらに好ましい。有機層厚みについても特に限定はしないが、10nm〜5000nmが好ましく、さらに好ましくは、10〜2000nmであり、最も好ましくは10nm〜1000nmである。有機層の厚みが薄すぎると、厚みの均一性を得ることが困難となるため、無機層の構造欠陥を効率よく有機層で埋めることができずに、バリア性の向上は見られない。逆に有機層の厚みが厚すぎると、曲げ等の外力により有機層がクラックを発生し易くなるためバリア性が低下してしまう不具合が発生する。本発明の有機を形成させるための方法としては、塗布による方法、真空成膜法、大気圧プラズマCVD等を挙げることができる。形成方法に特に制限はないが、塗布による方法、大気圧プラズマCVD法が好ましい。大気圧プラズマCVDは、薄膜形成性ガスとして前記のプラズマ重合可能な有機化合物を用いることで容易に有機系プラズマ重合膜を形成できる。プラズマ重合可能な有機物としては、前述の有機無機ハイブリッド膜において、挙げられた炭化水素、ビニル化合物、含ハロゲン化合物、含窒素化合物等を挙げることができる。ビニル化合物が好ましい。有機膜形成法に大気圧プラズマCVDを用いると有機膜と無機膜を大気圧下でロールトゥロール方式で基材上に高速に連続成膜することが可能なので飛躍的に生産性が上がる。本発明の有機物質モノマーの架橋方法に関しては何らその制限はないが、電子線や紫外線等による架橋が、真空槽内に容易に取り付けられる点や架橋反応による高分子量化が迅速である点で好ましい。
本発明の大気圧プラズマCVD条件は緻密な無機膜を得ることができるので、基材上に少なくとも1層の有機層と少なくとも1層の無機層があれば優れたガスバリア性が得られる。有機膜と無機膜の積層順は特に限定されないが、有機層と無為層を交互に積層することが好ましい。積層数については特に限定はしないが、3層以上が好ましく、更に好ましくは5層以上、最も好ましくは6層以上である。
本発明に用いられる支持体について説明する。本発明に用いられる支持体としては、板状、シート状またはフィルム状の平面形状のもの、あるいはレンズその他成形物等の立体形状のもの等の薄膜をその表面に形成できるものであれば特に限定はない。支持体が静置状態でも移送状態でもプラズマ状態の混合ガスに晒され、均一の薄膜が形成されるものであれば支持体の形態または材質には制限ない。形態的には平面形状、立体形状でもよく、平面形状のものとしては、ガラス板、樹脂フィルム等を挙げることができる。材質的には、ガラス、樹脂、陶器、金属、非金属等様々のものを使用できる。具体的には、ガラスとしては、ガラス板やレンズ等、樹脂としては、樹脂レンズ、樹脂フィルム、樹脂シート、樹脂板等を挙げることができる。樹脂フィルムは本発明に係る大気圧プラズマ放電処理装置の電極間または電極の近傍を連続的に移送させて無機膜を形成することができるので、スパッタリングのような真空系のようなバッチ式でない、大量生産に向き、連続的な生産性の高い生産方式として好適である。
樹脂フィルム、樹脂シート、樹脂レンズ、樹脂成形物等成形物の材質としては、セルローストリアセテート、セルロースジアセテート、セルロースアセテートプロピオネートまたはセルロースアセテートブチレートのようなセルロースエステル、ポリエチレンテレフタレートやポリエチレンナフタレートのようなポリエステル、ポリエチレンやポリプロピレンのようなポリオレフィン、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリビニルアルコール、エチレンビニルアルコールコポリマー、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリエーテルイミド、ポリアミド、フッ素樹脂、ポリメチルアクリレート、アクリレートコポリマー等を挙げることができる。これらの素材は単独であるいは適宜混合されて使用することもできる。中でもゼオネックスやゼオノア(日本ゼオン(株)製)、非晶質シクロポリオレフィン樹脂フィルムのARTON(ジェイエスアール(株)製)、ポリカーボネートフィルムのピュアエース(帝人(株)製)、セルローストリアセテートフィルムのコニカタックKC4UX、KC8UX(コニカ(株)製)などの市販品を好ましく使用することができる。また、本発明に用いられる支持体は、上記の記載に限定されない。フィルム形状のものの膜厚としては10〜1000μmが好ましく、より好ましくは40〜200μmである。
本発明の透明ガスバリア性フィルムの水蒸気透過度としては、有機ELディスプレイや高精彩カラー液晶ディスプレイ等の高度の水蒸気バリア性を必要とする用途に用いる場合、JIS K7129 B法に従って測定した水蒸気透過度が、1g/m/day以下であることが好ましく、さらに好ましくは、0.1g/m/day未満である。特に、有機ELディスプレイ用途の場合には、極わずかであっても、成長するダークスポットが発生し、ディスプレイの表示寿命が極端に短くなる場合があるため、バリア層を多層化して更に水蒸気透過度を下げる必要があり、2層以上の有機層無機層を交互に積層させることが、水蒸気バリア性および曲げに対する耐性の両面から好ましい。
以下本発明の実施例について詳細に説明するが、本発明は、何ら下記実施例に限定されるものではない。
【実施例】
〔電極の作製〕
第2図の大気圧プラズマ放電処理装置において、誘電体で被覆したロール電極及び同様に誘電体を被覆した複数の角筒型電極のセットを以下のように作製した。第1電極となるロール電極は、冷却水による冷却手段を有するチタン合金T64製ジャケットロール金属質母材に対して、大気プラズマ法により高密度、高密着性のアルミナ溶射膜を被覆し、ロール径1000mmφとなるようにした。その後、テトラメトキシシランを酢酸エチルで希釈した溶液を塗布乾燥後、紫外線照射により硬化させ封孔処理を行った。このようにして被覆した誘電体表面を研磨し、平滑にして、Rmaxが5μmとなるように加工した。最終的な誘電体の空隙率はほぼ0体積%であった。このときの誘電体層のSiOx含有率は75mol、また、最終的な誘電体の膜厚は1mm(膜厚変動±1%以内)、誘電体の比誘電率は10であった。更に導電性の金属質母材と誘電体の線熱膨張係数の差は1.7×10−6/℃で、耐熱温度は260℃であった。
一方、第2電極の角筒型電極は、中空の角筒型のチタン合金T64に対し、上記同様の誘電体を同条件にて被覆し、対向する角筒型固定電極群とした。この角筒型電極の誘電体については上記ロール電極のものと、誘電体表面のRmax、誘電体層のSiOx含有率、また誘電体の膜厚と比誘電率、金属質母材と誘電体の線熱膨張係数の差、更に電極の耐熱温度は、第1電極とほぼ同じ物性値に仕上がった。この角筒型電極をロール回転電極のまわりに、対向電極間隙を1mmとして25本配置した。角筒型固定電極群の放電総面積は、150cm(幅手方向の長さ)×4cm(搬送方向の長さ)×25本(電極の数)=15000cmであった。なお、何れもフィルターは適切なものを設置した。
(透明ガスバリア基材の作製)
支持体として、厚さ100μmのARTONフィルム(非晶質シクロポリオレフィン樹脂フィルム、JSR社製)を使用した。下記の有機層塗布組成物を上記基材上に塗布乾燥した後、UV照射により、硬化させ、樹脂基板上に厚さ約0.5μmの有機層を作製した。
《有機層塗布組成物》
ジペンタエリスリトールヘキサアクリレート単量体 60質量部
ジペンタエリスリトールヘキサアクリレート2量体 20質量部
ジペンタエリスリトールヘキサアクリレート3量体以上の成分
20質量部
ジメトキシベンゾフェノン 4質量部
酢酸エチル 50質量部
メチルエチルケトン 50質量部
イソプロピルアルコール 50質量部
次に、第2図に示した大気圧プラズマ放電処理装置を用いた。プラズマ放電中、第1電極(ロール回転電極)及び第2電極(角筒型固定電極群)が80℃になるように調節保温し、ロール回転電極はドライブで回転させて薄膜形成を行った。以下の条件で放電処理を行うことにより、膜厚100nmの珪素酸化物膜を作製した。
《無機層混合ガス組成物》
放電ガス:窒素 98.9体積%
薄膜形成性ガス:テトラエトキシシラン 0.1体積%
(リンテック社製気化器にてアルゴンガスに混合して気化)
添加ガス:酸素ガス 1体積%
《無機層成膜条件》
第1電極側 電源種類 A5
電界強度 8kV/mm
周波数 100kHz
出力密度 1W/cm
第2電極側 電源種類 B3
電界強度 0.8kV/mm
周波数 13.56MHz
出力密度 3W/cm
さらに、同様にして、前記有機層塗布組成物を用いて有機層、また前記無機層混合ガス組成物を用いて同条件で無機層を積層し、樹脂基材/有機層/無機層/有機層/無機層の構成の透明バリア基材を得た。膜厚は、それぞれ約0.5μm/100nm/約0.5μm/100nmであった。この基材の水蒸気透過度をJIS K7129 B法にて測定した結果、0.1g/m/day未満であった。このフィルムを30mmφの棒に1回巻きつけた後、再度水蒸気透過度をJIS K 7129 B法にて測定したが、水蒸気透過度の上昇は見られなかった。また、目視による外観と光学顕微鏡によるガスバリア膜クラックの観察を行った結果、重大な欠陥点は観察されなかった。ガスバリア膜の密着性をJ1S K5400法により測定した結果、剥離は認められなかった。この基材を有機EL用ディスプレイ基板として用い有機EL素子を作製し、80℃、300時間保存後の50倍の拡大写真を撮影しダークスポットの発生を評価したところ、ダークスポットの発生は認められなかった。以上のように支持体の上に少なくとも1層の有機層と少なくとも1層の無機層とを有する基材の製造方法において、前記無機層の少なくとも1層が、大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガスを含有するガスを供給し、前記放電空間に高周波電界を印加することにより前記ガスを励起し、基材を励起した前記ガスに晒すことにより形成され、前記高周波電界が、第1の高周波電界および第2の高周波電界を重畳したものであり、前記第1の高周波電界の周波数ω1より前記第2の高周波電界の周波数ω2が高く、前記第1の高周波電界の強さV、前記第2の高周波電界の強さVおよび放電開始電界の強さIVとの関係が、
≧IV>V
または V>IV≧V を満たし、
前記第2の高周波電界の出力密度が、1W/cm以上であることを特徴とする基材の製造方法を用いることにより優れたガスバリア基材を得られることが分かった。
比較例
無機膜の形成時の放電条件を以下の条件とした以外は、前記実施例と同様にして樹脂基材/有機層/無機層/有機層/無機層の構成の透明バリア基材を得た。
《無機層条件》
第1電極側 電源種類 B3
電界強度 0.8kV/mm
周波数 13.56MHz
出力密度 3W/cm
第2電極側 未使用
この基材の水蒸気透過度をJIS K7129 B法にて測定した結果、0.1g/m/day未満であった。このフィルムを30mmφの棒に1回巻きつけた後、再度水蒸気透過度をJIS K7129B法にて測定したが、水蒸気透過度の上昇は見られなかった。また、目視による外観と光学顕微鏡によるバリア膜クラックの観察を行った結果、重大な欠陥点は観察されなかった。しかし、バリア膜の密着性をJIS K5400法により測定した結果、面積割合で約1割が、剥離された。有機EL用ディスプレイ基板として用い有機EL素子を作製し、80℃、300時間保存後のダークスポットを50倍の拡大写真を撮影し評価したところ、多数のダークスポットの発生が観察された。
【産業上の利用可能性】
本発明は、高いガスバリア性をもつ透明フィルムであり、曲げることで水蒸気バリア性が低下しないという特性を持つものである。しかも、従来のフィルムに比べ、数倍から数十倍の生産性で作製することが可能である。本発明のフィルムをたとえば表示用素子として適用すれば、軽くて割れないディスプレイを安価に提供できる。また、薬品などの保存に適用すれば中身が見えて、落としても割れないような保存容器を実現することも可能であり、その工業的価値は極めて高い。
【図1】

【図2】

【図3】

【図4】


【特許請求の範囲】
【請求項1】
支持体の上に少なくとも1層の有機層と少なくとも1層の無機層とを有する基材の製造方法において、前記無機層の少なくとも1層を、大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガスを含有するガスを供給し、前記放電空間に高周波電界を印加することにより前記ガスを励起し、励起した前記ガスに基材を晒すことにより形成し、前記高周波電界が、第1の高周波電界および第2の高周波電界を重畳したものであり、前記第1の高周波電界の周波数ω1より前記第2の高周波電界の周波数ω2が高く、前記第1の高周波電界の強さV、前記第2の高周波電界の強さVおよび放電開始電界の強さIVとの関係が、
≧IV>V
または V>IV≧V を満たし、
前記第2の高周波電界の出力密度が、1W/cm以上であることを特徴とする基材の製造方法。
【請求項2】
前記放電空間が、対向する第1電極と第2電極とで構成されることを特徴とする請求の範囲第1項記載の基材の製造方法。
【請求項3】
前記第2の高周波電界の出力密度が、50W/cm以下であることを特徴とする請求の範囲第1項記載の基材の製造方法。
【請求項4】
前記第2の高周波電界の出力密度が、20W/cm以下であることを特徴とする請求の範囲第3項記載の基材の製造方法。
【請求項5】
前記第1の高周波電界の出力密度が1W/cm以上であることを特徴とする請求の範囲第1項記載の基材の製造方法。
【請求項6】
前記第1の高周波電界の出力密度が、50W/cm以下であることを特徴とする請求の範囲第5項記載の基材の製造方法。
【請求項7】
前記第1の高周波電界および前記第2の高周波電界がサイン波であることを特徴とする請求の範囲第1項記載の基材の製造方法。
【請求項8】
前記第1の高周波電界を前記第1電極に印加し、前記第2の高周波電界を前記第2電極に印加することを特徴とする請求の範囲第2項記載の基材の製造方法。
【請求項9】
前記放電空間に供給されるガスが放電ガスを含み、供給される全ガス量の90〜99.9体積%が放電ガスであることを特徴とする請求の範囲第1項記載の基材の製造方法。
【請求項10】
前記放電ガスが、50〜100体積%の窒素ガスを含有することを特徴とする請求の範囲第9項記載の基材の製造方法。
【請求項11】
前記放電ガスが、50体積%未満の希ガスを含有することを特徴とする請求の範囲第10項記載の基材の製造方法。
【請求項12】
前記薄膜形成ガスが、有機金属化合物、ハロゲン化金属、金属水素化合物から選ばれる少なくとも一つを含有することを特徴とする請求の範囲第1項記載の基材の製造方法。
【請求項13】
前記有機金属化合物が、有機珪素化合物、有機チタン化合物、有機錫化合物、有機亜鉛化合物、有機インジウム化合物および有機アルミニウム化合物から選ばれる少なくとも一つの化合物を含有することを特徴とする請求の範囲第12項記載の基材の製造方法。
【請求項14】
前記有機層と前記無機層が隣接して積層されたことを特徴とする請求の範囲第1項記載の基材の製造方法。
【請求項15】
前記有機層と前記無機層が交互に積層されたことを特徴とする請求の範囲第14項記載の基材の製造方法。
【請求項16】
請求の範囲第1項〜第15項の何れか1項記載の基材の製造方法により製造された基材。

【国際公開番号】WO2005/059203
【国際公開日】平成17年6月30日(2005.6.30)
【発行日】平成19年7月12日(2007.7.12)
【国際特許分類】
【出願番号】特願2005−516296(P2005−516296)
【国際出願番号】PCT/JP2004/018323
【国際出願日】平成16年12月2日(2004.12.2)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】