説明

酸素噴射方法

加熱された炉雰囲気を有する冶金炉内に位置した溶融物中へ酸素を噴射する方法であって、抑制された流れ状態で収束−拡大形状の通路を有する1個以上のノズル中へ酸素と燃料とが噴射され、前記通路から排出される超音速のジェットを生成する。燃料と酸素の混合物を含有する外周領域と基本的に酸素を含有する中央領域とを有する構造を排出されつつあるジェットに対して付与するように燃料が前記通路の内周方向位置へ噴射される。そのような構造化されたジェットは排出されると炉の雰囲気と相互作用して外周層が加熱された炉雰囲気と混合する外側のせん断−混合ゾーンを創り出し、かつ自動点火して酸素の超音速ジェットを囲繞する炎外被を生成する。酸素のジェットと炎の外被とは酸素を溶融物中へ噴射するために冶金炉内に入っている溶融物に対して向けることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、冶金炉内に位置した溶融物中へ酸素の超音速ジェットを噴射する方法であって、酸素ジェットの速度の減衰と濃度の減衰を阻止するための炎の外被(エンベロップ)を形成するようにノズル内でなく、炉の雰囲気において自動点火し、かつ燃焼する燃料と酸素の混合物から構成される外周領域を有する構造化したジェットの一部として酸素ジェットが超音速の速度でノズルの収斂−拡大形状の通路から排出されるような方法に関するものである。
【背景技術】
【0002】
酸素は鋼を精錬するような目的で典型的には溶融した金属の浴中へ噴射される。例えば、鋼は鉄とスクラップを含有する溶融物中へ酸素を噴射することによって電気アーク炉(EAF)や塩基性酸素炉(BOF)において精錬される。酸素を噴射することによって溶融物の炭素含有量を調整し、かつ不純物を除去するために炭素、珪素、マンガン、鉄およびリンを含む不純物と反応する。酸化反応によって溶融物の頂部の上にスラグを生成する。酸素は、例えば銅、鉛および亜鉛を精錬するようなその他の目的に対しても噴射される。
【0003】
酸素は溶融した金属の浴中へ浸透することが重要である。BOFにおいては、スラグ層における過剰の酸素反応は制御不能の泡を発生させ、「スロッピング」と称される現象で炉から材料を無駄に排出させる。EAFにおいては、酸素の浸透が不十分であると炭素の電極棒を不必要に酸化させ、その結果操業コストを増加させる。その上に、冶金ランスからの酸素が深く浸透すれば溶融金属の有利な攪拌作用をもたらす。
【0004】
深い浸透を達成するために、冶金ランスはできる限り溶融物の表面近くに位置されてきた。このことに関する問題は溶融金属の表面において発生する強烈な熱のためにランスの寿命が極めて短くなることである。別の問題は水冷却媒体を炉中へ放出する危険性が高まることであり、その結果ランスが過熱されることによって溶融物に対して激しく、かつ危険な反応をもたらしうることである。また、溶融した金属製のランスに堆積物が形成され、ランスの寿命を短くする。別の有害な作用は溶融した金属やスラグが飛散し、その結果製品の損失、炉の保守問題をもたらしうることである。
【0005】
溶融物の表面近くに冶金学的ランスを位置させるのを避けるためには、酸素が溶融金属へ浸透し、同時にランスが溶融物の上方にある距離をおいて位置しうるようにするために可能な限り高速で酸素を冶金ランスから排出させることが望ましい。しかしながら、酸素ジェットが冶金ランスから排出されるとき、そのジェットが炉の雰囲気と相互作用する。そのような相互作用が酸素ジェットの速度と濃度を減衰させ、その結果酸素ジェットの溶融金属浴への浸透性を低下させる。
【0006】
この問題を克服するために、酸素ジェットを包囲して速度減衰を阻止する炎外被すなわちシュラウドを設けうることが知られてきた。例えば、米国特許第3,427,151号においては、絞り部において音速を達成するために絞り部を有する中央通路が設けられたノズル中へ酸素が導入され、音速での酸素ジェットがノズルから排出される。中央の酸素ジェットを囲繞する炎外被を発生させるために中央通路を囲む同心リング状配置の酸素通路および燃料通路から補助的な酸素および燃料が排出される。
【0007】
米国特許第5,599,375号は酸素を燃焼室中へ噴射するために中央の収束−拡大通路を有するバーナ/噴射装置を開示している。燃焼室へ燃料を噴射するための燃料路が前記の収束−拡大通路を囲繞している。燃焼室へ第二の酸化ガスを導入するために二次酸素通路が燃料通路を囲繞している。バーナ/噴射装置が燃料の燃焼モードで作動していると、燃料は中央に噴射された酸素および第二の酸化ガスと共に燃焼室内で燃焼する。このようにすることによって溶融すべきスクラップに向って燃焼室を通して導かれるスクラップ加熱および溶融用の炎を発生させる。一旦スクラップの少しの部分が溶融すると、燃料の流れが減少し、酸素の流れが増加して、発熱性酸化から解放された熱によって追加のスクラップを溶融するために予熱されたスクラップと迅速に反応する高度に酸化性の炎を発生させる。次いで、燃料の流れは更に減少するかあるいは完全に排除されて、収束−拡大ノズルから排出された酸素の流れが好ましくは超音速の速度まで更に著しく増加され、バーナ/噴射装置から離れたところに位置する追加部分の予熱されたスクラップと反応する。
【0008】
絞られた通路のみを有し、収束−拡大形状通路は有していない米国特許第3,427,151号では酸素の超音速ジェットを投射できないことが認められる。米国特許第5,599,375号は酸素の超音速ジェットを生成するために収束−拡大形状通路を利用しているが、燃料は殆ど、あるいは全く噴射されてないので炎の外被は何ら使用されておらず、従って酸素の超音速ジェットはそれが炉の雰囲気と相互作用するため急速に減衰する。
【0009】
これらの問題を解決するために、米国特許第5,814,125号はガスを例えば溶融鉄のような溶融液体中へ噴射する方法を提供している。本方法によれば、酸素の超音速ジェットが収束−拡大形状通路を有するノズル内で創り出される。酸素の超音速ジェットは、中央の収束−拡大形状通路を囲繞する内側および外側配置の通路から燃料および酸素を噴出させることによって生成される炎の外被によって囲繞される。炎のシュラウドは酸素の超音速ジェットの速度の減衰を阻止し、ノズル直径20個分あるいはそれ以上の距離にある溶融液体の表面に酸素が超音速で衝突できるようにする。米国特許第6,604,937号においては、精錬目的のために溶融金属中へ噴射するために超音速の速度を有するジェットを生成するように例えば酸素のような気体を複数の外方へ角度のついた収束−分散形状ノズルに通すことができる。燃料の燃焼を持続させるために燃料と酸化体を交互に噴出させるためのリング状配置のポートが収束−拡大形状ノズルを囲繞している。そのような燃焼によってジェットを囲繞する単一の炎外被を生成し、それによってジェットの速度の減衰を阻止する。
【0010】
炎によって囲繞された酸素の超音速ジェットが、例えば米国特許第5,814,125号あるいは同第6,604,937号において前述したように噴射装置あるいはランスから噴射されたときでさえも、溶融金属およびスラグは、燃料や酸素がそこから噴出される通路の開口を塞ぎうるスカル(skull)として知られる堆積物を形成しうる。そのような付着物は炎シュラウドの形成の邪魔をし、それによってジェットの機能を低下させるとか、あるいはそれを無力にさせうる。この問題を解決するために、公告された日本特許出願第2002−288,115号はランスチップから酸素の超音速ジェットを噴出させるための収束−拡大形状通路を有する水冷のランス組立体を開示している。酸素の超音速ジェットは通路内で燃焼される燃料の内部噴射によって中央の収束−拡大形状通路内で生成される炎によって囲繞される。炎を安定化させるために、通路の収束区画の端部とノズルの表面との間で連通するノズルの真直区画には、その中で燃料と酸素が集合し、減速し、点火すると燃焼する周方向の溝が設けられている。
【0011】
ノズル内で行われる燃焼から潜在的な安全上および操業上の問題が発生しうる。燃料の燃焼はノズル自体を劣化させ、最終的にあるいは迅速に致命的な故障をもたらしうる発熱酸化反応である。そのような劣化はランスの寿命にマイナスに作用し、溶融物と激しく反応しうる水冷却剤を炉中へ解放する危険性を高める。爆発性でないとしても燃焼性の混合物が創出されうるという点で、閉塞された空間内での炭化水素と酸素の混合に関わる安全上の障害がある。当該技術分野の専門家は必要な点火、燃焼の安定化および炎の監視手順に関連した問題を認識する。
【発明の開示】
【発明が解決しようとする課題】
【0012】
以下説明するように、本発明は従来技術よりも優れており、前述した従来技術による装置において認識された問題を排除しないまでも実際に最小化する、溶融金属中へ酸素の超音速ジェットを噴射する方法を提供する。
【0013】
本発明は加熱された炉雰囲気を有する冶金炉内に位置した溶融物中へ酸素を噴射する方法を提供するものである。
【課題を解決するための手段】
【0014】
本発明の方法によれば、酸素の流れが収束−拡大形状の通路を有するノズル中へ導入される。前記通路全体は収束−拡大形状である必要はないことを注目すべきで、実際に、本発明による通路は収束−拡大形状部分にノズルの面まで延在する真直の円筒形部分が続くようにしうる。更に、本明細書において、かつ特許請求の範囲において使用されている「酸素の流れ(oxygen stream)」という用語は、容積比で少なくとも約35パーセントの酸素純度を有し、残りが、例えばアルゴンのような不活性ガスである均一に混合された流れを網羅している。しかしながら、酸素製鋼法においては、約90パーセント以上の酸素濃度が好ましい。水素類を含有する燃料が、通路内全体に位置した該通路の内周方向の位置において酸素の流れの中へ噴射される。この点に関して、「水素類(hydrogen species)」という用語は分子水素、水素を含有する分子あるいは水素原子あるいはそれらの組み合わせを含有するいずれかの物質を意味する。その結果、酸素と燃料の混合物を含有する外周領域と、前記の外周領域によって囲繞され、酸素を含有するが基本的には燃料は含有しない内側の中央領域とから構成される構造を有する燃料と酸素を組み合せて含有する流れが前記通路内で形成される。
【0015】
酸素の流れは臨界圧力あるいはそれ以上の圧力において通路の入口区画中へ導入される。その結果、前記通路の中央のスロート区画内で抑制された流れの状態がつくり上げられ、燃料と酸素を組み合わせて含有する流れが前記通路の拡大区画内で超音速の速度まで加速され、燃料と酸素を組み合わせて含有する流れはノズルから炉の雰囲気中へ構造化されたジェットとして排出される。構造化されたジェットは燃料と酸素を組み合わせて含有する流れの構造とノズルから排出されるとき超音速の速度とを有している。
【0016】
前記通路内にある間は燃料の点火と燃焼は、点火源を導入しないで、かつ外周領域がさもなければその中で減速し、燃料の安定した燃焼のための場所を提供する何らかの不連続部分によって阻害されない内面を前記通路に設けることによって阻止される。
【0017】
前記の構造化されたジェットの内側中央領域から形成され、初期には超音速の速度を有している酸素のジェットを囲繞する炎外被が生成される。前記の炎外被は酸素ジェットの速度の減衰と濃度の減衰を阻止する。速度は炎外被がなければ酸素ジェットが炉の雰囲気と相互作用することによって減衰する。そのような相互作用はまた酸素ジェットを希釈して濃度の減衰をもたらす。本明細書および特許請求の範囲において使用されている「炎の外被(flame envelope)」という用語は酸素ジェットを囲繞し、燃料および加熱された炉雰囲気内に存在しうる何らかの反応剤を活発に燃焼させることによって前記ジェットの長さに亘って伝播する炎を意味し、前記の燃焼は酸素ジェットによって供給される酸素によって全体的、あるいは部分的に持続される。本発明においては、炎の外被は構造化されたジェットの外周領域が加熱された炉の雰囲気と接触することを通してノズルの完全に外で生成される。この接触が燃料、酸素および加熱された炉の雰囲気とから構成される燃焼性の混合物を含有するせん断−混合ゾーンを創り出し、燃焼性の混合物は加熱されて炉雰囲気によって供給された熱によって自動点火する。
【0018】
酸素ジェットは炎外被によって囲繞されている間に溶融物の中へ導かれる。このことに関して、本明細書において、かつ製鋼炉、電気炉あるいは転炉に関して特許請求の範囲において使用されている「溶融物(melt)」という用語はスラグの層およびその下に位置する金属の溶融した溜まりの双方を意味する。その結果、そのような炉において、酸素ジェットは先ずスラグの層中へ入る。スラグの層が生成されないような冶金炉の場合は、酸素ジェットが入り込む「溶融物」は溶融金属を構成する。この一例としては非鉄の精錬炉がある。
【0019】
従来技術においては知られていないが、前述のように加熱された炉の雰囲気と接触したとき構造化したジェットが排出されると構造化されたジェットの内側の中央領域によって形成される酸素の超音速ジェットを囲繞し、それの速度および濃度の減衰を阻止する炎外被を形成するよう点火する領域を外側のせん断−混合ゾーン内で生成する。このことによって本発明によるノズルを溶融物から離れたある距離に位置されうるようにし、溶融物の有利な攪拌作用を高めることができるようにする。
【0020】
前述のように、かつ従来技術において知られているように、超音速の速度である間に酸素ジェットを生成し、かつ噴射することは精錬目的のために溶融物内に包含されている酸化性材料類と反応しうる酸素の量を最大にし、一方同時に溶融物の激しい攪拌作用を発生させる。更に、閉塞を起こし、ランスを作業から外し、スカルとして知られる堆積物をノズルの表面から除去する必要をもたらす可能性のある外部の燃料通路は何ら存在しない。更に、前述した説明から認められうるように、組み合わされた空間内で酸素と燃料を含有する流れを混合させ、点火させ、かつ燃焼させることの不具合は本発明によって排除されるが、それは燃料および酸素の混合物の点火および燃焼はそれがノズル内にある間は阻止されるからである。
【0021】
燃料と酸素を組み合わせて含有する流れはノズルから構造化されたジェットとして排出されると完全に膨張しうる。燃料はノズルの拡大区画内にある間に酸素の流れに導入することができる。安全対策として、燃料と酸素を組み合わせて含有する流れは、ノズルの拡大区画内にある間酸素の流れが亜大気圧となるようにノズルから構造化したジェットとして排出されるときに過度に膨張させることができる。燃料は酸素の流れが亜大気圧である拡大区画内のある位置において酸素の流れの中へ導入しうる。その結果、燃料供給系統が故障したとき、酸素は燃料通路を通して逆流し潜在的に危険な状態を創出することはない。別の有利な結果は、燃料送給系統が酸素の正の背圧を上回る必要はなく、それによってノズル中へ燃料を送給するに要する供給圧力を最小化する。
【0022】
ノズルの拡大区画は中央のスロート区画から加熱された炉の雰囲気に露出されているノズル面まで延在させることができる。その他の可能性は以下の詳細説明から明らかとなる。
【0023】
組み合わされた燃料と酸素の構造化した噴射の超音速の速度は少なくとも約マッハ1.7であることが好ましい。
【0024】
冶金炉とは電気アーク炉としうる。そのような場合、燃料は酸素の流れ中へ約0.02から約0.14の間の等価比で導入されることが好ましい。代替的に、冶金炉は塩基性酸素炉としうる。そのような場合、燃料は約0.01から約0.06の間の等価比で酸素の流れの中へ導入されることが好ましい。いずれのタイプの炉においても、加熱された炉の雰囲気は一酸化炭素を含有し、炎外被を形成するために使用される燃焼性混合物の方も一酸化炭素を含有する。冶金炉が塩基性酸素炉である場合、ノズルは水冷ランスのランスチップにおいて水冷ランスに装着しうる。しかしながら、本発明の適用はそのような炉に限定されるのではなく、実際に一酸化炭素、あるいは炎外被を形成するために使用される燃焼性混合物の一部として作用しうるその他の何らかの物質も何ら含有しない加熱された炉雰囲気を有する炉においても使用しうることが理解される。「加熱された炉雰囲気」に関して必要とされるものは、それが燃焼性混合物を自動点火させるに十分な温度であることだけである。
【0025】
本発明のいずれかの実施例において、内側の環状の面を有する多孔性の環状金属要素の中へ燃料を噴射することによって通路の内周方向の位置にある酸素の流れの中へ導入することができる。内側の環状面はスロート区画あるいは収束−拡大形状通路の拡大区画の一部を形成する。
【0026】
一酸化炭素を含有する加熱された炉雰囲気を有する冶金炉内に位置した溶融物中へ酸素を注入するために適用される本発明の方法の別の局面において、酸素の流れは収束−拡大形態の通路を有するノズルの中へ導入することができ、ノズルは水冷ランスの先端に位置し、水冷ランスの中央軸線から外方に角度が付いている。そのような冶金炉は塩基性酸素炉としうる。水素類を含有する燃料は概略前述した要領で酸素の流れの中へ噴射され、構造化したジェット、炎の外被、および初期には超音速の速度を有している酸素の個々のジェットを形成する。水冷ランスを塩基性酸素炉内に位置させることができ、酸素ジェットが溶融物中へ導かれる。
【0027】
塩基性酸素炉のランスにおいて、典型的には3個から6個のノズルがあり、該ノズルは中央軸線から約6度から約20度の間で外方に角度がつけられている。前述のように、塩基性酸素炉の場合、燃料は約0.01から約0.06の間の等価比において酸素の流れの中へ導入することができ、組み合わされた燃料と酸素の構造化した各ジェットの超音速の速度は少なくとも約マッハ1.7としうる。特定の実施例において、燃料は燃料室中へ導入することができ、ノズルは燃料室を通過するように位置されている。燃料はランスチップ内に位置され、通路の内周方向位置と燃料室との間で連通している燃料路を介して通路中へ導入される。この点に関して、各通路に対して約4個から約12個の間の燃料路を設けることができる。燃料路は多くあるいは少なく使用することが可能であることに注目すべきである。
【0028】
本明細書は本出願人が発明と見做す主題を明確に指摘している特許請求の範囲で終わっているが、本発明は添付図面に関連して読むとより良好に理解される。
【実施例】
【0029】
図1および図2を参照すれば、酸素の超音速ジェットを冶金炉中へ噴射するために使用される従来技術によるノズル1の作動が本発明によるノズル2の作動と比較されている。
【0030】
ノズル1は、収束する入口区画12と、中央のスロート区画14と、ノズル面18において終わる拡大する出口区画16を含む収束−拡大形状の通路10を有している。酸素の流れが供給通路19から通路10の収束する入口区画12中へ噴射されると、その流れは初期膨張が行われる。酸素の圧力が当該技術分野においてノズル10に導入される酸素の流れの「臨界圧(critical pressure)」あるいは「マッハ1の膨張圧力(Mach 1 expansion pressure)」と称されるものを上回っているとすれば、中央のスロート区画14において流れの抑制状態が達成され、そこで酸素が音速の速度を達成したことになる。本明細書および特許請求の範囲において使用されている「音速(sonic velocity)」という用語は音の速度の大きさを有する速度を意味する。抑制された流れ状態においては、圧力がいくら増加しても中央のスロート区画14内での酸素の速度を増大させない。ノズル10の拡大出口区画16においては、酸素の流れはそのような区画において酸素が更に膨張するにつれて超音速となる。前述のように、ノズルの収束する入口区画12の上流側の酸素の圧力を増大させてもスロート区画14内での酸素の速度を増大しないが、一方、そのようは圧力の増加はノズル10の拡大する出口区画16内で速度を増大させる。
【0031】
ノズルの面18において、酸素22のジェットは通常大気圧を僅か上回る高温の炉雰囲気中へノズル10から排出される。塩基性酸素炉の場合には、そのような圧力は一般的に大気圧より約25パーセント高い。ノズル面18から排出されると、酸素の22のジェットは初期には超音速の速度を有している。
【0032】
鋼の処理に使用される炉においては、炉の雰囲気は、溶融物内に含まれた炭素と酸素が反応するために高濃度の一酸化炭素を含有する。酸素ジェット22がノズルの面18から外方へ延びるにつれて、その外周領域は、炉の雰囲気が微細な渦巻きを形成することによって酸素ジェット22に包含された酸素と混合するせん断−混合ゾーン24と称されるものにおいて炉の雰囲気と相互作用する。せん断−混合ゾーン24における炉の雰囲気において一酸化炭素が燃焼する可能性はあるものの、一酸化炭素の燃焼速度は十分低く、前述したような要領で炎の外被を形成する上では効果はない。実際に、典型的にはノズル径6個分を上回るノズル面18からの距離において初めて顕著な燃焼が発生する。燃焼が行われるこのような間隔では酸素ジェット22を囲繞する炎を本発明によって企図される態様で酸素ジェット22の速度の減衰および濃度の減衰を阻止するには効果がないようにする。せん断−混合ゾーン24内で発生する酸素と炉雰囲気との混合はノズル面18から見て酸素ジェット22の長さに亘って増大し、円錐形の領域25を生成するが、そこでは流れは混合過程によって影響を受けず、事実のノズル面18において存在したものと同じ特性を有している。当該技術分野においては、この領域は潜在的な芯(ポテンシャルコア)と称されている。前記の潜在的な芯25を越えた流れの領域は酸素の超音速ジェット22の速度がノズル面18でのその速度以下に減少し始める点である。当該技術分野の専門家は、潜在的芯25を越えて延在し、かつ該芯を含み、全ての点において流速がマッハ1以上あるいはそれに等しい超音速の芯26が存在することを認識する。超音速芯を越えると、流速は全ての点27において亜音速となる。せん断−混合ゾーンおよび反応ゾーンは最終的にジェットの軸線に到達するにつれて、完全に発達した乱流および燃焼ジェットへの移行が行われる。
【0033】
図2を参照すれば、本発明による方法を実行するように設計されたノズル2が示されている。ノズル2は酸素の流れが供給通路29から収束入口区画30へ導入され、中央のスロート区画32内において抑制された流れ状態で音速を達成する収束−拡大形状通路28を含む。中央のスロート区画32から延在し、ノズル面36で終わる拡大出口区画34内で超音速の速度が達成される。
【0034】
燃料は燃料路42および44を介して拡大出口区画34の内周方向位置38および40において噴射される。当該技術分野の専門家には理解されるように、燃料路42および44、そして従って内周方向の噴射位置は拡大出口区画34内で規則的な間隔をおいて位置されている。例えばもしも4点での噴射が望ましい場合、横断方向に見て例えば38または40のように相互に対して90度離隔した4つの内周方向位置とされる。このように述べたとしても、例えば38または40のような周方向位置は同じ軸線方向の平面に位置する必要は無い。それらは互い違いとしてもよい。
【0035】
燃料の噴射によって収束−拡大形状通路28内で燃料と酸素を組み合わせて含有する流れを生成し、その流れは拡大出口区画34内で流れが膨張し続けるにつれて噴射点、すなわち内周方向位置38および40から加速し続ける。抑圧された流れ状態があるとすれば、酸素ジェットは燃料を噴射する前に超音速の速度を有しており、燃料と酸素を組み合わせて含有する流れは、その流れがノズル面36に向って進行するにつれてより高い超音速の速度まで加速される。
【0036】
周方向位置、例えば38および40において燃料を噴射すると、外周領域46と内側の中央領域48を有する構造をノズル2内の酸素と燃料を組み合わせて含有する流れに付与する。外周方向領域は酸素と燃料の混合物から構成されている。内側の中央領域48は酸素から構成され、燃料は基本的には含有していない。
【0037】
例えば周方向位置38および40は拡大出口区画34内に位置されたものとして示されているが、それらはスロート区画32内に、あるいは収束入口区画30内においてさえも位置させうることを注目すべきである。実用上および安全上の理由から、好適な燃料噴射装置の位置は拡大出口区画34である。しかしながら、本発明は燃料噴射装置が収束−拡大形状のノズルへの入口の上流側で酸素の周りに位置させたとしても効果がある。しかしながら、そのような位置は安全上および燃料の圧力の制限のため得策ではない。
【0038】
従来技術とは異なり、ノズル2内で点火も燃焼も行われない。しかしながら、炉の温度が高いこと、および酸素と燃料とが極めて制限された空間内で混合されるという事実のためそのような燃焼には危険性が存在している。従って、前述したように、最も安全な手順は流れの膨張により低温および高速が達成される点において燃料を噴射することである。その結果、燃料の最も安全な噴射点は、酸素が膨張することおよび燃料と酸素を組み合わせて含有する流れが継続して膨張するため最低温度および最速速度が達成される拡大出口区画34にある。
【0039】
ノズル面36において、燃料と酸素を組み合わせて含有する流れはノズル2の収束−拡大形状通路28内を流れる酸素と燃料を組み合わせて含有する流れと同じ構造を有する構造化されたジェット50として排出される。ノズル1によって生成された自由噴射と同様に、構造化されたジェット50の外周領域は加熱された炉雰囲気と相互作用して、燃料と、酸素と、加熱された炉雰囲気とが混合されるせん断−混合ゾーン52を形成する。この混合は、加熱された炉雰囲気と共に自動点火させ、その後炎外被54がノズル面36から突出するようにさせる。点火のために、せん断−混合ゾーン52はまた、加熱された燃焼産物を包含する。炎外被54はノズル面36に取り付けて効果を出すようにする必要はないことに注目すべきである。しかしながら、炎外被54は、例えばノズル径約1個および約2個分以内で、ノズル面36に少なくとも近接して形成される必要がある。先に指摘したように、炉の雰囲気は反応して炎を形成する一酸化炭素あるいはその他のいずれかの物質を含有する必要はない。それが有する必要のあることは自動点火を起こす温度だけである。
【0040】
炎外被54は燃料と酸素を組み合わせて含有する流れの内側の中央領域48から形成される酸素ジェットの速度と濃度の減衰を阻止するように作用する。ノズル2の場合、炎外被54は、該炎外被を形成する上で利用される燃料が加熱された炉雰囲気に存在しうる一酸化炭素単独のような燃料よりもはるかに速く反応する水素類を含有しているという事実のためにノズル面36から、あるいは少なくともそれに近接したところから延在する。典型的なガス状燃料は水素、天然ガス、メタン、プロパン、石油ガス、コークス炉ガス、合成ガス、アセチレンあるいは蒸発、および(または)熱分解した液体あるいはガス状燃料、あるいはそれらと不活性ガスおよび(または)一酸化炭素との混合物としうる。典型的な液状燃料は燃料の滴を含有する気体あるいは蒸気となるように事前噴霧化あるいは酸素の流れ自体の作用によって噴霧化された炭化水素燃料石油、揮発油あるいはガソリンとしうる。非炭化水素燃料を含有するその他のガスおよび液体水素も本発明において使用するのに適しており、一例としてアルコールやアンモニアを含有しうる。
【0041】
ノズル1によって生成されるジェットと比較して、ノズル2によって生成される潜在的および超音速芯55および56ははるかに長くなり、従って本発明による方法で形成された酸素ジェットによってノズル2を溶融物の表面からより大きな距離をおいて位置させることが可能となり、酸素噴射のみを使用して可能とされる場合よりも溶融物の攪拌速度を増加させることができる。同時に、燃料および酸素がそこから噴射される開口がそれ以上にないのでそのようは開口が詰まるという可能性がない。
【0042】
前述したように、ノズル2内において何ら燃焼は起こらない。図示のように、内周方向の位置38および40の下流側には酸素と燃料を組み合わせて含有する流れの内部に包含されている燃料と酸素の混合物を減速させる傾向のある不連続部分が出口区画の34の内面には何らなく、もしも混合物が点火されたとすれば、燃料の安定した燃焼が行われる場所を提供する。この点に関して、燃料と酸素を組み合わせて含有する流れが減速すると渦流として循環が起こり、従って更に燃料と酸素を混合させ、混合物の燃焼の可能性を発生させる。
【0043】
燃料と酸素の点火の可能性は酸素の流量が減少してノズル2が吹き込み不足といわれるようなときに存在する。この状態は酸素供給の不首尾によって生じる混乱状態とか、あるいは精錬工程の間に酸素の流量が故意に減らされるようなその他の状態のときに生じうる。酸素の流量の減少の結果として、収束−拡大形状通路28の内面からの燃料と酸素を組み合わせて含有する流れの分離が起こりうる。この結果空隙ができ加熱された炉の雰囲気がノズル2へ入り、燃料および酸素と混合して、その混合物を点火させるに十分な熱を提供する余地を与える。この吹き込み不足の状態はまた、以下説明するように有利となりうる過度に膨張したジェットを生成する。しかしながら、前述のような経過が発生したとしても、例えば従来技術において炎を安定化するために利用された溝のようなノズル内部での内面の不連続部分が無いためノズル内での炎を安定化する場所が何らない。
【0044】
図3を参照すれば、収束−拡大形状のノズル内での実験的に得られた静圧分布が示されており、そこではノズルから出て行く流れは完全に膨張している。その測定値は出口の直径が20.57ミリメートル(0.81インチ)でスロートの直径が15.75ミリメートル(0.62インチ)である収束−拡大形状のノズルから得られた。ノズルは約7kg/cm(100psig)の圧力で供給されると約36,000scfh受け入れるように設計されており、そのとき大気中へ排出された酸素のジェットはマッハ2および1,600fpsで完全に膨張してノズルから出て行く。本明細書および特許請求の範囲において使用されている「完全に膨張した(fully expanded)」という用語はノズルから排出された流れが冶金炉の周囲圧力のそれと概ね等しい内部静圧を有していることを意味する。図4を参照すれば、実験的に得られた静圧分布が示されており、そこではノズルを出て行くジェットは過度に膨張している。本明細書および特許請求の範囲において使用されている「過度に膨張した(over expanded)」という用語はノズルから出て行くジェットが炉の周囲雰囲気よりも低い内部静圧を有していることを意味する。ジェットの内部静圧は減少したとしても、ノズルを出ているジェットは超音速のままである。ノズルを出ていくジェットが完全に膨張しているとか過度に膨張しているかはノズルの設計と供給された酸素と炉の雰囲気との間の圧力差によって決まる。図4に示す過度に膨張した場合においては、分散区画の長さを前述のノズルに延長部を設けることにより増大され、出口の直径を22.61ミリメートル(0.89インjンチ)に増大された。そのような設計での考慮は当該技術分野には周知である。
【0045】
図5を参照すれば、図2に示すノズルの通路には拡大出口区画からノズル面まで延在する円筒形の延長部が設けられている。この延長部の効果はノズル面においてノズルから排出された流れの静圧を増大することである。図5に示すノズル内での流れの内部静圧は炉雰囲気内の圧力よりも高いので、放出される噴射は膨張過小であるといわれる。本発明はそのような膨張過小の噴射を使用して実行することができる。
【0046】
図面から明らかなように、等エントロピー計算(摩擦作用を考慮せず)、ファノ(Fanno)計算(図5に示すように、超音速の流れに対して摩擦作用を考慮に入れている)、および「P−タップ測定(P−tap measurement)」によって得られた実際の圧力測定との間の対応性については極めて近似している。例えば構造化したジェット50のような構造化したジェットを生成するために燃料を追加しても図示した計算された結果と実際の結果に対して殆ど影響がない。従って、本発明によるノズルは完全に膨張しているか、膨張過度か、あるいは膨張過小のいずれかである構造化したジェットを生成するように設計することができ、膨張過小および膨張過度の流れをそれぞれ形成するために拡大区画に円筒形あるいは円錐形の延長部を組み込むことができる。
【0047】
図4に示す膨張過度のケースは酸素の流れおよび燃料と酸素を組み合わせて含有する流れがノズルの収束−拡大形状通路の拡大出口区画内の位置において負の周囲圧を有しうるように採用することができる。ノズル2の拡大出口区画34は膨張過度の構造化したジェットを提供するように設計することができる。そのような実施例の利点は、もしも何らかの理由で設備の故障による燃料の供給の中断があるとすれば、ノズルの外側で、および圧力をかけて燃料を供給するために利用されている設備の内部で燃焼の可能性をつくり出すように酸素の流れが通路42および44へ入らないように周方向位置を前記のような負の周囲圧の箇所に位置させることができるということである。この実施例の別の利点は燃料の供給源が正の酸素背圧を上回る必要が無いことであり、それによって典型的に商業的な燃料ステーションを通して得られる圧力以上に燃料を圧縮する必要性を排除することである。
【0048】
図6を参照すれば、超音速酸素ジェットの保存に対する燃料噴射速度の影響を検査するために実験が行われた。以下の実験条件の下に図2に示すノズルのようなタイプのノズルにメタンと酸素が送給された。前記のノズルは、加熱され、乾燥した(水素なしの)一酸化炭素(容積比で約70パーセント)と二酸化炭素(容積比で約30パーセント)のガスの混合物から構成され、約1,648.9℃(約3,000°F)の雰囲気を生成した実験室用炉装置の中で操作された(「炉試験A」)。収束−拡大形状ノズルが7kg/cm(100psig)の酸素が供給されたとき酸素の流量4,000scfhで完全に膨張した構造化した噴射を送給するように設計された。ノズルはそれぞれ、6.76ミリメートル(0.266インチ)および5.16ミリメートル(0.203インチ)の直径の出口およびスロートを有していた。ノズル全体の長さは19.05ミリメートル(0.75インチ)で、収束区画およびスロート区画の組み合わせた長さは5.16ミリメートル(0.203インチ)であった。ノズルの上流側にあるダクトの直径は約9.65ミリメートル(0.38インチ)であった。このような供給条件の下でジェットは約マッハ2および約1,600fpsでノズルを出て行く。メタンが、各々直径が0.79ミリメートル(0.031インチ)で、主酸素ノズルの軸線に対して約42度角度がつけられている4個の均等間隔に穿孔されたポート中へ注入された。メタンは、約0.84kg/cm(12psig)の酸素背圧を発生させる位置においてノズルの拡大区画中へ噴射された。メタンは、酸素の流れの中へ噴射され、酸素の流量の0から約4.5パーセントまで変えられた。2パーセントのメタンを供給するためには、約1.05kg/cm(約15psig)の供給圧が必要とされ、この結果メタンの速度は約590fpsおよびマッハ0.4であった。ノズルの出口からの任意の距離「L」に対応する軸線中心岐点圧を測定するためにピトー管が使用された。この長さは、約1,470fpsすなわちノズル出口での速度の約92パーセントに対応する約マッハ1.74までジェットの軸線中心速度が減衰したノズル出口からの距離に対応するものと規定された。次いで、測定値はノズルの出口の直径「D」によって除算され、図6のグラフにおいて縦座標(y軸)として示すパラーメータ「L/D」を計算した。パラメータ「L/D」は潜在的な芯の外側で、超音速芯の内側にあるジェットの軸線中心線における位置を表している。図3から判るように、ジェット長さはメタン噴射速度と共に増大し、加熱されたた反応性雰囲気で、燃料を噴射していない場合に対する初期長さの約1.9倍を達成する。また、図6に示すグラフには同じノズル作動条件の下で大気において測定した「L/D」が示されている。
【0049】
実験では、酸素ジェットの破断を最小化する(すなわち、滑らかな噴射とする)要領で燃料を噴射することが燃料の規定の流量に対して最長のジェットを発生させることのできる構造化したジェットを生成する最も効果的な方法はであることを立証したことに注目すべきである。この点に関して、図7を参照すれば、図12に示すタイプのノズルに関して超音速酸素ジェットの保存に対する燃料噴射速度の影響を検査するために実験が行われた。そのようなノズルは多孔性金属を通して燃料を噴射することを織り込んでおり、その結果燃料ジェットのために酸素ジェットの破断が最小となっている。そのような実験は以下の条件の下に行われた。ノズルは、約1,648.9℃(約3,000°F)での、加熱され、乾燥した(水素なし)一酸化炭素(容積比で約70パーセント)と二酸化炭素(容積比で約30パーセント)のガスの混合物で構成された雰囲気を生成する実験室用炉装置内で操作された(「炉試験」)。図7に記載の全ての「炉試験」は得られた結果が正確であり、かつ再現性があることを確認するために同一の条件の下で実行された。収束−分散形状ノズルは、7kg/cm(100psig)の圧力で酸素が供給されると、4,000scfhの酸素流量で完全に膨張し構造化されたジェットを送給するように設計された。ノズルは、それぞれ6.75ミリメートル(0.266インチ)および5.16ミリメートル(0.203インチ)の出口径およびスロート径を有していた。ノズル全体の長さは19.05ミリメートル(0.75インチ)で、収束区画およびスロート区画の組み合わせた長さは5.16ミリメートル(0.203インチ)であった。ノズルの上流側のダクトの直径は約9.65ミリメートル(0.38インチ)であった。このような供給条件の下で、ジェットはマッハ2および1,600fpsでノズルを出て行った。メタンが酸素の流れ中へ噴射され、酸素の流量の0から約7.25パーセントまで変えられた。図8において任意の長さ尺度「L」に対応する軸線中心岐点圧を測定するためにピトー管が使用された。長さ尺度「L」は1,470fpsあるいはノズル出口の速度の約92パーセントに対応する約マッハ1.74までジェットの軸線中心速度が減衰したノズル出口からの距離に対応するように規定された。次いで、測定値はノズルの出口の直径「D」で除算され、図7のグラフにおいて縦軸(y軸)として示されているパラメータ「L/D」を計算した。距離「L/D」は潜在的な芯の外側で、かつ超音速芯の内側にあるジェットの軸線中心線に沿った位置を表す。
【0050】
図6および図7から明らかなように、メタンの流れは酸素の流れのざっと約5パーセントの点までのみは酸素ジェットの長さに影響する。そのような点において、更に燃料を追加しても酸素の超音速ジェットの長さには何ら影響しない。約2.5パーセント以下では酸素の超音速ジェットの長さはメタンの噴射速度に極めて敏感である。従って、約2.5パーセントから約5パーセントの間のメタンの噴射は酸素の超音速ジェットの長さを最大化する上で効果的である。しかしながら、当該技術分野の専門家には認められるように、酸素を添加することにより溶融物の化学成分を調整することが所望される場合に「水素のピックアップ」が起因する鋼を含有する溶融物中への水素あるいは炭化水素の噴射は望ましくない。従って塩基性酸素炉においては、ざっと1.5パーセントから約3パーセントまでのメタンが、不必要な燃料を溶融物中へ注入することなくジェットの長さを延長させる必要時の合間に媒体に衝突する。
【0051】
燃料と酸素の実際の流れはノズルの設計や、例えば、炉の大きさおよび使用される特定の燃料のような精錬要件によって変わるが、前述の実験の結果は、等価比、すなわち利用されている酸素に対する実際の燃料の比を化学量的燃焼を達成するに要する酸素に対する燃料の比で除したものに関して検討すれば一般論化することができるものと考えられる。この点に関して、電気アーク炉に対しては、等価比は約0.02から約0.14の間であることが好ましい。塩基性酸素炉に対しては、等価比は約0.01から約0.06の間であるべきである。
【0052】
別の点は、ノズルあるいはノズルを包含するランスは酸素ジェットが溶融物へ入るとき超音速芯にあるように溶融物に対して位置されることが好ましいということである。特に、酸素ジェットは溶融物へ入るときノズルから放出されるときの噴射速度の約90パーセントの速度を有していることが好ましい。ノズルあるいはランスはより大きな距離をおいて位置させることが可能であり、従って速度はより低くなるが、あるいは溶融物に対してより近い距離であれば溶融物へ入るときより速い速度を有する。しかしながら、ランスが溶融物に対してより近く位置されればされるほど、ランスの寿命は短くなる。電気アーク炉に対して、特定のノズル設計および燃料ジェットについては図6および図7に示すデータはノズルを溶融物に対して位置決めするのに使用できる。例えば炉内での溶融物の高さのような実際の操業条件について調整を行う必要がある。BOF炉においては、ランスの位置を変更するなど多くの既知の要素に基づいて決められる吹錬プロフィルがある。従って、BOF炉の場合、そのようなデータは溶融物へ入るときの噴射速度が最大化される操業を可能とするガイドとして使用され、従って殆どの部分に対して酸素ジェットは溶融物中へ入るとき超音速芯にあり、一方、時にはランスは酸素ジェットが超音速芯を越えるように位置される。例えばもしもフロッピングが発生すると、ランスは溶融物に対して後退させることができる。
【0053】
図8を参照すれば、構造化されたジェットの構造がノズル径1個分の軸線方向の距離をおいてノズル面から見た図12に示す実施例のようなノズルに対してグラフで示されている。この実験のために、ノズルは、約1,648.9℃(3000°F)において加熱され、乾燥した(水素のない)一酸化炭素(容積比で約70パーセント)と二酸化炭素(容積比で約30パーセント)のガスの混合物からなる雰囲気を生成することのできる実験室用炉ノズル(「炉実験」)内部で操作された。7kg/cm(100psig)で酸素が供給されると4,000scfhの酸素流量で完全に膨張した構造化されたジェットを送給するように収束−拡大形状ノズルが設計された。このような供給条件下において、ジェットは約マッハ2で、かつ約1,600fpsの速度でノズルを出て行く。ノズルは、それぞれ6.76ミリメートル(0.266インチ)および5.16ミリメートル(0.203インチ)の出口径およびスロート径を有していた。全体のノズル長さは19.05ミリメートル(0.75インチ)で収束区画と拡大区画とを組み合わせた長さは5.16ミリメートル(0.203インチ)であった。ノズルの上流側のダクトの直径は9.65ミリメートル(0.38インチ)であった。メタンは酸素の流量の約3.4パーセントの流量で(図11に示す実施例に関して以下説明するような)多孔性金属の分配装置から酸素の流れの中へ噴射された。構造化されたジェットの放射状方向の岐点圧プロフィルを測定するためにピトー管が使用された。ピトー管はまた吸引プローブとしても採用され、構造化された放射状方向の成分プロフィルも測定された。このように、局部的なジェットの岐点圧は局部的な流れの成分と直接比較することができた。酸素、一酸化炭素、二酸化炭素、メタンおよび水素についてガスのサンプルが分析された。
【0054】
r/R=1であるジェットの外周(「r」はピトー管の位置、「R」はノズル面におけるノズル出口の半径)においては、メタンの濃度が最大であり、燃料がメタンと酸素の混合物としてジェットの外周において濃縮されていることを指示している。この領域は図2に示す構造化されたジェット50の外周領域46に対応する。r/R>1である位置において、炉の雰囲気は一酸化炭素と二酸化炭素が存在することによって、またメタンと酸素の濃度が減少することによって指示されるせん断−混合および反応ゾーンにおいて燃料と酸素を含有する混合物と混合し始める。ノズルの外周から内方へ、r/R=1からノズルの中央軸線、r/R=0へ見た方向において酸素の濃度が約100パーセントまで上昇する。一酸化炭素および二酸化炭素の検出が欠如することによって指示されるノズル内、0<r/R<1では何ら燃焼は起こらない。この領域は構造化されたジェット50の内部中央領域56に対応する。同時に、測定されたジェットの岐点圧はピトー管の上流側で形成される衝撃波の存在と関連する圧力損失を考慮に入れるとマッハ2の酸素ジェットについて予測したものに近づいている。
【0055】
図9を参照すれば、より大きな軸線方向距離、すなわちノズル直径の約41個分において、中心線での岐点圧は3.5kg/cm(50psig)まで低下しており、その点においてマッハ数は約1.74まで減衰しており、速度は約1,470fps、すなわち初期噴射速度の約92パーセントまで減衰している。この位置においては、中心線での流れは潜在的な芯の外側で、超音速芯の内側にある。放射状方向の圧力プロフィルはジェットの中心軸線から減衰することを知ることができる。ノズル直径の約41個分において、ジェットは約0<r/R<1.5の位置においては主として酸素から構成されている。酸素の超音速ジェットが減速が進むにつれて、酸素のジェットは放射状方向の位置1.5<r/R<7.5の位置において検出される酸素の量によって示されているように拡大しつつある。ノズル出口からのそのような距離において、この点より前の一酸化炭素および二酸化炭素の存在によって指示されるように、メタンが酸化されているという事実があるようにメタンの存在は極めて少ない。
【0056】
図10を参照すれば、スクラップ鋼を溶解し、精錬するように設計された電気アーク炉60が示されている。スクラップ鋼は頂部を介して電気アーク炉60にスクラップを投入することによって装入される。炭素電極62が炉中へ突出しスクラップを溶かし、その結果得られた金属の溶融プール64を加熱するアークを発生させる。
【0057】
例えば図示した電気アーク炉60とか、あるいは以下説明する塩基性酸素炉のような銑鉄精錬炉において、溶融物中へ導入される酸素が鉄の小部分を酸化させ、炭素が酸化された鉄と組み合わされて一酸化炭素を生成する。一酸化炭素は殆どが酸素と組み合わされた溶解炭素によって生成される。一酸化炭素のあるものは次いで酸化され二酸化炭素を生成する。一酸化炭素の泡が金属の溶融プール64の表面まで上昇し、そこでスラグの層66中へ出てくる。スラグの層66は不純物と溶融物中の金属成分、例えばリン、鉄、珪素およびマンガンとが酸化され、かつその結果の酸化物と、例えば当該技術分野において知られているように炉へ添加される石灰やドロマイトのような副原料とが分解することによって形成される。一般に、金属の溶融プール64の上方に位置する加熱された炉雰囲気は一酸化炭素や二酸化炭素を含有し、約1,371.1℃(2,500°F)から約1,926.7℃(3,500°F)の間の温度となりうる。
【0058】
炭素、一酸化炭素、およびスラグ形成要素の酸化は超音速の速度を有する酸素のジェット70をスラグおよび金属の溶融プール64中へ噴射する酸素噴射装置68により酸素噴射することによって行われる。以下説明するように、酸素噴射装置68は前述したノズル2と同様に機能して酸素ジェット70を包囲し、実際にスラグおよび金属の溶融プール64の表面と接触する炎外被を生成するノズルを組み込んでいる。典型的には、精錬工程の終わりにおいて、酸素ガスは溶融金属の浴64の内部の炭素と組み合わされ、低炭素鋼については約0.02パーセント以下でありうる所望の炭素含有量の鋼をつくる。
【0059】
図示はしていないが、当該技術分野においては知られているように、酸素噴射装置68は水冷されている炉の壁74内にあるブロックの内部に設置されている。また、図示はしていないが、ノズルは加熱された炉の雰囲気内で一酸化炭素と組み合わせるために酸素を噴射するためのノズルを設けることができる。当該技術分野から既知である方法で炭素粒子をまた噴射してスラグの特性を調整し、更に鋼の炭素含有量を調整することも可能である。
【0060】
図11を参照すれば、酸素噴射装置68が示されている。酸素噴射装置68は円筒形であり、燃料導管82の端に位置したランスチップ80を有している。ランスチップ80は銅から構成されることが好ましい。燃料導管82は例えば天然ガスのような燃料を供給するために燃料入口84を有しており、図示のように燃料ホースあるいはその他の燃料用導管に取り付けるためのネジを切った装具を組み入れることができる。燃料導管82内の中央には酸素を供給するための酸素入口87を有する酸素導管86が位置している。酸素入口87も酸素を供給するためのホースあるいはその他の導管に取り付けるためのネジを切った装具の形態としうる。燃料は燃料導管62と酸素導管86との間に画成された環状空間88を通して流れ、酸素は酸素導管内で収束−拡大形状通路90まで流れる。
【0061】
収束−拡大形状通路90は酸素導管86の端部の内部に形成された収束入口区画92と、中央のスロート区画95と、ランスチップ80のノズル面98で終わっている拡大口区画96を有している。酸素供給圧とノズル面98において存在する炉雰囲気との間の差圧は抑制された流れ状態が収束−拡大形状通路90の中央スロート区画94内で確立できるようなものである。
【0062】
燃料は環状の空間88から、燃料が拡大出口区画96内を流れる酸素中へそこを通して噴射される開口102によって画定された内周方向位置において収束−拡大通路90の拡大出口区画96において終わる通路区画100および101を各々が有している燃料路までへ流れる。この特定の実施例においてはノズル面98に対して横断方向に見て4個の等間隔の開口102で終わっている4個の燃料路がある。
【0063】
ランス68は電気アーク炉に関連して示されているが、それは例えば非鉄精錬炉および精製鍋のようなその他の冶金炉においても使用可能であることを指摘しておくべきである。
【0064】
図12を参照すれば、図11に示すランスチップ80の修正を構成するランスチップ80′が示されている。ランスチップ80′は2個の区画80aおよび80bから形成することができる。図示していないが、前記区画80bは、例えば機械ネジのようなネジ接続あるいは例えば溶接のようなその他の方法によって区画80aに取り付けることができる。酸素は図11に示す噴射装置と同様に収束−拡大形状通路へ送給される。更に、路区画101は前記区画80a内に画成された環状形態のくぼみ104へ燃料を送給する。前記くぼみ104の内部には収束−拡大形状通路90の拡大出口区画96中へ燃料を送給するための環状の金属の多孔性要素106が設置されている。燃料の噴射にそのようは多孔性の金属要素を使用することは構造化されたジェットの外周方向領域において燃料と酸素との極めて均一な混合物を生成し、一方酸素の流れを乱すのを最小にするように低速度で燃料を噴射する方法を提供するという利点を有している。そのような多孔性の金属要素はまた、多孔性金属、焼結金属および金属フォームとしても知られ、商業的に取得可能である。この噴射方法は本発明のいずれの実施例においても使用することができる。
【0065】
図13を参照すれば、溶融金属のプール112に含有された鉄が鋼となるように精製される塩基性酸素炉100が示されている。そのような目的に対して溶融金属のプール112中へ酸素の超音速ジェット116を噴射するために水冷のランス114が設けられている。酸素のジェット116は概略前述したように本発明による方法によって形成された個々の炎外被によって囲繞されている間に噴射される。
【0066】
塩基性酸素製鋼工程においては、一般的に高炉から搬送されてきた溶融銑鉄がスクラップと共に塩基性酸素炉110中へ装入される。酸素のジェット116は高温の銑鉄を脱炭し、スクラップを溶解するのに必要とされる反応熱を発生させるために炉中へ噴射される。酸素は、溶融金属のプール112内の炭素、ある程度の鉄、珪素、マンガンおよびリンのような不純物を酸化させ上昇するスラグの層124を生成する。
【0067】
図14を参照すれば、ランス114の設計の詳細が示されている。前記ランス114は塩基性酸素炉に関連して示されているが、それは、例えば電気アーク炉、非鉄精錬および精製炉および回転式平炉においても使用可能である。ランス114には図示していない入口からランスチップ134まで延在する中央の酸素導管130が設けられている。酸素導管130はランスチップ134に位置しているノズル面140で終わる収束−拡大形状通路138を有するノズル136まで酸素を送給する。燃料室114で終わる燃料導管142が酸素導管130内で共軸線関係に位置している。
【0068】
更に、図15および図16を参照すれば、燃料路146は燃料室144と、収束−拡大形状通路138内で超音速の速度まで加速された酸素の流れ中へ燃料を噴射すべく収束−拡大形状通路138の拡大出口区画148内で画成された開口145との間を連通する。この点に関して、収束−拡大形状通路138の各々は収束入口区画150と、中央スロート区画152と、燃料がその中へ噴射される拡大出口区画148を有している。従って、開口145は個々の炎外被120によって囲繞される酸素のジェット116を生成するために本発明による方法で炉の雰囲気と相互作用する構造化されたジェットを形成するための収束−拡大形状通路138中へ燃料を噴射する内周方向位置である。図示実施例においては、4本の酸素ジェット116が生成され、個々の炎外被120によって囲繞されている。
【0069】
図示実施例においては、8個の燃料路146と、従って8個の開口145が各ノズル136に対して存在する。しかしながら、本発明の実施例は各ノズルに対して約4個から約12個までの間の燃料路を有することが好ましい。更に、ランスチップ134内には4個のノズル136が存在する。塩基性酸素炉の大きさと、従ってランスのサイズに応じて、典型的な設備では3個から6個の間のノズルを含んでいる。この点に関して、ノズルはまた炉の大きさに応じて典型的にはランスの大きさに応じて中心軸線から約6度から約20度の間の角度が外方に付けられている。尤も、水冷ランスは、酸素のジェットの減衰を阻止するために単一の酸素ジェットおよび単一の炎外被を生成するようにノズルの136のようなノズルを1個備えるように構成することも可能である。
【0070】
図13を再度参照し、かつ図14および図15を引続き参照すれば、燃料導管142は、該燃料導管142から酸素導管130まで外方に放射状に延在している一連のスペーサ要素156によって適所に保持されている。燃料を燃料導管142中へ導入するために使用される設備が故障したとすれば、酸素が燃料中へ逆流するのを阻止するために逆止弁を設けることができる。
【0071】
ランス114は水冷されており、水導管162と酸素導管130との間で画成された内側の水送給路160と水導管162とランス114の外皮166との間で形成された水戻り路164とによって形成された外部ジャケットが設けられている。水は矢印「A」の方向に水入口168を介してランス114へ送給され、水送給路160を貫流し、矢印「B」の方向に水戻り通路164へ流れ、その後水出口170から排出される。
【0072】
図14から最良に判るように、酸素導管138にはOリングタイプの高温シール174によって適所に保持されているチップ区画172が設けられている。同様に、燃料導管142には燃料導管142の残りの部分を通してOリングのシール176によってシールされているチップ区画175が設けられている。同様に、水導管162もまたOリング180によってシールされているチップ区画178を有している。シールを配置することによって、最終的に磨耗し、交換を必要とするランスチップ134の取り外しおよび取替えを可能とする。多孔性金属要素を除いて、ランスチップ134の構成要素は銅あるいは銅合金からつくられ、電子蝋接あるいはその他の接合技術を用いて相互に組み立てられることが好ましい。多孔性の金属要素は鋼を含むいずれかの金属から組み立てることができる。
【0073】
本発明を当該技術分野の専門家には想起される好適実施例を参照して説明してきたが、本発明の精神と範囲とから逸脱することなく多数の変更、追加および省略を行うことが可能である。
【図面の簡単な説明】
【0074】
【図1】従来技術の方法により酸素の自由なジェットを生成するノズルの概略断面図である。
【図2】本発明による方法を実行するためのノズルの概略断面図である。
【図3】内部の流れがノズルから出るときその中で完全に膨張している収束−拡大形状通路内で展開した軸線方向静圧分布をグラフ表示したものである。
【図4】酸素が過度に膨張した状態でノズルから放出されるように拡大出口区画が構成されている収束−拡大形状通路内での軸線方向静圧分布をグラフ表示したものである。
【図5】酸素が過小膨張した状態でノズルから放出されるようにノズル面への出口区画まで延在する円筒状の延長部を採用している収束−拡大形状通路内での軸線方向静圧分布をグラフ表示したものである。
【図6】図2に示すタイプのノズルによって生成されるマッハ2の酸素ジェットのための炎外被を形成するのに要する燃料の量対超音速の速度と初期速度の約92パーセントの軸線中心の速度を有している間のジェットの長さをグラフ表示したものである。
【図7】図12に示すタイプのノズルによって生成されるマッハ2の酸素ジェットのための炎外被を形成するのに要する燃料の量対超音速の速度と初期速度の約92パーセントの軸線中心速度を有している間のジェットの長さをグラフ表示したものである。
【図8】放射状方向の岐点圧分布と本発明による方法によって形成された構造化したマッハ2のジェットのガス濃度をグラフ表示したものである。
【図9】ジェットの軸線中心速度がノズル出口において初期のマッハ2、1,600fpsの速度の約92パーセントまで減衰したときのノズルの面からある距離において測定した、本発明による方法によって形成された炎外被によって囲繞された酸素のジェットのガス濃度と放射状方向の岐点圧力分布をグラフ表示したものである。
【図10】本発明による方法を使用することにより溶融金属の浴中へ超音速の速度で酸素のジェットを噴射するための酸素噴射装置を採用している電気アーク炉を概略図を示す。
【図11】図9において採用された酸素噴射装置を示す。
【図12】図11に示す酸素噴射装置の代替実施例を示す。
【図13】本発明による方法を使用することにより溶融金属の浴中へ超音速の速度で酸素のジェットを噴射する水冷ランスを採用している塩基性酸素炉の概略図を示す。
【図14】図13において採用された水冷ランスの概略断面図である。
【図15】図14に示す水冷ランスのランスチップの拡大断面図である。
【図16】図15の線15−15に沿って見た図15の断面図である。

【特許請求の範囲】
【請求項1】
加熱された炉雰囲気を有する冶金学的炉内に位置した溶融物中へ酸素を噴射する方法において、
収束−拡大形状の通路を有するノズル中へ酸素の流れを導入し、
酸素と燃料の混合物を含有する外周方向の領域と、前記外周方向の領域によって囲繞され、酸素を含有するが基本的に何ら燃料を含有しない内側の中央領域とから構成される構造を有する燃料と酸素とを組み合わせて含有する流れが通路内で形成されるように全く該通路内に位置している前記通路の内周方向位置における酸素の流れの中へ水素類を含有する燃料を噴射し、
前記酸素の流れが臨界圧力において、あるいはそれ以上で前記通路の入口区画中へ導入され、それによって前記通路の中央スロート区画内で抑制された流れ状態をつくり、燃料と酸素を組み合わせて含有する流れを前記通路の拡大区画内で超音速の速度まで加速し、そして燃料と酸素を組み合わせて含有する流れが前記ノズルから排出されたとき燃料と酸素を組み合わせて含有する流れの構造と超音波の速度を有している構造化されたジェットとしてノズルから炉の雰囲気中へ排出し、
前記の外周領域がその内側でさもなければ減速し、燃料の安定した燃焼場所を提供する何らかの不連続部によって途切れない内面を前記通路に設けることによって該通路内での燃料の点火および燃焼を阻止し、
前記構造化されたジェットの内側の中央領域から形成され、初期には超音速の速度を有する酸素のジェットを囲繞して酸素ジェットの速度の減衰並びに濃度の減衰を阻止する炎外被であって、燃料、酸素および加熱された炉雰囲気から構成される燃焼性の混合物を含有し、加熱された炉の雰囲気によって供給される熱を介して燃焼性の混合物を自動点火させるせん断−混合ゾーンを創り出すために構造化されたジェットの外周領域と加熱された炉雰囲気との接触を通してノズルの全く外側で生成される前記の外被を生成し、
前記炎外被によって囲繞されている間に前記の酸素ジェットを溶融物中へ導くことを含むことを特徴とする冶金炉内に位置した溶融物中へ酸素を噴射する方法。
【請求項2】
燃料と酸素を組み合わせて含有する流れがノズルからの構造化されたジェットとして排出されるとき完全に膨張し、
燃料が前記ノズルの拡大区画内にある間に酸素の流れへ導入されることを特徴とする請求項1に記載の方法。
【請求項3】
酸素の流れがノズルの拡大区画内にある間に大気圧以下となるように前記ノズルからの構造化されたジェットとして排出されるとき燃料と酸素を組み合わせて含有する流れが過度に膨張し、
燃料は、前記酸素の流れが大気圧以下にある前記拡大区画内の位置にある酸素の流れの中へ導入されることを特徴とする請求項1に記載の方法。
【請求項4】
前記ノズルの拡大区画が中央のスロート区画から加熱された炉雰囲気に露出されているノズル面まで延在していることを特徴とする請求項2または請求項3に記載の方法。
【請求項5】
前記酸素のジェットの各々の超音速の速度が少なくとも約マッハ1.7であることを特徴とする請求項1に記載の方法。
【請求項6】
前記冶金炉が電気アーク炉であり、前記燃料が約0.02から約0.14までの間の等価比で酸素の流れの中へ導入されることを特徴とする請求項1に記載の方法。
【請求項7】
前記冶金炉が塩基性酸素炉であり、燃料が約0.01から約0.06の間の等価比で酸素の流れの中へ導入されることを特徴とする請求項1に記載の方法。
【請求項8】
前記冶金炉が電気アーク炉あるいは塩基性酸素炉であり、加熱された炉の雰囲気が一酸化炭素を含有し、燃焼性混合物が一酸化炭素を含有することを特徴とする請求項1に記載の方法。
【請求項9】
前記冶金炉が塩基性酸素炉であり、前記ノズルが水冷ランスのランスチップにおいて前記水冷ランスに装着されていることを特徴とする請求項1に記載の方法。
【請求項10】
収束−拡大形状通路のスロート区画あるいは拡大区画の一部を形成する内側の環状面を有する多孔性金属の環状要素中へ燃料を噴射することによって燃料が前記通路の内周方向位置において酸素の流れの中へ導入されることを特徴とする請求項1に記載の方法。
【請求項11】
一酸化炭素を含有する加熱された炉の雰囲気内に位置した溶融物中へ酸素を噴射する方法において、
収束−拡大形状の通路を有するノズルであって、水冷ランスのチップに位置され、水冷ランスの中心軸線から外方へ角度が付いているノズル中へ酸素の流れを導入する段階と、
各々が酸素と燃料の混合物を含有する外周方向領域と、該外周方向領域によって囲繞され、酸素を含有するが基本的に燃料は何ら含有しない内側の中央領域とから構成される構造を有し、燃料と酸素を組み合わせて含有する流れが通路内で形成されるように、全く前記通路内に位置している該通路の内周方向位置において水素類を含有する燃料を酸素の流れの中へ噴射する段階を含み、
前記酸素の流れが、臨界圧力において、あるいはそれ以上で前記通路の入口区画中へ導入され、それによって、前記通路の中央スロート区画内で抑制された流れ状態をつくり、燃料と酸素を組み合わせて含有する流れが前記通路の拡大区画内で超音速の速度まで加速され、前記ノズルから排出されるとき燃料と酸素を組み合わせて含有する流れの構造を有し、超音速の速度を有する構造化されたジェットとして燃料と酸素を組み合わせて含有する流れを前記ノズルから炉の雰囲気中へ排出し、
外周方向領域がさもなければその内側で減速し、燃料の安定した燃焼のための場所を提供できたいずれかの不連続部によって阻害されない内面を前記通路に設けることによって前記通路内での燃料の点火および燃焼を阻止する段階と、
燃料、酸素および加熱された炉雰囲気とから構成される燃焼性混合物を含有し、加熱された炉雰囲気によって供給される熱を通して燃焼性混合物を自動点火するせん断−混合ゾーンを創り出すように構造化されたジェットの外周領域と加熱された炉雰囲気との接触によって前記ノズルの全く外側で生成される炎外被であって、構造化されたジェットの内側中央領域から形成される酸素の個々のジェットを囲繞し、酸素のジェットの速度の減衰および濃度の減衰を阻止する炎外被を生成する段階を含むことを特徴とする溶融物中へ酸素を噴射する方法。
【請求項12】
前記冶金炉が塩基性酸素炉であることを特徴とする請求項11に記載の方法。
【請求項13】
3個から6個までの間のノズルがあり、前記ノズルは中心軸線から約6度から約20度の間で外方に角度がつけられていることを特徴とする請求項12に記載の方法。
【請求項14】
燃料が約0.01から約0.06までの間の等価比で酸素の流れ中へ導入されることを特徴とする請求項13に記載の方法。
【請求項15】
酸素の各ジェットの超音速の速度が少なくともマッハ1.7であることを特徴とする請求項14に記載の方法。
【請求項16】
燃料が燃料室中へ導入され、ノズルが前記燃料室を通過し、
ランスチップ内に位置し、前記通路の内周方向位置と燃料室との間を連通している燃料路を通して燃料が前記通路中へ導入されることを特徴とする請求項12または請求項15に記載の方法。
【請求項17】
各通路に対して約4個から約12個の間の燃料路があることを特徴とする請求項15に記載の方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公表番号】特表2009−542909(P2009−542909A)
【公表日】平成21年12月3日(2009.12.3)
【国際特許分類】
【出願番号】特願2009−518235(P2009−518235)
【出願日】平成19年6月26日(2007.6.26)
【国際出願番号】PCT/US2007/014844
【国際公開番号】WO2008/002585
【国際公開日】平成20年1月3日(2008.1.3)
【出願人】(392032409)プラクスエア・テクノロジー・インコーポレイテッド (119)
【Fターム(参考)】