説明

鉄サレン錯体

【課題】従来の技術的問題を解決でき、実用化が容易なドラッグ・デリバリシステムを実現する。
【解決手段】この出願の発明は、下記一般式(I)で示される鉄サレン錯体である。この鉄サレン錯体自体に磁性をもたせることができるため、これを薬剤として用いれば、従来のように磁性体からなる担体を用いることなく、薬剤自体が有する磁性を利用して体内の患部まで薬剤を誘導することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、鉄サレン錯体に関する。
【背景技術】
【0002】
RNAi(RNA干渉)はさまざまな生物・細胞に2本鎖RNA(dsRNA)が取り込まれることにより、相補的なmRNAが分解される現象である。長い(一般的に200塩基以上)dsRNA は細胞内で、リボヌクレアーゼの一種であるDicerにより短い21〜25塩基のsiRNA(short interfering RNA)に切断される。2本鎖siRNAは細胞質内でへリカーゼによる巻き戻しを受け1本鎖になり、主にアンチセンス鎖と複数のタンパク質がRISC(RNAinduced silencing complex)複合体を形成する。 siRNAのアンチセンス鎖とmRNA間の相互作用により、相補的な転写物に結合することで、RISCのリボヌクレアーゼ活性により、mRNAが分解され、ジーンサイレンシング(遺伝子の発現抑制)が起こる。
【0003】
哺乳類細胞では長いdsRNAをそのまま導入することができないため、21塩基の化学合成2本鎖siRNA が用いられる。合成2本鎖siRNAを用いた実験は相同組み換えによるノックアウトマウス作製のような設備と時間を必要とせず、培養細胞やモデル動物の実験系でターゲットmRNA分解によるノックダウンが簡単に行えるため、遺伝子の機能解析やターゲット遺伝子のスクリーニングに活用されている。
【0004】
上記化合物は生体に投与され患部に到達し、その患部局所において薬理効果を発揮することで治療効果を引き起こすが、薬剤が患部以外の組織(つまり正常組織)に到達しても治療にはならない。したがって、いかにして効率的に患部に薬剤を誘導するかが治療戦略上重要となる。このように薬剤を患部に誘導する技術はドラッグ・デリバリと呼ばれ、近年研究開発が盛んに行なわれている。このドラッグ・デリバリには少なくとも二つのメリットがある。一つは患部組織において十分に高い薬剤濃度が得られることである。薬理効果は患部における薬剤濃度が一定以上でないと現れず、低い濃度では治療効果が望めないからである。二つ目は薬剤を患部組織のみに誘導して、不必要に正常組織に誘導させないことである。これにより副作用を抑制することができる。
【0005】
このようなドラッグ・デリバリが最も効果を発揮するのが抗がん剤によるがん治療である。抗がん剤は細胞分裂の活発ながん細胞の細胞増殖を抑制するものが大半であるため、正常組織においても細胞分裂の活発な組織、例えば骨髄あるいは毛根、消化管粘膜などの細胞増殖を抑制してしまう。このため抗がん剤の投与を受けたがん患者には貧血、抜け毛、嘔吐などの副作用が発生する。これら副作用は患者にとって大きな負担となるため投薬量を制限しなければならず、抗がん剤の薬理効果を十分に得ることができないという問題がある。さらに最悪の場合、副作用によって患者が死亡してしまう恐れがある。そこで、ドラッグ・デリバリによって抗がん剤をがん細胞まで誘導し、がん細胞に集中して薬理効果を発揮させることによって、副作用を抑えつつ効果的にがん治療を行うことができると期待されている。
【0006】
抗がん剤以外では、例えば男性勃起不全治療薬への応用が考えられる。男性勃起不全治療薬は、ニトロ製剤との併用により重篤な全身低血圧を引き起こし死亡にいたる例があり、とりわけ中高年以上の心疾患をもつ男性に問題となる。これは勃起不全治療薬が必ずしも患部に集中せず、全身の血管に作用してニトロ製剤のもつ血管拡張作用を増幅してしまうためである。そこで、ドラッグ・デリバリによって男性勃起不全治療薬を患部まで誘導し、患部に集中して薬理効果を発揮させることによって、ニトロ製剤との併用による副作用の発生を抑えることができると考えられる。
【0007】
ドラッグ・デリバリの具体的な手法としては、例えば担体(キャリア)を用いた患部組織へ誘導が検討されているが、これは患部に集中しやすい担体に薬剤を乗せて、担体に薬剤を患部まで運ばせようというものである。担体としては各種抗体やマイクロスフェア、あるいは磁性体を使用することが検討されている。なかでも有力視されているのが磁性体であり、薬剤に磁性体である担体を付着させ、磁場によって患部に集積させる方法が検討されている(例えば下記特許文献1参照)。この方法は誘導方法の簡便性と患部を標的にした治療が可能であることから、細胞毒性の高い抗がん剤にはとりわけ有効な手法として考えられている。
【特許文献1】特開2001−10978号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、上述したように、磁性体である担体をキャリアとして用いる場合、経口投与が困難なこと、担体分子が一般的に巨大であること、あるいは薬剤分子との結合強度、親和性に技術的な問題が指摘されており、実用化が困難であった。
【0009】
本発明は、上述した事情に鑑みてなされたものであり、従来の技術的問題を解決でき、実用化が容易なドラッグ・デリバリシステムを実現することを目的とする。
【課題を解決するための手段】
【0010】
本発明は、下記式(I)〜(V)のいずれかで示される鉄サレン錯体を提供する。
【0011】
【化1】

【0012】
(式(I)において、Xは、下記のいずれかである:
−H
−CO2Me
−CO(OCH2CH2nOCH3
【0013】
【化2】

【0014】
(R2はアデニン、グアニン、チミン、シトシン、ないしウラシルからなる核酸が複数結合されてなる)、又は
−NHR1(R1は水酸基を有する置換基である)
【0015】
【化3】

【0016】
(式(II)において、Xは、−NHR1(R1は水酸基を有する置換基である)、−Cl、−Br、又は−Hである)
【0017】
【化4】

【0018】
【化5】

【0019】
(式(IV)において、Yは、−H、−NH2、又は−NHR1(R1は水酸基を有する置換基である)であり、Zは−Cl又は−NHR1(R1は水酸基を有する置換基である)である)
【0020】
【化6】

【0021】
(式(V)において、R1は−Cl又は−NHR3(R3は水酸基を有する置換基である)であり、R2は−H、−NH2、又は−NHR4(R4は水酸基を有する置換基である)
である)
本発明の鉄サレン錯体は、上記式(I)〜(V)で示される特定の構造を有していることにより、水溶性に優れ、かつ磁性を有する。両端に水素結合を多く有する置換基を結合させることにより、水溶性を向上させ、かつ磁性を有する。
【0022】
本発明の鉄サレン錯体は、磁性を有するため、特定の化合物を結合させた磁性を有する薬剤を提供することができる。
【発明の効果】
【0023】
本発明によれば、鉄サレン錯体自体に磁性をもたせることができるため、これを薬剤として用いれば、従来のように磁性体からなる担体を用いることなく、薬剤自体が有する磁性を利用して体内の患部まで薬剤を誘導することができる。また、薬剤に交流磁場を印加することにより温度を上昇させがん細胞を殺傷することも可能である。
【0024】
その結果、従来における、経口投与が困難なこと、担体分子が一般的に巨大であること、あるいは薬剤分子との結合強度、親和性に技術的な問題があることを解決することができ、実用化が容易なドラッグ・デリバリ・システムを実現することが出来る。
【発明を実施するための最良の形態】
【0025】
次に、本発明の実施の形態について説明する。以下の実施形態は、本発明を説明するための例示であり、本発明をこの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない限り、さまざまな形態で実施することができる。
(鉄サレン錯体)
本発明の鉄サレン錯体は、下記式(I)〜(V)のいずれかで示される。
【0026】
【化1】

【0027】
(式(I)において、Xは、下記のいずれかである:
−H
−CO2Me
−CO(OCH2CH2nOCH3
【0028】
【化2】

【0029】
(R2はアデニン、グアニン、チミン、シトシン、ないしウラシルからなる核酸が複数結合されてなる)、又は
−NHR1(R1は水酸基を有する置換基である)
【0030】
【化3】

【0031】
(式(II)において、Xは、−NHR1(R1は水酸基を有する置換基である)、−Cl、−Br、又は−Hである)
【0032】
【化4】

【0033】
【化5】

【0034】
(式(IV)において、Yは、−H、−NH2、又は−NHR1(R1は水酸基を有する置換基である)であり、Zは−Cl又は−NHR1(R1は水酸基を有する置換基である)である)
【0035】
【化6】

【0036】
(式(V)において、R1は−Cl又は−NHR3(R3は水酸基を有する置換基である)であり、R2は−H、−NH2、又は−NHR4(R4は水酸基を有する置換基である)である)
1は、電荷移動が0.5電子(e)未満であることが好ましい。
【0037】
1は、下記式(1)〜(27)のいずれかの化合物から水素が脱離した置換基である
ことが好ましい。
【0038】
【化7】

【0039】
【化8】

【0040】
【化9】

【0041】
【化10】

【0042】
【化11】

【0043】
【化12】

【0044】
【化13】

【0045】
【化14】

【0046】
【化15】

【0047】
【化16】

【0048】
本発明の鉄サレン錯体の好適な具体例を以下に示す。
【0049】
【化17】

【0050】
【化18】

【0051】
【化19】

【0052】
【化20】

【0053】
【化21】

【0054】
【化22】

【0055】
【化23】

【0056】
【化24】

【0057】
上記化合物は、例えば、J. Lewis, F. E. Mabbs and A. Richards, 'The Preparation and Magnetic Properties of Some Oxy-bridged binuclear Iron(III) Schiff-base Complexes', J. Chem. Soc. (A) 1014-1018 (1968) 記載のように合成することができる。
(薬剤)
本発明の薬剤は、上記の鉄サレン錯体からなる。
【0058】
本発明の薬剤の使用例としては、薬剤自体が磁性を有するため、個体に投与した後、当該個体に磁界を加えて、薬剤を目的とする組織又は患部に誘導させることができる。
【0059】
別の使用例としては、個体の組織内又は患部内に磁力発生手段を適用し、薬剤を当該組織又は患部に誘導させることができる。
【0060】
別の使用例としては、個体の組織内又は患部内に当該個体の体液を供給する血管等の経路の途中に磁力発生手段を配置して、薬剤を下流の組織又は患部に誘導させることができる。
【0061】
別の使用例としては、R1がローダミン(蛍光色素)である鉄サレン錯体からなる薬剤に、光を照射して発光させ、これを検出することで、薬剤の体内動態を検知することができる。
【0062】
別の使用例として、薬剤を磁場により患部へ誘導後、交流磁場を薬に印加して、がん細胞周辺の温度をがん細胞殺傷温度へ上昇させ、がん細胞のみを殺すことができる。
(薬剤誘導システム)
本発明の薬剤は、体内に投与した薬剤を、当該薬剤の磁性を利用して所定の患部に誘導する誘導システムであって、個体の表面、組織、又は患部に対して磁場を発生する手段を配置するようにした、薬剤誘導システム、に適用することができる。
本発明の薬剤は、体内に投与した薬剤を、当該薬剤の磁性を利用して所定の患部に誘導する誘導システムであって、個体に対して磁場を発生する手段と、当該磁場を前記個体の目的とする組織又は患部に誘導する手段と、を備える薬剤誘導システム、に適用することができる。
【0063】
前記磁場を発生する手段は、2つの磁石を対にして当該二つの磁石の間に前記目的とする組織又は患部を置き、当該組織又は患部に磁束を集中させるように構成されてなる、ことが好ましい。
(磁気検出装置)
前記目的とする組織又は患部は、MRI又はCTによって同定される、ことが好ましい。
【0064】
本発明の薬剤は、体内に投与した当該薬剤の磁性又は発光を検出することにより、当該薬剤の体内動態を検知する、磁気検出装置、に適用することができる。
前記薬剤の磁性は、磁気共鳴誘導または発光によって検出することが好ましい。
(機能診断、がん化学療法、がん温熱療法)
本発明の薬剤の別の使用例として、がん組織に誘導された本薬剤に電磁波を当てることにより、局所的に温度を上昇させ、がん細胞を特異的に殺傷することができる。
【0065】
このように、本発明の鉄サレン錯体を用いれば、一つの薬剤で機能診断、MRI診断装置、がん化学療法、がん温熱療法、磁場誘導ドラッグ・デリバリ・システム、に適用することができる。
(薬剤設計方法)
本発明の薬剤の別の使用例として、薬剤の分子モデルを設定し、当該分子モデルについて数値計算により求めたスピン電荷密度から前記分子モデルが磁性を有するか否かを判定し、磁性を有すると判定した分子モデルに基づいて薬剤を設計する方法、を提供することができる。
【0066】
上記薬剤を設計する方法において、数値計算により、両端に結合する化合物(R1)の電子の授受が0.5電子(e)未満となるように、薬剤の設計をすることができる。
【0067】
上記薬剤を設計する方法において、スピン電荷密度分布に基づいて分子モデルの磁性強度を判定することができる。
【実施例】
【0068】
以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
鉄サレン錯体の合成を、次のように行った。
【0069】
【化24】

【0070】
4-nitrophenol (25g, 0.18mol)、hexamethylene tetramine (25g, 0.18mol)、 polyphosphoric acid (200ml)の混合物を1時間100℃で攪拌した。その後、その混合物を500mlの酢酸エチルと1Lの水の中に入れ、完全に溶解するまで攪拌した。さらにその溶液に400mlの酢酸エチルを追加で加えたところその溶液は2つの相に分離し、水の相を取り除き、残りの化合物を塩性溶剤で2回洗浄し、無水MgSO4で乾燥させた結果、compound 2が17g(収率57%)合成できた。
【0071】
【化25】

【0072】
compound 2 (17g, 0.10mol), acetic anhydride (200ml), H2SO4 (少々)を室温で1時間攪拌させた。得られた溶液は、氷水(2L)の中に0.5時間混ぜ、加水分解を行った。得られた溶液をフィルターにかけ、大気中で乾燥させたところ白い粉末状のものが得られた。酢酸エチルを含む溶液を使ってその粉末を再結晶化させたところ、24gのCompound 3(収率76%)の白い結晶を得ることができた。
【0073】
【化26】

【0074】
compound 3 (24g, 77mmolとメタノール(500ml)に10%のパラジウムを担持したカーボン(2.4g)の混合物を一晩 1.5気圧の水素還元雰囲気で還元した。終了後、フィルターでろ過したところ茶色油状のcompound 4 (21g)が合成できた。
【0075】
【化27】

【0076】
無水ジクロメタン(DCM) (200ml)にcompound 4 (21g, 75mmol), di(tert-butyl) dicarbonate (18g, 82mmol)を窒素雰囲気で一晩攪拌した。得られた溶液を真空中で蒸発させた後、メタノール(100ml)で溶解させた。その後、水酸化ナトリウム(15g, 374mmol)と水(50ml)を加え、5時間還流させた。その後冷却し、フィルターでろ過し、水で洗浄後、真空中て乾燥させたところ茶色化合物が得られた。得られた化合物は、シリカジェルを使ったフラッシュクロマトグラフィーを2回行うことで、10gのcompound 6(収率58%)が得られた。
【0077】
【化28】

【0078】
無水エタノール400mlの中にcompound 6 (10g, 42mmol)を入れ、加熱しながら還流させ、無水エタノール20mlにエチレンジアミン(1.3g, 21mmol)を0.5時間攪拌しながら数滴加えた。そして、その混合溶液を氷の容器に入れて冷却し15分間かき混ぜた。その後、200mlのエタノールで洗浄しフィルターをかけ、真空で乾燥させたところcompound 7が8.5g (収率82%)で合成できた。
【0079】
【化29】

【0080】
無水メタノール(50ml)の中にcompound 7 (8.2g, 16mmol)、triethylamine (22ml, 160mmol)をいれ、10mlメタノールの中にFeCl3(2.7g, 16mmol)を加えた溶液を窒素雰囲気下で混合した。室温窒素雰囲気で1時間混合したところ茶色の化合物が得られた。その後、真空中で乾燥させた。得られた化合物はジクロロメタン400mlで希釈し、塩性溶液で2回洗浄し、真空中で乾燥させたところcomplex Aが得られた。得られた化合物を、ジエチルエーテルとパラフィンの溶液中で再結晶させ高速液化クロマトグラフィーで測定したところ、純度95%以上のcomplex A(鉄サレン錯体)5.7g(収率62%)を得た。
【0081】
その後、両端に、−NHR1、水素結合を多く有する置換基−CO2Me、−CO(OCH2CH2)nOCH3 又は
【0082】
【化30】

【0083】
をアシル化、Et3N等の反応ステップを経て、結合させた。
(実施例2)
鉄サレン錯体の合成を、次のように行った。
【0084】
【化31】

【0085】
4-nitrophenol (25g, 0.18mol)、hexamethylene tetramine (25g, 0.18mol)、 polyphosphoric acid (200ml)の混合物を1時間100℃で攪拌した。その後、その混合物を500mlの酢酸エチルと1Lの水の中に入れ、完全に溶解するまで攪拌した。さらにその溶液に400mlの酢酸エチルを追加で加えたところその溶液は2つの相に分離し、水の相を取り除き、残りの化合物を塩性溶剤で2回洗浄し、無水MgSO4で乾燥させた結果、compound 2が17g(収率57%)合成できた。
【0086】
【化32】

【0087】
Compound 2 (17g, 0.10mol) compound 2 (17g, 0.10mol), acetic anhydride (200ml), H2SO4 (少々)を室温で1時間攪拌させた。得られた溶液は、氷水(2L)の中に0.5時間混ぜ、加水分解を行った。得られた溶液をフィルターにかけ、大気中で乾燥させたところ白い粉末状のものが得られた。酢酸エチルを含む溶液を使ってその粉末を再結晶化させたところ、24gのCompound 3(収率76%)の白い結晶を得ることができた。
【0088】
【化33】

【0089】
compound 3 (24g, 77mmolとメタノール(500ml)に10%のパラジウムを担持したカーボン(2.4g)の混合物を一晩 1.5気圧の水素還元雰囲気で還元した。終了後、フィルターでろ過したところ茶色油状のcompound 4 (21g)が合成できた。
【0090】
【化34】

【0091】
無水ジクロメタン(DCM) (200ml)にcompound 4 (21g, 75mmol), di(tert-butyl) dicarbonate (18g, 82mmol)を窒素雰囲気で一晩攪拌した。得られた溶液を真空中で蒸発させた後、メタノール(100ml)で溶解させた。その後、水酸化ナトリウム(15g, 374mmol)と水(50ml)を加え、5時間還流させた。その後冷却し、フィルターでろ過し、水で洗浄後、真空中て乾燥させたところ茶色化合物がえられた。得られた化合物は、シリカジェルを使ったフラッシュクロマトグラフィーを2回行うことで、10gのcompound 6(収率58%)が得られた。
【0092】
【化35】

【0093】
無水エタノール400mlの中にcompound 6 (10g, 42mmol)を入れ、加熱しながら還流させ、無水エタノール20mlにエチレンジアミン(1.3g, 21mmol)を0.5時間攪拌しながら数滴加えた。そして、その混合溶液を氷の容器に入れて冷却し15分間かき混ぜた。その後、200mlのエタノールで洗浄しフィルターをかけ、真空で乾燥させたところcompound 7が8.5g (収率82%)で合成できた。
【0094】
【化36】

【0095】
無水メタノール(50ml)の中にcompound 7 (8.2g, 16mmol)、triethylamine (22ml, 160mmol)をいれ、10mlメタノールの中にFeCl3(2.7g, 16mmol)を加えた溶液を窒素雰囲気下で混合した。室温窒素雰囲気で1時間混合したところ茶色の化合物が得られた。その後、真空中で乾燥させた。得られた化合物はジクロロメタン400mlで希釈し、塩性溶液で2回洗浄し、Na2SO4で乾燥させ、真空中で乾燥させたところcomplex Aが得られた。得られた化合物はジエチルエーテルとパラフィンの溶液中で再結晶させ高速液化クロマトグラフィーで測定したところ純度95%以上のcomplex A(鉄サレン錯体)5.7g(収率62%)を得た。その後、両端に−NHR1をアシル化、Et3N等の反応ステップを経て、結合させた。
(実施例3)
鉄サレン錯体の合成を、次のように行った。
【0096】
【化37】

【0097】
その後、両端に−NHR1をアシル化、Et3N等の反応ステップを経て、結合させた。
(実施例4)
式(I)〜(IV)の化合物とそれに結合する化合物の電子の移動は第一原理計算で求めることができる。
【0098】
このコンピュータシミュレーションを実現するシステムは。コンピュータとしての公知のハードウエア資源を備えるものであって、すなわち、メモリと、CPUなどの演算回路を備える演算装置と、演算結果を出力する表示手段を備えている。メモリは、既存の有機化合物または3次元構造を特定するデータと、コンピュータシミュレーションを実現するソフトウエア・プログラムを備えている。このソフトウエアは、各化合物の側鎖を追加・変更・削除し、所定の側鎖間で架橋し、記述のスピン電荷密度の高い領域を計算し、構造全体としてのスピン電荷密度を決定可能なものである。このプログラムとして、例えば、市販品(Dmol3、アクセルリス社)を利用することができる。
【0099】
ユーザは化合物について、側鎖を追加する位置を入力し、または側鎖を変更し、あるいは削除するものを選択し、さらに、架橋を形成すべき箇所をメモリの支援プログラムを利用して演算装置に指定する。演算装置はこの入力値を受けて、スピン電荷密度を演算してその結果を表示画面に出力する。また、ユーザが既存の化合物の構造データをコンピュータシステムに追加することによって、既知の化合物についてのスピン電荷密度を得ることが出来る。
【0100】
鉄サレン錯体(化学式(I))とそのR1部分に結合する電荷移動は、上記で求めた上向きと下向きのスピン電荷密度を三次元空間で積分すると求めることができる。
表1に電荷移動の計算結果を示す。表1においては、鉄サレン錯体(化学式(I))とそのR1部分に結合する電荷移動を示した。マイナスは電子が増加していることを示す。プラスは電子が減っていることを示す。
【0101】
【表1】

【0102】
(実施例5)
【0103】
【化38】

【0104】
【化17】

【0105】
【化17】

【0106】
上記式で示されるそれぞれの鉄サレン錯体を用いて、以下の実験を行った。
ラットL6細胞が30%のコンフルエントの状態の時に上記式で示される鉄サレン錯体粉末を磁石に引き寄せられるのが目視できる程度の量を培地にふりかけて48時間後に培地の状態を写真撮影した。
【0107】
図1はラットL6細胞の培地がある角型フラスコに棒磁石を接触させた状態を示している。次いで、48時間後角型フラスコ底面の一端から他端までを撮影し、細胞数を算出した結果を図2に示す。図2において磁石から近位とは、角型フラスコ底面における磁石端面の投影面積内を示し、磁石から遠位とは、角型フラスコ底面において磁石端面と反対側にある領域を示す。
【0108】
図2に示すように、磁石から近位では鉄サレン錯体が引き寄せられて鉄サレン錯体の濃度が増し鉄サレン錯体のDNA抑制作用によって細胞数が遠位よりも極端に低いことが分かる。この結果、本発明による、磁性を持った薬剤と、磁気発生手段とを備えたシステムによって、個体の目的とする患部や組織に薬剤を集中して存在させることが可能となる。
次に本発明に係る誘導装置の他の例について説明する。この誘導装置は、図3に示すように重力方向に互いに向き合う一対の磁石230,232がスタンド234とクランプ235によって支持されており、磁石の間には金属板236が置かれている。一対の磁石間に金属板、特に鉄板をおくことにより、局所的に一様で強力な磁界を作り出すことができる。
【0109】
この誘導装置は磁石の代わりに電磁石を用いて発生磁力を可変にすることができる。また、XYZ方向に一対の磁力発生手段を移動できるようにして、テーブル上の固体の目的とする位置に磁力発生手段を移動させることができる。
【0110】
この磁界の領域に固体の組織を置くことにより、この組織に薬剤を集中させることができる。体重約30グラムのマウスに既述の金属錯体(薬剤濃度5mg/ml(15mM))を静注して開腹し、右の腎臓を前記一対の磁石の間に来るようにマウスを鉄板の上に置く。
【0111】
使用した磁石は、信越化学工業株式会社製 品番:N50(ネオジウム系永久磁石) 残留磁束密度:1.39-1.44 Tである。このとき、右側の腎臓に与えられた磁場は約0.3(T)で左側の腎臓に与えられる磁場はその約1/10である。左の腎臓及び磁界を適用しない腎臓(コントロール)と共に、マウスの右腎に磁界を加えて10分後MRIでSNRをT1モード及びT2モードで測定した。その結果、図4に示すように、磁界を加えた右腎(RT)が左腎(LT)及びコントロールに比較して薬剤を組織内に留め置くことができることが確認された。
【0112】
図5に、マウスにおけるメラノーマ成長に対するサレン錯体の効果を示す。メラノーマは、培養メラノーマ細胞(クローンM3メラノーマ細胞)の局所的移植によって、マウス尾腱においてin vivoに形成された。サレン錯体を尾腱の静脈から静脈投与し(50 mg/kg)、市販の棒磁石(630mT、円筒状ネオジウム磁石、長さ150mm、直径20mm)を用いて、局所的に磁場を印加した。サレン錯体を注入した直後に、メラノーマ部位に3時間穏やかに棒磁石を接触させた。棒磁石の適用は、磁場強度がメラノーマ浸潤が予想される部位に最大となるように、150mmの長さにわたって2週間の成長期間行った。
サレン錯体の初回注入の12日後に、メラノーマ浸潤の大きさを評価することによって、メラノーマの増大を評価した。
【0113】
図6に示すように、サレン錯体の代わりに、塩水を注入した塩水グループ(saline)では、メラノーマ増大は最大であった(100±17.2%)。一方、磁場を適用せずにサレン錯体を注入したSCグループでは、メラノーマ増大は緩やかに減少した(63.68±16.3%)。これに対して、磁場を適用しつつ(n=7〜10)サレン錯体を注入したSC+Magグループでは、ほとんどのメラノーマが消失した(9.05±3.42%)。
【0114】
図7に示すように、組織学的検討を、腫瘍増殖マーカーであるanti-Ki-67抗体及びanti-Cyclin D1抗体を用いて、ヘマトキシリン−エオジン染色及び免疫組織染色により行った。その結果、サレン錯体を注入した場合(SC)においてメラノーマの腫瘍増大が減少し、さらにサレン錯体に磁場の適用が組み合わされた場合にはほとんどが消失することが分かった。
【0115】
また、薬剤に磁場強度200 Oe(エルステッド)、周波数50kHzから200KHzの交流磁場を印加したところ2℃から10℃薬剤の温度が上昇した(図8)。これは、体内投与時の温度に換算したところ39℃から47℃に相当しがん細胞を殺傷することが可能な温度域であることを確認した。
【図面の簡単な説明】
【0116】
【図1】磁場における薬剤の所在を検証する実験システムの概要を示すブロック図である。
【図2】磁場における薬剤濃度の変動に基づく、細胞数の測定結果を示す特性図である。
【図3】本発明に係わる誘導装置の他の実施形態を示す斜視図である。
【図4】マウスの腎臓に対する、MRI測定結果(T1強調信号)のグラフである。
【図5】マウスのメラノーマ成長におけるサレン錯体の抑制効果を示す。
【図6】メラノーマの大きさの変化を示すグラフである。
【図7】組織学的検討の結果を示す。
【図8】薬剤に交流磁場を印加したときの温度上昇のグラフである。

【特許請求の範囲】
【請求項1】
下記式(I)〜(V)のいずれかで示される鉄サレン錯体。
【化1】

(式(I)において、Xは、下記のいずれかである:
−H
−CO2Me
−CO(OCH2CH2nOCH3
【化2】

(R2はアデニン、グアニン、チミン、シトシン、ないしウラシルからなる核酸が複数結合されてなる)、又は
−NHR1(R1は水酸基を有する置換基である)
【化3】

(式(II)において、Xは、−NHR1(R1は水酸基を有する置換基である)、−Cl、−Br、又は−Hである)
【化4】

【化5】

(式(IV)において、Yは、−H、−NH2、又は−NHR1(R1は水酸基を有する置換基である)であり、Zは−Cl又は−NHR1(R1は水酸基を有する置換基である)で
ある)
【化6】

(式(V)において、R1は−Cl又は−NHR3(R3は水酸基を有する置換基である)であり、R2は−H、−NH2、又は−NHR4(R4は水酸基を有する置換基である)
である)
【請求項2】
1は、電荷移動が0.5電子(e)未満である、請求項1記載の鉄サレン錯体。
【請求項3】
1は、下記式(1)〜(27)のいずれかの化合物から水素が脱離した置換基である、請求項1記載の鉄サレン錯体。
【化7】

【化8】

【化9】

【化10】

【化11】

【化12】

【化13】

【化14】

【化15】

【化16】

【請求項4】
下記式で示される鉄サレン錯体。
【化17】

【請求項5】
請求項1〜4のいずれかに記載の鉄サレン錯体からなり、磁性を有する薬剤。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−43125(P2010−43125A)
【公開日】平成22年2月25日(2010.2.25)
【国際特許分類】
【出願番号】特願2009−264213(P2009−264213)
【出願日】平成21年11月19日(2009.11.19)
【分割の表示】特願2008−298128(P2008−298128)の分割
【原出願日】平成20年11月21日(2008.11.21)
【出願人】(000000099)株式会社IHI (5,014)
【出願人】(505328683)
【Fターム(参考)】