説明

1,3−ジエンを含む化合物及びその製造方法

【課題】優れた硬化性を示す化合物を提供する。
【解決手段】下記式(I):


〔式(I)中、Ar1はアリーレン基、2価の複素環基又は2価の芳香族アミン基を表す。J1はフェニレン基を表し、J2はアルキレン基を表し、Xは酸素原子又は硫黄原子を表す。jは0又は1であり、kは0〜3の整数であり、lは0又は1であり、1≦j+k+l≦5を満たす。mは1又は2である。〕で示される2価の基を含む化合物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、1,3−ジエンを含む化合物及びその製造方法に関する。
【背景技術】
【0002】
高分子量の発光材料や電荷輸送材料は発光素子における有機層に用いる材料等として有用であることから種々検討されている。上記材料としては、例えば、積層型発光素子を作製するために、ベンゾシクロブテン残基を架橋させ化合物を硬化させることのできる化合物(特許文献1、2)、積層型発光素子の作製に有用な2個のオレフィン(非共役のジエン)を有する化合物(特許文献3)が提案されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】国際公開第2005/049689号パンフレット
【特許文献2】特開2008−106241号公報
【特許文献3】国際公開第2004/093154号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、上記化合物は、硬化性が十分ではない。
そこで、本発明は、優れた硬化性を示す化合物を提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明は第一に、下記式(I):

〔式(I)中、Ar1はアリーレン基、2価の複素環基又は2価の芳香族アミン基を表す。J1はフェニレン基を表し、J2はアルキレン基を表し、Xは酸素原子又は硫黄原子を表す。jは0又は1であり、kは0〜3の整数であり、lは0又は1であり、1≦j+k+l≦5を満たす。mは1又は2である。R1は、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基又はニトロ基を表す。複数存在するR1は、同一であっても異なっていてもよい。J1、J2、X、j、k及びlは、複数存在する場合、各々、同一であっても異なっていてもよい。〕
で示される2価の基を含む化合物を提供する。
【0006】
本発明は第二に、正孔輸送材料、電子輸送材料及び発光材料からなる群から選ばれる少なくとも1種と、上記化合物とを含有する組成物を提供する。
本発明は第三に、上記化合物と、溶媒とを含有する液状組成物を提供する。
本発明は第四に、上記化合物を含有する薄膜、及び上記化合物を架橋してなる薄膜を提供する。
本発明は第五に、陽極及び陰極からなる電極と、該電極間に設けられ上記化合物を含む有機層とを有する発光素子を提供する。
本発明は第六に、上記発光素子を備えた面状光源及び表示装置を提供する。
本発明は第七に、上記化合物を用いてなる有機トランジスタ及び有機光電変換素子を提供する。
【0007】
本発明は第八に、下記式(X):

〔式(X)中、Ar1はアリーレン基、2価の複素環基又は2価の芳香族アミン基を表す。J1はフェニレン基を表し、J2はアルキレン基を表し、Xは酸素原子又は硫黄原子を表す。X1及びX2はそれぞれ独立に、ハロゲン原子を表す。kは0〜3の整数であり、lは0又は1であり、mは1又は2である。J1、J2、X、k及びlは、複数存在する場合、各々、同一であっても異なっていてもよい。〕
で示される化合物を提供する。
【0008】
本発明は第九に、下記式(XI):

〔式(XI)中、Ar1はアリーレン基、2価の複素環基又は2価の芳香族アミン基を表す。J1はフェニレン基を表し、Xは酸素原子又は硫黄原子を表す。X1及びX2はそれぞれ独立に、ハロゲン原子を表す。kは0〜3の整数であり、lは0又は1であり、mは1又は2である。J1、X、k及びlは、複数存在する場合、各々、同一であっても異なっていてもよい。〕
で示される化合物と、下記式(XII):

〔式(XII)中、X3はハロゲン原子を表し、J2はアルキレン基を表す。〕
で示される化合物とを、塩基中で反応させることを含む、上記式(X)で示される化合物の製造方法を提供する。
【発明の効果】
【0009】
本発明の化合物は、優れた硬化性(例えば、熱硬化性)を示す化合物である。また、好ましい実施形態では、本発明の化合物は、優れた寿命も示す化合物である。
【発明を実施するための形態】
【0010】
以下、本発明を詳細に説明する。なお、本明細書において、ジエン構造(例えば、下記式:

(式中、R1は前記と同じ意味を有する。)
で表される構造)は、E体で表記しているが、E体、Z体、これらの混合物のいずれでもよい。
【0011】
<化合物>
本発明の化合物は、上記式(I)で示される2価の基を含む化合物であるが、耐熱性の観点、該化合物を架橋させてなる膜の電荷輸送性や発光特性、溶液からの薄膜の作製の容易性の観点から、上記式(I)で示される2価の基を含む高分子化合物であることが好ましく、上記式(I)で示される2価の基を繰り返し単位として有する高分子化合物であることがより好ましい。また、本発明の化合物は、硬化性を考慮して、上記式(I)で示される2価の基を繰り返し単位として2種以上有していてもよい。
【0012】
本発明の化合物は、低分子化合物であっても高分子化合物であってもよい。低分子化合物とは、分子量が1×101以上1×103未満の化合物を意味する。また、低分子化合物は、通常、単一の分子量を有する。一方、高分子化合物とは、ポリスチレン換算の数平均分子量が1×103〜1×108の化合物を意味する。また、高分子化合物は、分子量に分布を持つ。
【0013】
上記式(I)中、Ar1としては、耐久性の観点からは、アリーレン基が好ましく、電荷輸送性の観点からは、2価の複素環基が好ましい。
【0014】
上記式(I)中、Ar1で表されるアリーレン基は、芳香族炭化水素から、水素原子2個を除いた原子団であり、縮合環を持つもの、独立したベンゼン環又は縮合環2個以上が直接又はビニレン等の基を介して結合したものも含む。上記アリーレン基は置換基を有していてもよい。上記置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基及びニトロ基が挙げられ、溶解性、蛍光特性、合成の行いやすさ、素子にした場合の特性等の観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、ハロゲン原子、シアノ基が好ましい。
【0015】
Ar1で表されるアリーレン基において、置換基を除いた部分の炭素数は、通常、6〜60であり、好ましくは6〜20であり、置換基を含めた全炭素数は、通常、6〜100である。
【0016】
Ar1で表されるアリーレン基としては、例えば、フェニレン基(下式1〜3)、ナフタレンジイル基(下式4〜13)、アントラセン−ジイル基(下式14〜19)、ビフェニル−ジイル基(下式20〜25)、ターフェニル−ジイル基(下式26〜28)、縮合環化合物基(下式29〜35)、フルオレン−ジイル基(下式36〜38)、ベンゾフルオレン−ジイル(下式39〜46)等が挙げられ、耐久性の観点からは、フェニレン基、ナフタレンジイル基、アントラセン−ジイル基、ビフェニル−ジイル基、フルオレン−ジイル基、ベンゾフルオレン−ジイル基が好ましく、ナフタレンジイル基、アントラセン−ジイル基、ビフェニル−ジイル基、フルオレン−ジイル基、ベンゾフルオレン−ジイル基がより好ましく、ナフタレンジイル基、アントラセン−ジイル基、フルオレン−ジイル基、ベンゾフルオレン−ジイル基がさらに好ましく、フルオレン−ジイル基、ベンゾフルオレン−ジイル基が特に好ましく、フルオレン−ジイル基がとりわけ好ましい。また、Ar1で表されるアリーレン基としては、得られる化合物の合成の容易さの観点からは、フェニレン基、フルオレン−ジイル基が好ましく、p−フェニレン、m−フェニレン、2,7−フルオレン−ジイル基がより好ましく、p−フェニレン、2,7−フルオレン−ジイル基が特に好ましい。なお、以下の基は、置換基を有していてもよい。
【0017】

【0018】

【0019】

【0020】
上記置換基であるアルキル基は、直鎖、分岐、環状のいずれでもよく、置換基を有していてもよい。上記アルキル基は、炭素数が、通常、1〜20であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、3,7−ジメチルオクチル基、ラウリル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基である。
【0021】
上記置換基であるアルコキシ基は、直鎖、分岐、環状のいずれでもよく、置換基を有していてもよい。上記アルコキシ基は、炭素数が、通常、1〜20であり、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基、メトキシメチルオキシ基、2−メトキシエチルオキシ基である。
【0022】
上記置換基であるアルキルチオ基は、直鎖、分岐又は環状のいずれでもよく、置換基を有していてもよい。上記アルキルチオ基は、炭素数が、通常、1〜20であり、例えば、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、t−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基、ラウリルチオ基、トリフルオロメチルチオ基である。
【0023】
上記置換基であるアリール基は、芳香族炭化水素から水素原子1個を除いた原子団であり、縮合環を持つ基、独立したベンゼン環又は縮合環2個以上が直接又はビニレン基等を介して結合した基を含む。上記アリール基は、炭素数が、通常、6〜60であり、好ましくは7〜48であり、例えば、フェニル基、C1〜C12アルコキシフェニル基(「C1〜C12アルコキシ」はアルコキシ部分の炭素数が1〜12であることを示す。以下、同様である。)、C1〜C12アルキルフェニル基(「C1〜C12アルキル」はアルキル部分の炭素数が1〜12であることを示す。以下、同様である。)、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、ペンタフルオロフェニル基であり、C1〜C12アルコキシフェニル基、C1〜C12アルキルフェニル基が好ましい。
1〜C12アルコキシフェニル基としては、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、t−ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2−エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7−ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基等が挙げられる。
1〜C12アルキルフェニル基としては、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、t−ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基等が挙げられる。
【0024】
上記置換基であるアリールオキシ基は、炭素数が、通常、6〜60であり、好ましくは7〜48である。上記アリールオキシ基としては、フェノキシ基、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、ペンタフルオロフェニルオキシ基等が挙げられ、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基が好ましい。
1〜C12アルコキシフェノキシ基としては、メトキシフェノキシ基、エトキシフェノキシ基、プロピルオキシフェノキシ基、イソプロピルオキシフェノキシ基、ブトキシフェノキシ基、イソブトキシフェノキシ基、t−ブトキシフェノキシ基、ペンチルオキシフェノキシ基、ヘキシルオキシフェノキシ基、シクロヘキシルオキシフェノキシ基、ヘプチルオキシフェノキシ基、オクチルオキシフェノキシ基、2−エチルヘキシルオキシフェノキシ基、ノニルオキシフェノキシ基、デシルオキシフェノキシ基、3,7−ジメチルオクチルオキシフェノキシ基、ラウリルオキシフェノキシ基等が挙げられる。
1〜C12アルキルフェノキシ基としては、メチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、プロピルフェノキシ基、1,3,5−トリメチルフェノキシ基、メチルエチルフェノキシ基、イソプロピルフェノキシ基、ブチルフェノキシ基、イソブチルフェノキシ基、t−ブチルフェノキシ基、ペンチルフェノキシ基、イソアミルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基、ドデシルフェノキシ基等が挙げられる。
【0025】
上記置換基であるアリールチオ基は、芳香環上に置換基を有していてもよい。上記アリールチオ基は、炭素数が、通常、3〜60である。上記アリールチオ基としては、例えば、フェニルチオ基、C1〜C12アルコキシフェニルチオ基、C1〜C12アルキルフェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基、ペンタフルオロフェニルチオ基が挙げられる。
【0026】
上記置換基であるアリールアルキル基は、置換基を有していてもよく、炭素数が、通常、7〜60である。上記アリールアルキル基としては、例えば、フェニル−C1〜C12アルキル基、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基、1−ナフチル−C1〜C12アルキル基、2−ナフチル−C1〜C12アルキル基が挙げられる。
【0027】
上記置換基であるアリールアルコキシ基は、置換基を有していてもよく、炭素数が、通常、7〜60である。上記アリールアルコキシ基としては、例えば、フェニル−C1〜C12アルコキシ基、C1〜C12アルコキシフェニル−C1〜C12アルコキシ基、C1〜C12アルキルフェニル−C1〜C12アルコキシ基、1−ナフチル−C1〜C12アルコキシ基、2−ナフチル−C1〜C12アルコキシ基が挙げられる。
【0028】
上記置換基であるアリールアルキルチオ基は、置換基を有していてもよく、炭素数が、通常、7〜60である。上記アリールアルキルチオ基としては、例えば、フェニル−C1〜C12アルキルチオ基、C1〜C12アルコキシフェニル−C1〜C12アルキルチオ基、C1〜C12アルキルフェニル−C1〜C12アルキルチオ基、1−ナフチル−C1〜C12アルキルチオ基、2−ナフチル−C1〜C12アルキルチオ基が挙げられる。
【0029】
上記置換基であるアリールアルケニル基は、炭素数が通常8〜60である。上記アリールアルケニル基としては、例えば、フェニル−C2〜C12アルケニル基、C1〜C12アルコキシフェニル−C2〜C12アルケニル基、C1〜C12アルキルフェニル−C2〜C12アルケニル基、1−ナフチル−C2〜C12アルケニル基、2−ナフチル−C2〜C12アルケニル基が挙げられ、C1〜C12アルコキシフェニル−C2〜C12アルケニル基、C1〜C12アルキルフェニル−C2〜C12アルケニル基が好ましい。
【0030】
上記置換基であるアリールアルキニル基は、炭素数が通常8〜60である。上記アリールアルキニル基としては、例えば、フェニル−C2〜C12アルキニル基、C1〜C12アルコキシフェニル−C2〜C12アルキニル基、C1〜C12アルキルフェニル−C2〜C12アルキニル基、1−ナフチル−C2〜C12アルキニル基、2−ナフチル−C2〜C12アルキニル基が挙げられ、C1〜C12アルコキシフェニル−C2〜C12アルキニル基、C1〜C12アルキルフェニル−C2〜C12アルキニル基が好ましい。
【0031】
上記置換基である置換アミノ基は、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選ばれる1又は2個の基で置換されたアミノ基が挙げられ、該アルキル基、アリール基、アリールアルキル基及び1価の複素環基は置換基を有していてもよい。置換アミノ基の炭素数は、該置換基の炭素数を含めないで通常1〜60であり、好ましくは2〜48である。
上記置換アミノ基としては、例えば、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、s−ブチルアミノ基、イソブチルアミノ基、t−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、C1〜C12アルコキシフェニルアミノ基、ジ(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルキルフェニル)アミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジルアミノ基、トリアジルアミノ基、フェニル−C1〜C12アルキルアミノ基、C1〜C12アルコキシフェニル−C1〜C12アルキルアミノ基、C1〜C12アルキルフェニル−C1〜C12アルキルアミノ基、ジ(C1〜C12アルコキシフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、1−ナフチル−C1〜C12アルキルアミノ基、2−ナフチル−C1〜C12アルキルアミノ基が挙げられる。
【0032】
上記置換基である置換シリル基は、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選ばれる1、2又は3個の基で置換されたシリル基が挙げられる。置換シリル基の炭素数は通常1〜60であり、好ましくは3〜48である。なお、該アルキル基、アリール基、アリールアルキル基及び1価の複素環基は置換基を有していてもよい。
上記置換シリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリ−イソプロピルシリル基、ジメチル−イソプロピルシリル基、ジエチル−イソプロピルシリル基、t−ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2−エチルヘキシル−ジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7−ジメチルオクチル−ジメチルシリル基、ラウリルジメチルシリル基、フェニル−C1〜C12アキルシリル基、C1〜C12アルコキシフェニル−C1〜C12アルキルシリル基、C1〜C12アルキルフェニル−C1〜C12アルキルシリル基、1−ナフチル−C1〜C12アルキルシリル基、2−ナフチル−C1〜C12アルキルシリル基、フェニル−C1〜C12アルキルジメチルシリル基、トリフェニルシリル基、トリ−p−キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、t−ブチルジフェニルシリル基、ジメチルフェニルシリル基が挙げられる。
【0033】
上記置換基であるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。
【0034】
上記置換基であるアシル基は、炭素数が通常2〜20であり、好ましくは2〜18である。上記アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基が挙げられる。
【0035】
上記置換基であるアシルオキシ基は、炭素数が通常2〜20であり、好ましくは2〜18である。上記アシルオキシ基としては、例えば、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基が挙げられる。
【0036】
上記置換基であるイミン残基は、イミン化合物(分子内に−N=C−を持つ有機化合物を意味する。その例として、アルジミン、ケチミン及びこれらに含まれる窒素原子に結合した水素原子が、アルキル基等で置換された化合物が挙げられる。)から水素原子1個を除いた残基であり、通常炭素数が2〜20であり、好ましくは2〜18である。上記イミン残基としては、例えば、以下の構造式で示される基が挙げられる。
【0037】

【0038】
上記置換基であるカルバモイル基は、炭素数が通常2〜20であり、好ましくは2〜18である。上記カルバモイル基としては、例えば、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基が挙げられる。
【0039】
上記置換基である酸イミド基は、酸イミドからその窒素原子に結合した水素原子を除いて得られる残基であり、炭素数が通常4〜20である。上記酸イミド基としては、例えば、以下に示す基が挙げられる。
【0040】

【0041】
上記置換基である1価の複素環基は、複素環式化合物から水素原子1個を除いた残りの原子団を意味し、炭素数は通常4〜60であり、好ましくは4〜20である。1価の複素環基の中では、1価の芳香族複素環基が好ましい。なお、1価の複素環基の炭素数には、置換基の炭素数は含まれない。ここで、複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、リン、ホウ素等のヘテロ原子を環内に含む化合物を意味する。上記1価の複素環基としては、例えば、チエニル基、C1〜C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1〜C12アルキルピリジル基、ピペリジル基、キノリル基、イソキノリル基が挙げられ、チエニル基、C1〜C12アルキルチエニル基、ピリジル基、C1〜C12アルキルピリジル基が好ましい。
【0042】
上記置換基である置換カルボキシル基は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基で置換されたカルボキシル基を意味し、炭素数が通常2〜60であり、好ましくは2〜48である。上記置換カルボキシル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、t−ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2−エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7−ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、ピリジルオキシカルボニル基が挙げられる。なお、該アルキル基、アリール基、アリールアルキル基及び1価の複素環基は置換基を有していてもよい。上記置換カルボキシル基の炭素数には該置換基の炭素数は含まれない。
【0043】
上記式(I)中、Ar1で表される2価の複素環基は、複素環式化合物から水素原子2個を除いた残りの原子団をいう。上記2価の複素環基は、置換基を有していてもよい。
【0044】
上記複素環式化合物は、環式構造を持つ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、リン、ホウ素、ヒ素等のヘテロ原子を環内に含むものをいう。2価の複素環基としては、2価の芳香族複素環基が好ましい。上記置換基としては、得られる化合物の溶解性、蛍光特性、合成の行いやすさ、素子にした場合の特性等の観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、ハロゲン原子、シアノ基が好ましい。これらの基、原子は、上記と同じ意味を有する。
【0045】
Ar1で表される2価の複素環基において、置換基を除いた部分の炭素数は、通常、3〜60であり、置換基を含めた全炭素数は、通常、3〜100である。
【0046】
Ar1で表される2価の複素環基としては、例えば、以下の基が挙げられる。なお、以下の基は、置換基を有していてもよい。
ヘテロ原子として窒素原子を含む2価の複素環基:ピリジン−ジイル基(下式101〜104)、ジアザフェニレン基(下式105〜108)、トリアジン−ジイル基(下式109)、キノリン−ジイル基(下式110〜114)、キノキサリン−ジイル基(下式115〜119)、アクリジンジイル基(下式120〜123)、ビピリジル−ジイル基(下式124〜126)、フェナントロリンジイル基(下式127〜128)。
ヘテロ原子として酸素原子、硫黄原子、窒素原子、ケイ素原子等を含みフルオレン構造を有する基(下式129〜136)。
ヘテロ原子として酸素原子、硫黄原子、窒素原子、ケイ素原子等を含む5員環複素環基(下式137〜140)。
ヘテロ原子として酸素原子、硫黄原子、窒素原子、ケイ素原子等を含む5員環縮合複素基(下式141〜158)。
ヘテロ原子として酸素原子、硫黄原子、窒素原子、ケイ素原子等を含む5員環複素環基でそのヘテロ原子のα位で結合し2量体やオリゴマーになっている基(下式159〜160)。
ヘテロ原子として酸素原子、硫黄原子、窒素原子、ケイ素原子等を含む5員環複素環基でそのヘテロ原子のα位でフェニル基に結合している基(下式161〜166)。
ヘテロ原子として酸素原子、硫黄原子、窒素原子等を含む5員環縮合複素環基にフェニル基やフリル基、チエニル基が置換した基(下式167〜172)。
ヘテロ原子として酸素原子、窒素原子等を含む6員環複素環基(下式173〜176)。
【0047】

【0048】

【0049】

【0050】

【0051】

【0052】
Ar1で表される2価の複素環基としては、電荷輸送性の観点から、下記式(II):

〔式(II)中、Yは、酸素原子、硫黄原子、−N(R22)−、−O−C(R23)(R24)−、又は−Si(R25)(R26)−を表す。R22、R23、R24、R25及びR26はそれぞれ独立に、水素原子、アルキル基、アルコキシ基、アリール基又はアリールアルキル基を表す。該式は、置換基を有していてもよい。〕
示される2価の基が好ましい。
【0053】
上記式(II)が置換基を有する場合、該置換基としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基が挙げられる。これらの基は、上記と同じ意味を有する。
【0054】
上記式(II)中、Yは、本発明の化合物の合成の容易さの観点から、酸素原子、硫黄原子、−N(R22)−が好ましく、酸素原子、−N(R22)−がより好ましい。
【0055】
上記式(II)で示される2価の基は、特に高い電荷輸送性を得られることから、下記式(II)−1又は下記式(II)−2で表される2価の基であることが好ましい。

〔式(II)−1中、Y1は、酸素原子、硫黄原子、−N(R22)−、−O−C(R23)(R24)−、又は−Si(R25)(R26)−を表す。該式は、置換基を有していてもよい。〕

〔式(II)−2中、Y2は、酸素原子、硫黄原子、−N(R22)−、−O−C(R23)(R24)−、又は−Si(R25)(R26)−を表す。該式は、置換基を有していてもよい。〕
【0056】
上記式(II)−1、(II)−2が置換基を有する場合、該置換基としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基が挙げられる。これらの基は、上記と同じ意味を有する。
【0057】
上記式(II)−1中、Y1は、本発明の化合物の合成の容易さの観点から、酸素原子、硫黄原子、−N(R22)−が好ましく、酸素原子、−N(R22)−がより好ましく、酸素原子が特に好ましい。
【0058】
上記式(II)−2中、Y2は、本発明の化合物の合成の容易さの観点から、酸素原子、硫黄原子、−N(R22)−が好ましく、硫黄原子、−N(R22)−がより好ましく、−N(R22)−が特に好ましい。
【0059】
Ar1で表される2価の芳香族アミン基は、芳香族アミンから水素原子2個を除いた残りの原子団をいい、その炭素数は、通常、5〜100であり、好ましくは15〜60である。上記2価の芳香族アミン基は置換基を有していてもよい。なお、芳香族アミンの炭素数には、置換基の炭素数は含まない。上記置換基としては、得られる化合物の溶解性、蛍光特性、合成の行いやすさ、薄膜の架橋のし易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、ハロゲン原子及びシアノ基が好ましい。これらの基、原子は、上記と同じ意味を有する。
【0060】
Ar1で表される2価の芳香族アミン基としては、以下の式201〜210で表される2価の基が挙げられる。なお、以下の基は、置換基を有していてもよい。
【0061】

【0062】
Ar1で表される2価の芳香族アミン基としては、正孔輸送性の観点から、下記式(III):

〔式(III)中、R3は、水素原子、アルキル基、アルコキシ基又は置換アミノ基を表す。5個存在するR3は、同一であっても異なっていてもよい。〕
で示される2価の基、又は下記式(IV):

〔式(IV)中、R4は、水素原子、アルキル基、アルコキシ基又は置換アミノ基を表す。10個存在するR4は、同一であっても異なっていてもよい。〕
で示される2価の基であることが好ましい。
【0063】
上記式(III)、(IV)中、R3及びR4で表されるアルキル基、アルコキシ基は、上記と同じ意味を有する。
【0064】
上記式(III)、(IV)中、R3及びR4で表される置換アミノ基としては、アルキル基、アリール基、アリールアルキル基及び1価の複素環基から選ばれる1個又は2個の基で置換されたアミノ基が挙げられる。上記アルキル基、アリール基、アリールアルキル基、1価の複素環基は、置換基を有していてもよい。上記置換アミノ基の炭素数は、上記置換基の炭素数を含めないで、通常、1〜60であり、好ましくは2〜48である。
【0065】
3及びR4で表される置換アミノ基は、上記と同じ意味を表す。
【0066】
上記式(I)中、J1で表されるフェニレン基は、置換基を有していてもよい。上記フェニレン基としては、o−フェニレン、m−フェニレン、p−フェニレン等が挙げられる。上記置換基としては、アルキル基、アルコキシ基、ハロゲン原子、シアノ基が挙げられる。これらの基は、上記と同じ意味を有する。
【0067】
上記式(I)中、J2で表されるアルキレン基は、直鎖でも分岐を有していてもよい。上記アルキルレン基としては、メチレン、1,2−エチレン、1,3−プロピレン、1,3−ブチレン、1,4−ブチレン、1,3−ペンチレン、1,4−ペンチレン、1,5−ペンチレン、1,4−ヘキシレン、1,6−へキシレン、1,7−ヘプチレン、1,6−オクチレン、1,8−オクチレン等が挙げられる。なお、本明細書において、J2は、Arへの結合に近い炭素原子を1位とする。
【0068】
2で表されるアルキレン基は、合成の容易さの観点から、炭素数が、通常、1〜20の整数であり、好ましくは1〜10の整数であり、より好ましくは1〜6の整数である。
【0069】
上記式(I)中、Xは、本発明の化合物の合成の容易さの観点から、酸素原子であることが好ましい。
【0070】
上記式(I)中、jは0又は1であり、本発明の化合物の合成の容易さの観点から、1であることが好ましい。
【0071】
上記式(I)中、kは、本発明の化合物の合成の容易さの観点から、0〜2から選ばれる整数であることが好ましく、0又は1であることがさらに好ましい。
【0072】
上記式(I)中、R1で表されるアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基及びニトロ基は、上記と同じ意味を有するが、硬化性の観点から、水素原子、アルキル基、アルコキシ基、ハロゲン原子、ニトロ基、シアノ基が好ましく、水素原子、アルキル基、アリール基、ハロゲン原子がより好ましく、水素原子、アルキル基がさらに好ましく、水素原子が特に好ましい。
【0073】
また、複数存在するR1は、互いに結合して環を形成していてもよい。R1が形成し得る環としては、例えば、置換基を有していてもよい炭素数1〜10のシクロアルキル環、置換基を有していてもよい炭素数1〜10のシクロアルケニル環、置換基を有していてもよい炭素数6〜14の芳香族炭化水素環、及び置換基を有していてもよい炭素数4〜14の複素環が挙げられる。
【0074】
1が形成し得るシクロアルキル環としては、例えば、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカンが挙げられる。
【0075】
1が形成し得るシクロアルケニル環は、二重結合を2つ以上する環を含む。上記シクロアルケニル環としては、例えば、シクロヘキセン環、シクロヘキサジエン環、シクロオクタトリエン環が挙げられる。
【0076】
1が形成し得る芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環が挙げられる。
【0077】
1が形成し得る複素環としては、例えば、フラン環、テトラヒドロフラン環、チオフェン環、テトラヒドロチオフェン環、インドール環、テトラヒドロインドール環、イソキノリン環、ピリジン環、チアゾール環、オキサゾール環が挙げられる。
【0078】
上記式(I)中、下記式(Ia):

(式(Ia)中、j、k、l、J1、J2及びR1は、上記と同じ意味を有する。)
で表される基は、本発明の化合物の硬化性の観点から、下記式(Ib):

(式(Ib)中、k、l、J2及びR1は、上記と同じ意味を有する。)
で示される基であることが好ましく、下記式(Ic):

(式(Ic)中、k、l及びJ2は、上記と同じ意味を有する。)
で示される基、下記式(Id):

(式(Id)中、k、l及びJ2は、上記と同じ意味を有する。)
で示される基であることがより好ましい。
【0079】
上記式(I)で示される2価の基としては、下記式(I)−1〜(I)−35で示される2価の基が挙げられる。
【0080】

【0081】

【0082】

【0083】

【0084】

【0085】

【0086】
本発明の化合物が高分子化合物である場合、該高分子化合物の合成の容易さの観点から、本発明の化合物は、上記式(I)で示される基として、下記式(V):

〔式(V)中、J1、J2、X、R1、k、l及びmは、上記と同じ意味を有する。R2は、アルキル基、アリール基、アリールアルキル基又はアリールアルコキシ基を表す。〕
で示される繰り返し単位を有する高分子化合物であることが好ましい。
【0087】
上記式(V)中、R2で表されるアルキル基、アリール基、アリールアルキル基及びアリールアルコキシ基は、上記と同じ意味を有する。
【0088】
本発明の化合物が高分子化合物である場合、該高分子化合物の硬化性の観点から、本発明の化合物は、更に架橋基を含む繰り返し単位を有していてもよい。ここで、架橋基とは、熱、光等の刺激に対して架橋反応を起こす置換基を意味する。
【0089】
上記架橋基としては、例えば、オキシラニル基、オキセタニル基、シンナモイル基、アルキニル基が挙げられる。
【0090】
本発明の化合物が高分子化合物である場合、該高分子化合物は、硬化性の観点から、上記式(I)で示される繰り返し単位に加えて、下記式(A):

〔式(A)中、Ar2はアリーレン基、2価の複素環基又は2価の芳香族アミン基を表す。J3は直接結合、アルキレン基又はフェニレン基を表し、nは1又は2を表す。J3は、複数存在する場合、同一であっても異なっていてもよい。〕
で示される繰り返し単位を有することが好ましい。
【0091】
上記式(A)中、Ar2で表されるアリーレン基、2価の複素環基、2価の芳香族アミン基は、上記と同じ意味を有する。Ar2としては、本発明の化合物の合成の容易さの観点から、アリーレン基、2価の複素環基が好ましく、アリーレン基がより好ましく、フルオレン−ジイル基がさらに好ましく、2,7−フルオレン−ジイル基が特に好ましい。
【0092】
上記式(A)中、J3で表されるアルキレン基、フェニレン基は、上記と同じ意味を有する。
【0093】
上記式(A)で表される基は、Ar2がアリーレン基であり、J3が直接結合であり、nが2であることが好ましい。
【0094】
本発明の化合物が高分子化合物である場合、該高分子化合物は、硬化性の観点から、上記式(I)で示される繰り返し単位に加えて、下記式(B):

〔式(B)中、Ar3はアリーレン基、2価の複素環基又は2価の芳香族アミン基を表す。J4は直接結合、アルキレン基又はフェニレン基を表し、R5は水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基又はニトロ基を表し、oは1又は2を表す。複数存在するR5は、同一であっても異なっていてもよい。J4は、複数存在する場合、同一であっても異なっていてもよい。〕
で示される繰り返し単位を有することが好ましい。
【0095】
上記式(B)中、Ar3で表されるアリーレン基、2価の複素環基、2価の芳香族アミン基は、上記と同じ意味を有する。Ar3としては、本発明の化合物の合成の容易さの観点から、アリーレン基、2価の複素環基が好ましく、アリーレン基がより好ましく、フルオレン−ジイル基がさらに好ましく、2,7−フルオレン−ジイル基が特に好ましい。
【0096】
上記式(B)中、J4で表されるアルキレン基、フェニレン基は、上記と同じ意味を有する。
【0097】
上記式(B)中、R5で表されるアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基及びニトロ基は、上記と同じ意味を有する。R5としては、本発明の化合物の硬化性の観点から、水素原子、ハロゲン原子が好ましく、水素原子がより好ましい。
【0098】
上記式(B)で表される基は、Ar3がアリーレン基であり、J4がアルキレン基であり、oが2であることが好ましい。
【0099】
本発明の化合物が高分子化合物である場合、該高分子化合物は、電荷輸送性の観点から、上記式(I)で示される繰り返し単位に加えて、下記式(C):

〔式(C)中、R6は、アルキル基、アリール基、アリールアルキル基又はアリールアルコキシ基を表す。2個存在するR6は、同一であっても異なっていてもよい。〕
で表される繰り返し単位を有することが好ましい。
【0100】
上記式(C)中、R6で表されるアルキル基、アリール基、アリールアルキル基、アリールアルコキシ基は、上記と同じ意味を有する。R6としては、原料モノマーの合成の容易さの観点から、アルキル基、アリール基、アリールアルキル基が好ましく、アルキル基、アリール基がより好ましく、アルキル基であることが特に好ましい。
【0101】
本発明の化合物が高分子化合物である場合、該高分子化合物は、正孔輸送性の観点から、上記式(I)で示される繰り返し単位に加えて、下記式(D)で表される繰り返し単位及び下記式(E)で表される繰り返し単位からなる群から選ばれる一種以上の繰り返し単位を有していてもよい。

〔式(D)中、Ar3、Ar4、Ar5及びAr6はそれぞれ独立に、アリーレン基又は2価の複素環基を表し、Ar7、Ar8及びAr9はそれぞれ独立に、アリール基又は1価の複素環基を表し、α及びβはそれぞれ独立に0又は1を表す。Ar3、Ar4、Ar5、Ar6、Ar7、Ar8及びAr9は、置換基を有していてもよい。〕

〔式(E)中、P環及びQ環はそれぞれ独立に、芳香族炭化水素環を表し、X3は、単結合、酸素原子又は硫黄原子を表し、R100はアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基又はニトロ基を表す。〕
【0102】
上記式(D)中、アリーレン基、2価の複素環基、アリール基及び1価の複素環基は上記と同じ意味を有する。
【0103】
Ar3、Ar4、Ar5、Ar6、Ar7、Ar8及びAr9が有していてもよい置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基及びニトロ基が挙げられる。
【0104】
アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基及びニトロ基は上記と同じ意味を有する。
【0105】
上記式(E)中、芳香族炭化水素環とは、上記アリーレン基の結合手に水素原子を結合させてなる環を意味する。
【0106】
上記式(E)中、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基及びニトロ基は、上記と同じ意味を有する。
【0107】
上記式(D)で示される繰り返し単位は、正孔輸送性の観点から、下記式(D)−1又は(D)−2で示される繰り返し単位であることが好ましい。

〔式(D)−1中、R7は、水素原子、アルキル基又はアルコキシ基を表す。3個存在するR7は、同一であっても異なっていてもよい。〕

〔式中、R8は、水素原子、アルキル基又はアルコキシ基を表す。6個存在するR8は同一であっても異なっていてもよい。〕
【0108】
上記式(D)−1中、R7で表されるアルキル基、アルコキシ基は、上記と同じ意味を有する。
【0109】
上記式(D)−2中、R8で表されるアルキル基、アルコキシ基は、上記と同じ意味を有する。
【0110】
上記式(E)で示される繰り返し単位は、正孔輸送性の観点から、下記式(E)−1で示される繰り返し単位であることが好ましい。

〔式(E)−1中、R9は、アルキル基、アリール基、アリールアルキル基又はアリールアルコキシ基を表す。〕
【0111】
上記式(E)−1中、R9で表されるアルキル基、アリール基、アリールアルキル基、アリールアルコキシ基は、上記と同じ意味を有する。
【0112】
本発明の化合物が高分子化合物である場合、該高分子化合物は、電荷輸送性の観点から、上記式(I)で示される繰り返し単位に加えて、下記式(G)、(H)、(J)、(K)で表される繰り返し単位からなる群から選ばれる一種以上の繰り返し単位を有していてもよい。

〔式(G)中、R10は、アルキル基、アリール基、アリールアルキル基又はアリールアルコキシ基を表す。2個存在するR10は、同一であっても異なっていてもよい。〕

〔式(H)中、R11は、アルキル基、アルコキシ基、アリール基、アリールアルキル基又はアリールアルコキシ基を表す。qは0〜4から選ばれる整数を表す。R11が複数存在する場合、それらは同一であっても異なっていてもよい。〕

〔式(J)中、R12は、アルキル基、アルコキシ基、アリール基、アリールアルキル基又はアリールアルコキシ基を表す。Zは酸素原子又は硫黄原子を表す。rは0〜3の整数である。R12が複数存在する場合、それらは同一であっても異なっていてもよい。〕

〔式(K)中、R13は、アルキル基、アルコキシ基、アリール基、アリールアルキル基又はアリールアルコキシ基を表す。sは0〜2の整数である。R13が複数存在する場合、それらは同一であっても異なっていてもよい。〕
【0113】
上記式(G)中、R10で表されるアルキル基、アリール基、アリールアルキル基、アリールアルコキシ基は、上記と同じ意味を有する。
【0114】
上記式(H)中、R11で表されるアルキル基、アルコキシ基、アリール基、アリールアルキル基、アリールアルコキシ基は、上記と同じ意味を有する。
【0115】
上記式(J)中、R12で表されるアルキル基、アルコキシ基、アリール基、アリールアルキル基、アリールアルコキシ基は、上記と同じ意味を有する。
【0116】
上記式(K)中、R13で表されるアルキル基、アルコキシ基、アリール基、アリールアルキル基、アリールアルコキシ基は、上記と同じ意味を有する。
【0117】
本発明の化合物が高分子化合物である場合、該高分子化合物は、硬化性の観点から、上記式(I)で示される繰り返し単位と、上記式(D)で示される繰り返し単位及び上記式(E)で示される繰り返し単位からなる群から選ばれる一種以上の繰り返し単位とを有することが好ましく、発光効率の観点から、上記式(I)で示される繰り返し単位と、上記式(C)で示される繰り返し単位と、上記式(D)で示される繰り返し単位及び上記式(E)で示される繰り返し単位からなる群から選ばれる一種以上の繰り返し単位とを有することが好ましい。
【0118】
本発明の化合物が高分子化合物である場合、本発明の化合物において、上記式(I)で示される繰り返し単位の割合の上限は、化合物の安定性の観点から、全繰り返し単位に対して、通常、1モル比であり、好ましくは0.5モル比、より好ましくは0.3モル比、特に好ましくは0.15モル比である。この場合、本発明の化合物において、上記式(I)で示される繰り返し単位の割合の下限は、化合物の硬化性の観点から、通常、0.01モル比、好ましくは0.02モル比、より好ましくは0.05モル比、特に好ましくは0.10モル比である。
【0119】
また、本発明の化合物が上記式(I)で示される繰り返し単位と、上記式(C)で示される繰り返し単位と、上記式(D)で示される繰り返し単位及び上記式(E)で示される繰り返し単位からなる群から選ばれる一種以上の繰り返し単位とを有する高分子化合物である場合、全繰り返し単位に対して、上記式(C)で示される繰り返し単位は、通常、0.1〜0.95モル比であり、好ましくは0.3〜0.9モル比であり、上記式(D)、(E)で示される繰り返し単位の合計は、通常、0.01〜0.5モル比であり、好ましくは0.05〜0.3モル比である。
【0120】
本発明の化合物が高分子化合物である場合、該高分子化合物は、発光素子の作製に使用した場合における該発光素子の寿命特性の観点から、ポリスチレン換算の数平均分子量が、1×103〜1×108であることが好ましく、1×103〜1×107であることがより好ましく、1×104〜1×107であることがさらに好ましく、5×104〜1×107であることが特に好ましい。
【0121】
本発明の化合物が高分子化合物である場合、該高分子化合物は、硬化性の観点から、ポリスチレン換算の重量平均分子量が、1×103〜1×108であることが好ましく、1×104〜1×107であることがより好ましく、1×105〜1×107であることが特に好ましい。
【0122】
本明細書において、数平均分子量及び重量平均分子量は、サイズエクスクルージョンクロマトグラフィー(SEC)(島津製作所製、商品名:LC−10Avp)によりポリスチレン換算の数平均分子量及び重量平均分子量を求めた。SECのうち移動相が有機溶媒であるゲル浸透クロマトグラフィーをゲルパーミエーションクロマトグラフィー(GPC)という。測定する重合体は、約0.5重量%の濃度でテトラヒドロフランに溶解させ、GPCに30μL注入した。GPCの移動相はテトラヒドロフランを用い、0.6mL/分の流速で流した。カラムは、TSKgel SuperHM−H(東ソー製)2本とTSKgel SuperH2000(東ソー製)1本を直列に繋げた。検出器には示差屈折率検出器(島津製作所製、商品名:RID−10A)を用いた。測定は40℃で行った。
【0123】
また、本発明の化合物が高分子化合物である場合、本発明の化合物は、交互共重合体、ランダム共重合体、ブロック共重合体、グラフト共重合体のいずれかであってもよいし、それらの中間的な構造を有する高分子化合物、例えば、ブロック性を帯びたランダム共重合体であってもよい。本発明の化合物は、蛍光又はりん光の量子収率の観点からは、完全なランダム共重合体よりブロック性を帯びたランダム共重合体、ブロック共重合体、グラフト共重合体が好ましい。本発明の化合物は、主鎖に枝分かれがあり、末端部が3個以上ある場合やデンドリマーも含む。
【0124】
本発明の化合物が高分子化合物である場合、本発明の化合物の末端基は、重合活性基がそのまま残っていると、発光素子の作製に用いたときに、得られる発光素子の発光特性や寿命が低下することがあるので、安定な基で保護されていてもよい。上記末端基としては、主鎖の共役構造と連続した共役結合を有している基が好ましく、例えば、炭素−炭素結合を介してアリール基又は1価の複素環基と結合している基が挙げられ、特開平9−45478号公報の化10に記載の置換基等も挙げられる。
【0125】
本発明の化合物としては、以下の式で表される高分子化合物が挙げられる。なお、式中、v、w、x、y、zは、組成比(モル比)を表す。
【0126】

【0127】

【0128】

【0129】

【0130】

【0131】

【0132】

【0133】

【0134】

【0135】

【0136】

【0137】

【0138】

【0139】

【0140】

【0141】

【0142】

【0143】

【0144】

【0145】
本発明の化合物としては、以下の式で表される低分子化合物が挙げられる。
【0146】

【0147】

【0148】

【0149】

【0150】

【0151】

【0152】
次に、本発明の化合物の製造方法について、本発明の化合物が高分子化合物である場合を一例として説明する。
【0153】
上記化合物は、如何なる方法で製造してもよいが、例えば、式:Z1−A1−Z2で示される化合物を縮合重合させることにより、製造することができる。なお、上記式中、A1は、上記式(I)で示される繰り返し単位を表す。また、上記式中、Z1及びZ2は、それぞれ独立に重合反応性基を表す。
【0154】
また、本発明の化合物が前記式(A)〜(H)、(J)、(K)で示される繰り返し単位を有する高分子化合物である場合には、当該繰り返し単位に対応する式:Z3−A2−Z4で示される化合物も縮合重合させることにより、本発明の化合物を製造することができる。また、上記式中、Z3及びZ4は、それぞれ独立に重合反応性基を表す。
【0155】
上記重合反応性基としては、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、ホウ酸残基(−B(OH)2)、ホルミル基、シアノ基、ビニル基等が挙げられる。
【0156】
上記重合反応性基であるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0157】
上記重合反応性基であるアルキルスルホネート基としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基等が挙げられる。
【0158】
上記重合反応性基であるアリールスルホネート基としては、ベンゼンスルホネート基、p−トルエンスルホネート基等が挙げられる。
【0159】
上記重合反応性基であるアリールアルキルスルホネート基としては、ベンジルスルホネート基等が挙げられる。
【0160】
上記重合反応性基であるホウ酸エステル残基としては、下記式で示される基が挙げられる。

(式中、Meはメチル基、Etはエチル基を表す。)
【0161】
上記重合反応性基であるスルホニウムメチル基としては、下記式で示される基が挙げられる。
−CH2+Me2X’-、−CH2+Ph2X’-
(式中、X’はハロゲン原子を表し、Phはフェニル基を表す。)
【0162】
上記重合反応性基であるホスホニウムメチル基としては、下記式で示される基が挙げられる。
−CH2+Ph3X’-
(式中、X’はハロゲン原子を表す。)
【0163】
上記重合反応性基であるホスホネートメチル基としては、下記式で示される基が挙げられる。
−CH2PO(OR’)2
(式中、R’はアルキル基、アリール基又はアリールアルキル基を表す。)
【0164】
上記重合反応性基であるモノハロゲン化メチル基としては、フッ化メチル基、塩化メチル基、臭化メチル基、ヨウ化メチル基が挙げられる。
【0165】
上記重合反応性基は、例えば、Yamamotoカップリング反応等の0価ニッケル錯体を用いる場合には、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基等であり、Suzukiカップリング反応等のニッケル触媒又はパラジウム触媒を用いる場合には、アルキルスルホネート基、ハロゲン原子、ホウ酸エステル残基、ホウ酸残基等である。
【0166】
本発明の化合物が高分子化合物である場合、本発明の化合物の製造は、モノマーとなる重合反応性基を複数有する化合物を、必要に応じて、有機溶媒に溶解し、例えば、アルカリや適切な触媒を用い、有機溶媒の融点以上沸点以下の温度で行うことができ、例えば、“オルガニック リアクションズ(Organic Reactions)”,第14巻,270−490頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1965年、“オルガニック シンセシス(Organic Syntheses)”,コレクティブ第6巻(Collective Volume VI),407−411頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1988年、ケミカル レビュー(Chem.Rev.),第95巻,2457頁(1995年)、ジャーナル オブ オルガノメタリック ケミストリー(J.Organomet.Chem.),第576巻,147頁(1999年)、マクロモレキュラー ケミストリー マクロモレキュラー シンポジウム(Makromol.Chem.,Macromol.Symp.),第12巻,229頁(1987年)等に記載の方法を用いることができる。
【0167】
本発明の化合物が高分子化合物である場合、本発明の化合物の製造方法において、上記重合反応性基の種類に応じて、既知の縮合反応を用いることができ、例えば、対応するモノマーを、Suzukiカップリング反応により重合する方法、Grignard反応により重合する方法、Ni(0)錯体により重合する方法、FeCl3等の酸化剤により重合する方法、電気化学的に酸化重合する方法、適切な脱離基を有する中間体高分子の分解による方法等が挙げられる。
【0168】
これらのうち、Suzukiカップリング反応により重合する方法、Grignard反応により重合する方法、及びニッケルゼロ価錯体により重合する方法が、構造制御の観点から好ましい。
【0169】
本発明の化合物の製造方法の中で、重合反応性基が、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基から選ばれ、ニッケルゼロ価錯体の存在下で縮合重合する製造方法が好ましい。
【0170】
本発明の化合物の原料となる化合物としては、ジハロゲン化化合物、ビス(アルキルスルホネート)化合物、ビス(アリールスルホネート)化合物、ビス(アリールアルキルスルホネート)化合物、ハロゲン−アルキルスルホネート化合物、ハロゲン−アリールスルホネート化合物、ハロゲン−アリールアルキルスルホネート化合物、アルキルスルホネート−アリールスルホネート化合物、アルキルスルホネート−アリールアルキルスルホネート化合物、及びアリールスルホネート−アリールアルキルスルホネート化合物が挙げられる。また、シーケンスを制御した高分子化合物を製造する場合には、上記化合物としては、ハロゲン−アルキルスルホネート化合物、ハロゲン−アリールスルホネート化合物、ハロゲン−アリールアルキルスルホネート化合物、アルキルスルホネート−アリールスルホネート化合物、アルキルスルホネート−アリールアルキルスルホネート化合物、アリールスルホネート−アリールアルキルスルホネート化合物等を用いるのがよい。
【0171】
本発明の化合物が高分子化合物である場合、本発明の化合物の製造方法としては、高分子化合物の合成の容易さの観点から、重合反応性基、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸残基及びホウ酸エステル残基から選ばれ、かつ、全原料化合物が有するハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基のモル数の合計(J)と、ホウ酸残基及びホウ酸エステル残基のモル数の合計(K)の比が実質的に1(通常、K/Jは0.7〜1.2)であり、ニッケル触媒又はパラジウム触媒を用いて縮合重合する製造方法が好ましい。
【0172】
上記原料となる化合物の組み合わせ(即ち、式:Y1−A1−Y2で示される化合物と、式:Y3−A2−Y4で示される化合物)としては、ジハロゲン化化合物、ビス(アルキルスルホネート)化合物、ビス(アリールスルホネート)化合物又はビス(アリールアルキルスルホネート)化合物と、ジホウ酸化合物又はジホウ酸エステル化合物との組み合わせが挙げられる。
【0173】
また、シーケンスを制御した高分子化合物を製造する場合には、上記化合物としては、ハロゲン−ホウ酸化合物、ハロゲン−ホウ酸エステル化合物、アルキルスルホネート−ホウ酸化合物、アルキルスルホネート−ホウ酸エステル化合物、アリールスルホネート−ホウ酸化合物、アリールスルホネート−ホウ酸エステル化合物、アリールアルキルスルホネート−ホウ酸化合物、アリールアルキルスルホネート−ホウ酸化合物、アリールアルキルスルホネート−ホウ酸エステル化合物等を用いるのがよい。
【0174】
上記縮合重合に用いられる有機溶媒は、副反応を抑制するために、十分に脱酸素処理、脱水処理を施しておくことが好ましい。但し、Suzukiカップリング反応のような水との2相系での反応の場合にはその限りではない。
【0175】
上記縮合重合に用いられる有機溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレン等の不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t−ブチルアルコール等のアルコール類、蟻酸、酢酸、プロピオン酸等のカルボン酸類、ジメチルエーテル、ジエチルエーテル、メチル−t−ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等のエーテル類、トリメチルアミン、トリエチルアミン、N,N,N’,N’−テトラメチルエチレンジアミン、ピリジン等のアミン類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチルモルホリンオキシド等のアミド類等が挙げられ、エーテル類が好ましく、テトラヒドロフラン、ジエチルエーテルが特に好ましい。これらの有機溶媒は、一種単独で用いても二種以上を併用してもよい。
【0176】
上記縮合重合において、反応を促進させるために、アルカリや適切な触媒を添加してもよい。上記アルカリ、触媒は、反応に用いる溶媒に十分に溶解するものが好ましい。アルカリ又は触媒を混合するには、反応液をアルゴンや窒素等の不活性雰囲気下で攪拌しながらゆっくりとアルカリ又は触媒の溶液を添加するか、逆にアルカリ又は触媒の溶液に反応液をゆっくりと添加すればよい。
【0177】
本発明の化合物を発光素子等の作製に用いる場合、その純度が発光特性等の発光素子の性能に影響を与えるため、重合前の原料となる化合物を蒸留、昇華精製、再結晶等の方法で精製したのちに重合することが好ましい。また重合後、再沈精製、クロマトグラフィーによる分別等の純化処理をすることが好ましい。
【0178】
本発明の化合物の製造に際して、上記式(X)で示される化合物が好適に用いられる。
【0179】
上記式(X)中、Ar1で表されるアリーレン基、2価の複素環基、2価の芳香族アミン基、J1で表されるフェニレン基、J2はアルキレン基、X1及びX2で表されるハロゲン原子は、上記と同じ意味を有する。
【0180】
上記X1及びX2で表されるハロゲン原子としては、得られる化合物の合成の容易さの観点から、臭素原子、ヨウ素原子が好ましく、臭素原子がより好ましい。
【0181】
上記式(X)で示される化合物としては、以下の式で表される化合物が挙げられる。
【0182】

【0183】

【0184】

【0185】

【0186】
また、上記式(X)で示される化合物は、如何なる方法で製造してもよいが、例えば、上記式(XI)で示される化合物と、上記式(XII)で示される化合物とを塩基中で反応させることを含む方法により、製造することができる。
【0187】
上記反応で用いられる塩基としては、炭酸カリウム、炭酸ナトリウム、水酸化カリウム、水酸化ナトリウム等の無機塩基、トリエチルアミン等の有機塩基を上記式(XI)に対して1当量以上、好ましくは1〜20当量加えて反応させる。
【0188】
上記反応では、通常、溶媒が用いられ、該溶媒としては、N,N−ジメチルホルムアミド、ジメチルスルホキシド、トルエン、ジメトキシエタン、テトラヒドロフラン等が挙げられる。
【0189】
上記反応の反応温度は、通常、0℃〜溶媒の沸点であり、50〜150℃が好ましい。また、上記反応の反応時間は0.5〜100時間である。
【0190】
<組成物>
本発明の組成物は、本発明の化合物を含有する組成物であり、例えば、正孔輸送材料、電子輸送材料及び発光材料からなる群から選ばれる少なくとも1種と、上記高分子化合物とを含有する組成物等が挙げられる。
【0191】
また、本発明の組成物は、さらに溶媒を含有することにより、液状組成物とすることもできる。即ち、本発明の液状組成物は、上記高分子化合物と溶媒とを含有する液状組成物である。以下、本発明の組成物と、本発明の液状組成物とを総称して、「液状組成物」と言う。
【0192】
本発明の液状組成物は、発光素子等の発光素子や有機トランジスタの作製に有用である。本明細書において、「液状組成物」とは、素子作製時において液状である組成物を意味し、典型的には、常圧(即ち、1気圧)、25℃において液状のものを意味する。また、液状組成物は、一般的には、インク、インク組成物、溶液等と呼ばれることがある。
【0193】
本発明の液状組成物は、上記高分子化合物以外に、低分子発光材料、正孔輸送材料、電子輸送材料、安定剤、粘度及び/又は表面張力を調節するための添加剤、酸化防止剤等を含んでいてもよい。これらの任意成分は、各々、一種単独で用いても二種以上を併用してもよい。
【0194】
上記低分子発光材料としては、ナフタレン誘導体、アントラセン、アントラセン誘導体、ペリレン、ペリレン誘導体、ポリメチン系色素、キサンテン系色素、クマリン系色素、シアニン系色素、8−ヒドロキシキノリンの金属錯体を配位子として有する金属錯体、8−ヒドロキシキノリン誘導体を配位子として有する金属錯体、その他の蛍光性金属錯体、芳香族アミン、テトラフェニルシクロペンタジエン、テトラフェニルシクロペンタジエン誘導体、テトラフェニルシクロブタジエン、テトラフェニルシクロブタジエン誘導体、スチルベン系、含ケイ素芳香族系、オキサゾール系、フロキサン系、チアゾール系、テトラアリールメタン系、チアジアゾール系、ピラゾール系、メタシクロファン系、アセチレン系等の低分子化合物の蛍光性材料が挙げられ、特開昭57-51781号公報、特開昭59-194393号公報等に記載されている材料も挙げられる。
【0195】
上記正孔輸送材料としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリ(p−フェニレンビニレン)及びその誘導体、ポリ(2,5−チエニレンビニレン)及びその誘導体等が挙げられる。
【0196】
上記電子輸送材料としては、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体等が挙げられる。
【0197】
上記安定剤としては、フェノール系酸化防止剤、リン系酸化防止剤等が挙げられる。
【0198】
上記粘度及び/又は表面張力を調節するための添加剤としては、粘度を高めるための高分子量の化合物(増粘剤)や貧溶媒、粘度を下げるための低分子量の化合物、表面張力を下げるための界面活性剤等を必要に応じて組み合わせて使用すればよい。
【0199】
上記高分子量の化合物としては、発光や電荷輸送を阻害しないものであればよく、通常、液状組成物の溶媒に可溶性のものである。高分子量の化合物としては、高分子量のポリスチレン、高分子量のポリメチルメタクリレート等を用いることができる。上記高分子量の化合物のポリスチレン換算の重量平均分子量は50万以上が好ましく、100万以上がより好ましい。また、貧溶媒を増粘剤として用いることもできる。
【0200】
上記酸化防止剤としては、発光や電荷輸送を阻害しないものであればよく、組成物が溶媒を含む場合には、通常、該溶媒に可溶性のものである。酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤等が挙げられる。酸化防止剤を用いることにより、上記高分子化合物、溶媒の保存安定性を改善し得る。
【0201】
本発明の液状組成物が正孔輸送材料を含有する場合には、該液状組成物中の正孔輸送材料の割合は、通常、1〜80重量%であり、好ましくは5〜60重量%である。また、本発明の液状組成物が電子輸送材料を含有する場合には、該液状組成物中の電子輸送材料の割合は、通常、1〜80重量%であり、好ましくは5〜60重量%である。
【0202】
発光素子の作製の際に、この液状組成物を用いて成膜する場合、該液状組成物を塗布した後、乾燥により溶媒を除去するだけでよく、また電荷輸送材料や発光材料を混合した場合においても同様な手法が適用できるので、製造上非常に有利である。なお、乾燥の際には、50〜150℃程度に加温した状態で乾燥させてもよく、また、10-3Pa程度に減圧して乾燥させてもよい。
【0203】
液状組成物を用いた成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャップコート法、キャピラリコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、ノズルコート法等の塗布法を用いることができる。
【0204】
液状組成物中の溶媒の割合は、該液状組成物の全重量に対して、通常、1〜99.9重量%であり、好ましくは60〜99.9重量%であり、より好ましく90〜99.8重量%である。液状組成物の粘度は印刷法によって異なるが、25℃において0.5〜500mPa・sが好ましく、インクジェットプリント法等、液状組成物が吐出装置を経由するものの場合には、吐出時の目づまりや飛行曲がりを防止するために粘度が25℃において0.5〜20mPa・sが好ましい。
【0205】
液状組成物に含まれる溶媒としては、該液状組成物中の該溶媒以外の成分を溶解又は分散できるものが好ましい。該溶媒としては、クロロホルム、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、クロロベンゼン、o−ジクロロベンゼン等の塩素系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、トルエン、キシレン、トリメチルベンゼン、メシチレン等の芳香族炭化水素系溶媒、シクロヘキサン、メチルシクロヘキサン、n−ペンタン、n−ヘキサン、n−へプタン、n−オクタン、n−ノナン、n−デカン等の脂肪族炭化水素系溶媒、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸ブチル、メチルベンゾエート、エチルセルソルブアセテート等のエステル系溶媒、エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン、1,2−ヘキサンジオール等の多価アルコール及びその誘導体、メタノール、エタノール、プロパノール、イソプロパノール、シクロヘキサノール等のアルコール系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等のアミド系溶媒が挙げられる。また、これらの溶媒は、1種単独で用いても複数組み合わせて用いてもよい。上記溶媒のうち、ベンゼン環を少なくとも1個以上含む構造を有し、かつ融点が0℃以下、沸点が100℃以上である有機溶媒を1種類以上含むことが、粘度、成膜性等の観点から好ましい。溶媒の種類としては、液状組成物中の溶媒以外の成分の有機溶媒への溶解性、成膜時の均一性、粘度特性等の観点から、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、エステル系溶媒、ケトン系溶媒が好ましく、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、トリメチルベンゼン、メシチレン、n−プロピルベンゼン、i−プロピルベンゼン、n−ブチルベンゼン、i−ブチルベンゼン、s−ブチルベンゼン、アニソール、エトキシベンゼン、1−メチルナフタレン、シクロヘキサン、シクロヘキサノン、シクロヘキシルベンゼン、ビシクロヘキシル、シクロヘキセニルシクロヘキサノン、n−ヘプチルシクロヘキサン、n−ヘキシルシクロヘキサン、メチルベンゾエート、2−プロピルシクロヘキサノン、2−ヘプタノン、3−ヘプタノン、4−ヘプタノン、2−オクタノン、2−ノナノン、2−デカノン、ジシクロヘキシルケトンが好ましく、キシレン、アニソール、メシチレン、シクロヘキシルベンゼン、ビシクロヘキシルメチルベンゾエートのうち少なくとも1種類を含むことがより好ましい。
【0206】
液状組成物に含まれる溶媒の種類は、成膜性の観点や素子特性等の観点から、2種類以上が好ましく、2〜3種類がより好ましく、2種類が特に好ましい。
【0207】
液状組成物に2種類の溶媒が含まれる場合、そのうちの1種類の溶媒は25℃において固体状態でもよい。成膜性の観点から、1種類の溶媒は沸点が180℃以上のものであり、他の1種類の溶媒は沸点が180℃未満のものであることが好ましく、1種類の溶媒は沸点が200℃以上のものであり、他の1種類の溶媒は沸点が180℃未満のものであることがより好ましい。また、粘度の観点から、60℃において、液状組成物から溶媒を除いた成分の0.2重量%以上が溶媒に溶解することが好ましく、2種類の溶媒のうちの1種類の溶媒には、25℃において、液状組成物から溶媒を除いた成分の0.2重量%以上が溶解することが好ましい。
【0208】
液状組成物に3種類の溶媒が含まれる場合、そのうちの1〜2種類の溶媒は25℃において固体状態でもよい。成膜性の観点から、3種類の溶媒のうちの少なくとも1種類の溶媒は沸点が180℃以上の溶媒であり、少なくとも1種類の溶媒は沸点が180℃未満の溶媒であることが好ましく、3種類の溶媒のうちの少なくとも1種類の溶媒は沸点が200℃以上300℃以下の溶媒であり、少なくとも1種類の溶媒は沸点が180℃未満の溶媒であることがより好ましい。また、粘度の観点から、3種類の溶媒のうちの2種類の溶媒には、60℃において、液状組成物から溶媒を除いた成分の0.2重量%以上が溶媒に溶解することが好ましく、3種類の溶媒のうちの1種類の溶媒には、25℃において、液状組成物から溶媒を除いた成分の0.2重量%以上が溶媒に溶解することが好ましい。
【0209】
液状組成物に2種類以上の溶媒が含まれる場合、粘度及び成膜性の観点から、最も沸点が高い溶媒が、液状組成物に含まれる全溶媒の重量の40〜90重量%であることが好ましく、50〜90重量%であることがより好ましく、65〜85重量%であることがさらに好ましい。
【0210】
<薄膜>
本発明の薄膜を説明する。この薄膜は、上記高分子化合物を用いてなるものである。薄膜の種類としては、発光性薄膜、導電性薄膜、有機半導体薄膜等が挙げられる。また、本発明の第二の薄膜は、上記高分子化合物を架橋してなるものであり、通常、熱、光等による外部刺激により架橋により硬化させたものである。
【0211】
薄膜を熱により硬化させる場合、加熱温度は、通常、室温〜300℃の範囲である。上記加熱温度の上限は、薄膜作製の容易さの観点から、250℃が好ましく、190℃がさらに好ましく、170℃が特に好ましい。また、上記加熱温度の下限は、室温での薄膜の安定性の観点から、50℃が好ましく、70℃がさらに好ましく、100℃が特に好ましい。
【0212】
薄膜を光により硬化させる場合、照射する光は、紫外光、近紫外光、可視光が好ましく、紫外光、近紫外光がより好ましい。
【0213】
本発明の薄膜を硬化させる場合、温度と時間又は光の露光波長と時間によりその硬化する割合を調節することができる。
【0214】
発光性薄膜は、素子の輝度や発光電圧等の観点から、発光の量子収率が50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましい。
【0215】
導電性薄膜は、表面抵抗が1KΩ/□以下であることが好ましい。薄膜に、ルイス酸、イオン性化合物等をドープすることにより、電気伝導度を高めることができる。表面抵抗が100Ω/□以下であることがより好ましく、10Ω/□以下であることがさらに好ましい。
【0216】
有機半導体薄膜は、電子移動度又は正孔移動度のいずれか大きいほうが、好ましくは10-5cm2/V/秒以上であり、より好ましくは10-3cm2/V/秒以上であり、さらに好ましくは10-1cm2/V/秒以上である。また、有機半導体薄膜を用いて、有機トランジスタを作製することができる。具体的には、SiO2等の絶縁膜とゲート電極とを形成したSi基板上に有機半導体薄膜を形成し、Au等でソース電極とドレイン電極を形成することにより、有機トランジスタとすることができる。
【0217】
<有機トランジスタ>
本発明の有機トランジスタは、上記化合物を含む有機トランジスタである。以下、有機トランジスタの一態様である電界効果トランジスタを説明する。
【0218】
本発明の化合物は、電界効果トランジスタの材料として、中でも活性層として好適に用いることができる。電界効果トランジスタの構造としては、通常は、ソース電極及びドレイン電極が本発明の化合物からなる活性層に接して設けられており、さらに活性層に接した絶縁層を挟んでゲート電極が設けられていればよい。
【0219】
電界効果トランジスタは、通常は支持基板上に形成される。支持基板としては、ガラス基板やフレキシブルなフィルム基板やプラスチック基板も用いることができる。
【0220】
電界効果トランジスタは、公知の方法、例えば、特開平5-110069号公報に記載の方法により製造することができる。
【0221】
活性層を形成する際に、有機溶媒可溶性の化合物を用いることが製造上有利であり好ましい。有機溶媒可溶性の化合物を溶媒に溶解させてなる溶液からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャップコート法、キャピラリコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、ノズルコート法等の塗布法を用いることができる。
【0222】
電界効果トランジスタを作製後、封止してなる封止電界効果トランジスタが好ましい。これにより、電界効果トランジスタが、大気から遮断され、電界効果トランジスタの特性の低下を抑えることができる。
【0223】
封止方法としては、紫外線(UV)硬化樹脂、熱硬化樹脂や無機のSiONx膜等でカバーする方法、ガラス板やフィルムをUV硬化樹脂、熱硬化樹脂等で張り合わせる方法等が挙げられる。大気との遮断を効果的に行うため電界効果トランジスタを作製後、封止するまでの工程を大気に曝すことなく(例えば、乾燥した窒素雰囲気中、真空中等で)行うことが好ましい。
【0224】
<有機光電変換素子>
本発明の有機光電変換素子(例えば、太陽電池)は、上記化合物を含む有機光電変換素子である。
【0225】
本発明の化合物は、有機光電変換素子の材料として、中でも有機半導体と金属との界面を利用するショットキー障壁型素子の有機半導体層として、また、有機半導体と無機半導体あるいは有機半導体どうしの界面を利用するpnへテロ接合型素子の有機半導体層として、好適に用いることができる。
【0226】
さらに、ドナー・アクセプターの接触面積を増大させたバルクヘテロ接合型素子における電子供与性化合物、電子受容性化合物として、また、高分子・低分子複合系を用いる有機光電変換素子、例えば、電子受容体としてフラーレン誘導体を分散したバルクヘテロ接合型有機光電変換素子の電子供与性共役系化合物(分散支持体)として、好適に用いることができる。
【0227】
有機光電変換素子の構造としては、例えば、pnへテロ接合型素子では、オーム性電極、例えば、ITO上に、p型半導体層を形成し、さらに、n型半導体層を積層し、その上にオーム性電極が設けられていればよい。
【0228】
有機光電変換素子は、通常は支持基板上に形成される。支持基板としては、ガラス基板やフレキシブルなフィルム基板やプラスチック基板も用いることができる。
【0229】
有機光電変換素子は、公知の方法、例えば、Synth.Met.,102,982(1999)に記載の方法やScience,270,1789(1995)に記載の方法により製造することができる。
【0230】
<発光素子>
次に、本発明の発光素子について説明する。
本発明の発光素子は、陽極及び陰極からなる電極と、該電極間に設けられ本発明の化合物を含む有機層とを有する発光素子であり、好ましくは上記有機層が、発光層又は電荷輸送層である発光素子である。本発明の発光素子としては、(1)陰極と発光層との間に電子輸送層を設けた発光素子、(2)陽極と発光層との間に正孔輸送層を設けた発光素子、(3)陰極と発光層との間に電子輸送層を設け、かつ陽極と発光層との間に正孔輸送層を設けた発光素子等が挙げられる。
【0231】
例えば、以下のa)〜d)の構造が挙げられる。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/正孔輸送層/発光層/電子輸送層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下同じ。)
【0232】
上記発光層とは、発光する機能を有する層であり、正孔輸送層とは、正孔を輸送する機能を有する層であり、電子輸送層とは、電子を輸送する機能を有する層である。なお、電子輸送層と正孔輸送層を総称して電荷輸送層と呼ぶ。発光層、正孔輸送層、電子輸送層は、それぞれ独立に2層以上用いてもよい。また、発光層に隣接した正孔輸送層をインターレイヤー層と呼ぶ場合もある。
【0233】
発光層の成膜方法としては、溶液からの成膜による方法が挙げられる。溶液からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャップコート法、キャピラリコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、ノズルコート法等の塗布法を用いることができる。なお、この溶液からの成膜は、後述の正孔輸送層、電子輸送層の成膜にも有用である。
【0234】
発光素子の作製の際に、本発明の化合物を用いることにより、溶液から成膜する場合、この溶液を塗布後乾燥により溶媒を除去するだけでよく、また電荷輸送材料や発光材料を混合した場合においても同様な手法が適用でき、製造上有利である。
【0235】
発光層の膜厚は、駆動電圧と発光効率が適度な値となるように選択すればよく、例えば、1nm〜1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
【0236】
本発明の発光素子において、発光層に上記化合物以外の発光材料を混合して使用してもよい。また、本願発明の発光素子においては、上記化合物以外の発光材料を含む発光層が、上記化合物を含む発光層と積層されていてもよい。
【0237】
上記化合物以外の発光材料としては、ナフタレン誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、ポリメチン系、キサンテン系、クマリン系、シアニン系等の色素類、8−ヒドロキシキノリン及びその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエン及びその誘導体、テトラフェニルブタジエン及びその誘導体等の低分子化合物等が挙げられ、特開昭57-51781号、同59-194393号公報に記載されているもの等も挙げられる。
【0238】
本発明の発光素子が正孔輸送層を有する場合、使用される正孔輸送材料は、液状組成物の項で説明した正孔輸送材料と同様であるが、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p−フェニレンビニレン)及びその誘導体、ポリ(2,5−チエニレンビニレン)及びその誘導体等の高分子正孔輸送材料が好ましく、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体がより好ましい。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。
【0239】
正孔輸送層の成膜方法としては、低分子正孔輸送材料では、高分子バインダーとの混合溶液からの成膜による方法が挙げられる。また、高分子正孔輸送材料では、溶液からの成膜による方法が挙げられる。
【0240】
混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとして、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。
【0241】
正孔輸送層の膜厚は、駆動電圧と発光効率が適度な値となるように選択すればよく、例えば、1nm〜1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
【0242】
本発明の発光素子が電子輸送層を有する場合、使用される電子輸送材料は、液状組成物の項で説明した電子輸送材料と同様であるが、オキサジアゾール誘導体、ベンゾキノン及びその誘導体、アントラキノン及びその誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体が好ましく、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8−キノリノール)アルミニウム、ポリキノリンがより好ましい。
【0243】
電子輸送層の成膜方法としては、低分子電子輸送材料では、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が、高分子電子輸送材料では溶液又は溶融状態からの成膜による方法が挙げられる。溶液又は溶融状態からの成膜時には、高分子バインダーを併用してもよい。
【0244】
混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また、可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとしては、ポリ(N−ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p−フェニレンビニレン)及びその誘導体、ポリ(2,5−チエニレンビニレン)及びその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。
【0245】
電子輸送層の膜厚は、駆動電圧と発光効率が適度な値となるように選択すればよく、例えば、1nm〜1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
【0246】
また、電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、素子の駆動電圧を下げる効果を有するものは、特に電荷注入層(正孔注入層、電子注入層)と呼ぶことがある。
【0247】
さらに、電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して上記の電荷注入層又は絶縁層を設けてもよく、また、界面の密着性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いバッファー層を挿入してもよい。
【0248】
積層する層の順番や数、及び各層の厚さについては、発光効率や素子寿命を勘案して選択すればよい。
【0249】
本発明において、電荷注入層を設けた発光素子としては、陰極に隣接して電荷注入層を設けた発光素子、陽極に隣接して電荷注入層を設けた発光素子が挙げられる。
【0250】
例えば、以下のe)〜p)の構造が挙げられる。
e)陽極/電荷注入層/発光層/陰極
f)陽極/発光層/電荷注入層/陰極
g)陽極/電荷注入層/発光層/電荷注入層/陰極
h)陽極/電荷注入層/正孔輸送層/発光層/陰極
i)陽極/正孔輸送層/発光層/電荷注入層/陰極
j)陽極/電荷注入層/正孔輸送層/発光層/電荷注入層/陰極
k)陽極/電荷注入層/発光層/電荷輸送層/陰極
l)陽極/発光層/電子輸送層/電荷注入層/陰極
m)陽極/電荷注入層/発光層/電子輸送層/電荷注入層/陰極
n)陽極/電荷注入層/正孔輸送層/発光層/電荷輸送層/陰極
o)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
p)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
【0251】
電荷注入層としては、導電性高分子を含む層、陽極と正孔輸送層との間に設けられ、陽極材料と正孔輸送層に含まれる正孔輸送材料との中間の値のイオン化ポテンシャルを有する材料を含む層、陰極と電子輸送層との間に設けられ、陰極材料と電子輸送層に含まれる電子輸送材料との中間の値の電子親和力を有する材料を含む層等が挙げられる。
【0252】
上記電荷注入層が導電性高分子を含む層の場合、該導電性高分子の電気伝導度は、10-5〜103S/cmであることが好ましく、発光画素間のリーク電流を小さくするためには、10-5〜102S/cmがより好ましく、10-5〜101S/cmがさらに好ましい。通常は該導電性高分子の電気伝導度を10-5〜103S/cmとするために、該導電性高分子に適量のイオンをドープする。
【0253】
ドープするイオンの種類は、正孔注入層であればアニオン、電子注入層であればカチオンである。アニオンの例としては、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオン等が挙げられ、カチオンの例としては、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオン等が挙げられる。
【0254】
電荷注入層の膜厚は、例えば、1nm〜100nmであり、2nm〜50nmが好ましい。
【0255】
電荷注入層に用いる材料としては、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子、金属フタロシアニン(銅フタロシアニン等)、カーボン等が挙げられる。
【0256】
絶縁層は、電荷注入を容易にする機能を有するものである。この絶縁層の平均厚さは、通常、0.1〜20nmであり、好ましくは0.5〜10nm、より好ましくは1〜5nmである。絶縁層の材料としては、金属フッ化物、金属酸化物、有機絶縁材料等が挙げられる。絶縁層を設けた発光素子としては、陰極に隣接して絶縁層を設けた発光素子、陽極に隣接して絶縁層を設けた発光素子が挙げられる。
【0257】
例えば、以下のq)〜ab)の構造が挙げられる。
q)陽極/絶縁層/発光層/陰極
r)陽極/発光層/絶縁層/陰極
s)陽極/絶縁層/発光層/絶縁層/陰極
t)陽極/絶縁層/正孔輸送層/発光層/陰極
u)陽極/正孔輸送層/発光層/絶縁層/陰極
v)陽極/絶縁層/正孔輸送層/発光層/絶縁層/陰極
w)陽極/絶縁層/発光層/電子輸送層/陰極
x)陽極/発光層/電子輸送層/絶縁層/陰極
y)陽極/絶縁層/発光層/電子輸送層/絶縁層/陰極
z)陽極/絶縁層/正孔輸送層/発光層/電子輸送層/陰極
aa)陽極/正孔輸送層/発光層/電子輸送層/絶縁層/陰極
ab)陽極/絶縁層/正孔輸送層/発光層/電子輸送層/絶縁層/陰極
【0258】
本発明の発光素子を形成する基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよく、例えば、ガラス、プラスチック、高分子フィルム、シリコン等の基板が挙げられる。不透明な基板の場合には、反対の電極が透明又は半透明であることが好ましい。
【0259】
本発明において、通常は、陽極及び陰極からなる電極の少なくとも一方が透明又は半透明であり、陽極側が透明又は半透明であることが好ましい。
【0260】
陽極の材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が用いられ、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性無機化合物を用いて作製された膜(NESA等)や、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、該陽極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
【0261】
陽極の膜厚は、光の透過性と電気伝導度とを考慮して、例えば、10nm〜10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。
【0262】
また、陽極上に、電荷注入を容易にするために、フタロシアニン誘導体、導電性高分子、カーボン等からなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる層を設けてもよい。
【0263】
陰極の材料としては、仕事関数の小さい材料が好ましく、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2種以上の合金、あるいはそれらのうち1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金、グラファイト又はグラファイト層間化合物等が用いられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金等が挙げられる。陰極を2層以上の積層構造としてもよい。
【0264】
陰極の膜厚は、電気伝導度や耐久性を考慮して、例えば、10nm〜10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。
【0265】
陰極の作製方法としては、真空蒸着法、スパッタリング法、また金属薄膜を熱圧着するラミネート法等が用いられる。また、陰極と有機物層との間に、導電性高分子からなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる層を設けてもよく、陰極作製後、該発光素子を保護する保護層を装着していてもよい。該発光素子を長期安定的に用いるためには、素子を外部から保護するために、保護層及び/又は保護カバーを装着することが好ましい。
【0266】
該保護層としては、樹脂、金属酸化物、金属フッ化物、金属ホウ化物等を用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板等を用いることができ、該カバーを熱硬化樹脂や光硬化樹脂で素子基板と貼り合わせて密閉する方法が好適に用いられる。スペーサーを用いて空間を維持すれば、素子がキズつくのを防ぐことが容易である。該空間に窒素やアルゴンのような不活性なガスを封入すれば、陰極の酸化を防止することができ、さらに酸化バリウム等の乾燥剤を該空間内に設置することにより製造工程で吸着した水分が素子にタメージを与えるのを抑制することが容易となる。これらのうち、いずれか1種以上の方策をとることが好ましい。
【0267】
本発明の発光素子は、面状光源、セグメント表示装置、ドットマトリックス表示装置、液晶表示装置(例えば、バックライト等)、フラットパネルディスプレイ等の表示装置等に用いることができる。
【0268】
本発明の発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得るためには、上記面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機物層を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極のいずれか一方、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字や文字、簡単な記号等を表示できるセグメントタイプの表示素子が得られる。更に、ドットマトリックス素子とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる化合物を塗り分ける方法や、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス素子は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動してもよい。これらの表示素子は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダー等の表示装置として用いることができる。
【0269】
さらに、上記面状の発光素子は、自発光薄型であり、液晶表示装置のバックライト用の面状光源、又は面状の照明用光源として好適に用いることができる。例えば照明用光源には白色発光、赤色発光、緑色発光又は青色発光等の発光色が挙げられる。また、フレキシブルな基板を用いれば、曲面状の光源や表示装置としても使用できる。
【実施例】
【0270】
以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
【0271】
<合成例1>(化合物M−1の合成)

アルゴン雰囲気下、ジビニルカルビノール(25.24g)、トリエチルオルトアセテート(340g)、及びプロピオン酸(0.20g)を混合し、ディーンシュタークを用いエタノールを除去しながら4時間、130℃に加温した。反応終了後、得られた反応液を、冷却し、そこに、ヘキサン(300ml)とイオン交換水(300ml)を加え、60℃で3時間攪拌した。分液後、有機層をイオン交換水(300ml×3回)で洗浄し、硫酸ナトリウムで乾燥させた。得られた有機層を、アルミナフラッシュカラムを通し、濃縮した。得られたオイルに、再度ヘキサン(300ml)、イオン交換水(300ml)、及びプロピオン酸(0.20g)を加え、60℃で8時間攪拌した。分液後、有機層をイオン交換水(300ml×3回)で洗浄し、硫酸ナトリウムで乾燥させた。得られた有機層を、アルミナフラッシュカラムを通し、濃縮することにより、化合物M−1を28g得た。
1H−NMR(270MHz,CDCl3):δ=1.25(t,3H),2.07(q,2H),2.41(m,4H),5.05(dd,2H),5.70(m,1H),6.09(dd,1H),6.29(m,1H)ppm.
【0272】
<合成例2>(化合物M−2の合成)

アルゴン雰囲気下、化合物M−1(14.65g)、及びジエチルエーテル(770ml)を混合し、0℃に冷却した。次に、得られた混合液に、1Mリチウムアルミニウムハイドライドエーテル溶液(50ml)を1時間かけて滴下し、0℃を維持したまま1時間攪拌した。得られた反応溶液に、5重量%水酸化ナトリウム水溶液(100ml)をゆっくりと滴下し、クエンチした後、有機層を水(100ml×3回)で洗浄し、有機層を硫酸ナトリウムで乾燥させた。得られた有機層を、アルミナフラッシュカラムを通し、濃縮することにより化合物M−2を8.0g得た。
1H−NMR(270MHz,CDCl3):δ=1.67(tt,2H),2.13−2.28(m,3H),3.63(q,2H),5.04(dd,2H),5.72(dd,1H),6.07(dd,1H),6.30(m,1H)ppm.
【0273】
<合成例3>(化合物M−3の合成)

アルゴン雰囲気下、化合物M−2(18.98g)、及びジクロロメタン(730ml)を混合し、0℃に冷却した。得られた混合液に、トリエチルアミン(58ml)を滴下し、次いで、メタンスルホニルクロライド(24ml)を滴下し、0℃を保ったまま2時間攪拌した。得られた反応溶液に水を加えてクエンチした後、エーテルで抽出し、硫酸ナトリウムで乾燥させることにより黄色オイルを32g得た。
アルゴン雰囲気下、上記黄色オイル(32g)、臭化リチウム(36g)、THF(400ml)を混合し、7時間還流した。得られた反応溶液を冷却し、イオン交換水(200ml)とトルエン(500ml)を加え、分液を行い、有機層をイオン交換水(100ml×5回)で洗浄し、硫酸ナトリウムで乾燥させた。得られた有機層を濃縮し、ヘキサン(100ml)を加えた後、アルミナフラッシュカラムを通し、濃縮した。得られたオイルを分留(3mmHg、27℃)することにより化合物M−3を15.1g得た。
1H−NMR(270MHz,CDCl3):δ=1.96(tt,2H),2.22−2.29(m,2H),3.41(t,2H),5.05(dd,2H),5.65(m,1H),6.10(dd,1H),6.30(m,1H)ppm.
【0274】
<実施例1>(化合物M−4の合成)

アルゴン雰囲気下、300mLの四つ口フラスコ中で、化合物M−3(5.29g)、2,7−ジブロモフルオレン(4.67g)、及びDMSO(35ml)を混合した。得られた混合液に、乳鉢ですりつぶした水酸化カリウム(3.43g)とヨウ化カリウム(0.17g)を加え、85℃で、45分加温した。得られた混合液に、イオン交換水(50ml)と酢酸エチル(100ml)を加え、分液を行った後、有機層を飽和食塩水(100ml×10回)で洗浄し、硫酸ナトリウムで乾燥させた後、濃縮した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)で精製することにより、化合物M−4を白色固体として4.9g得た。
1H−NMR(270MHz,CDCl3):δ=0.68(m,4H),1.81−1.96(m,8H),4.99(dd,4H),5.44(m,2H),5.89(dd,2H),6.22(td,2H),7.47(m,6H)ppm.
MS(APCI−MS:Positive)m/z:512(〔M〕+).
【0275】
<実施例2>(化合物M−5の合成)

アルゴン雰囲気下、100mLの四つ口フラスコ中で、化合物M−3(1.88g)、2,5−ジブロモハイドロキノン(2.51g)、及びエタノール(7ml)を混合した。得られた混合液に、乳鉢ですりつぶした水酸化カリウム(0.97g)を加え、85℃で9時間、加温した。反応終了後、得られた反応溶液に、イオン交換水(20ml)と酢酸エチル(20ml)を加え、分液を行った後、有機層をイオン交換水(40ml×3回)で洗浄し、硫酸ナトリウムで乾燥させた後、濃縮した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/ヘキサン=1:1)で精製することにより化合物M−5を白色固体として1.3g得た。
1H−NMR(270MHz,CDCl3):δ=1.87−1.96(m,4H),2.28−2.35(m,4H),3.94(t,4H),5.05(dd,4H),5.75(m,2H),6.10(m,2H),6.31(m,2H),7.08(s,2H)ppm.
【0276】
<実施例3>(化合物M−7の合成)

アルゴン雰囲気下、100mLの四つ口フラスコ中で、化合物M−3(1.63g)、上記式M−6で示される化合物M−6(1.63g)、及びエタノール(7ml)を混合した。得られた混合液に、乳鉢ですりつぶした水酸化カリウム(0.97g)を加え、60℃で40時間、加温した。反応終了後、得られた反応液に、イオン交換水(50ml)とトルエン(50ml)を加え、分液を行った後、有機層をイオン交換水(40ml×3回)で洗浄し、硫酸ナトリウムで乾燥させた後、濃縮した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/ヘキサン=1:1)で精製することにより、化合物M−7を白色固体として1.1g得た。なお、化合物M−6は、EP1344788を参考に合成した。
1H−NMR(270MHz,CDCl3):δ=1.97−2.06(m,4H),2.36−2.43(m,4H),4.10(t,4H),5.04(dd,4H),5.78(m,2H),6.14(m,2H),6.32(m,2H),7.32(s,2H),7.73(s,2H)ppm.
【0277】
<合成例4>(化合物M−8の合成)

窒素ガス雰囲気下、2,7−ジブロモフルオレノン(75g、0.22mol)、ヘキシルベンゼン(334ml)及びトリフルオロメタンスルホン酸(42ml)を室温で攪拌した中へ、3−メルカプトプロパンスルホン酸ナトリウム(8.1g)を加え、45℃で9時間攪拌した。得られた反応溶液を室温まで冷却した後、ヘキサン1Lに注加した。減圧蒸留(105.5℃、20hPa)により余剰のヘキシルベンゼンを留去し、ヘキサンで希釈した後、メタノールに注加し、析出した2,7−ジブロモフルオレノンをろ過により除去した。得られたろ液を濃縮した後、トルエンで希釈し、イソプロピルアルコールを加えて、固体を析出させた。得られた固体をトルエン/イソプロピルアルコールで再結晶することにより、化合物M−8を白色固体として53g得た。
1H−NMR(270MHz,CDCl3):δ=0.88(t,3H),1.20−1.45(m,6H),1.54−1.62(m,2H),2.57(t,2H),4.96(s,1H),6.94(d,2H),7.10(d,2H),7.42(s,2H),7.48(dd,2H),7.60(d,2H)ppm.
【0278】
<実施例4>(化合物M−9の合成)

アルゴン雰囲気下、100mLの四つ口フラスコ中で、化合物M−3(0.96g)、化合物M−8(2.42g)、及びジメチルスルホキシド(12ml)を混合した。得られた混合液に、乳鉢ですりつぶした水酸化カリウム(1.2g)とヨウ化カリウム(0.08g)を加え、室温で5時間、攪拌した。反応終了後、得られた反応液に、イオン交換水(20ml)とトルエン(30ml)を加え、分液を行った後、有機層を飽和食塩水(30ml×10回)で洗浄し、硫酸ナトリウムで乾燥させた後、濃縮した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/ヘキサン=1:10)で精製することにより、化合物M−9を無色オイルとして2.0g得た。
1H−NMR(270MHz,CDCl3):δ=0.75−0.87(m,5H),1.20−1.39(m,6H),1.52−1.56(m,2H),2.00−2.31(m,2H),2.37−2.44(m,2H),2.50−2.56(t,2H),
4.92−5.10(dd,2H),5.44−5.53(td,1H),5.89−5.97(dd,1H),6.17−6.30(td,1H),7.00−7.16(m,4H),7.18−7.28(dd,2H),7.47(d,2H),7.55(d,2H)ppm.
【0279】
<実施例5>(化合物M−11の合成)

アルゴン雰囲気下、300mLの3つ口フラスコ中で、化合物M−10(5.1g)、化合物M−3(3.7g)及びジメチルスルホキシド(100mL)を混合した。そこに水酸化カリウム(1.4g)を加え、6時間室温で攪拌した。反応終了後、水(30mL)を加え、分液した後、得られた有機層を水で洗浄した。その後、その有機層を硫酸ナトリウムにより乾燥させ、濃縮乾固した。次いで、展開溶媒にヘキサン:クロロホルム=6:1(体積比)を、充填剤にシリカゲルを用いて、カラムクロマトグラフィーにより精製し、再結晶を行うことにより、化合物M−11を得た。なお、化合物M−10は、米国特許US5447960号を参考に合成した。
1H−NMR(270MHz,CDCl3);1.88(m,4H),2.26(q,4H)),3.93(t,4H),5.15−4.95(m,4H),5.76−5.66(m,2H),6.33−6.27(m,2H),6.75(d,4H),7.03(d,4H),7.57−7.43(m,6H).
【0280】
<合成例5>(化合物MM−1の合成)

アルゴン雰囲気下、500mlの4つ口フラスコ中で、2,7−ジブロモフルオレン(22.7g)、5−ブロモ−1−オクテン(21.9g)、水酸化カリウム(16.7g)、ヨウ化カリウム(1.2g)、及びジメチルスルホキシド(170ml)を混合し、4時間、80℃に加温した。反応終了後、得られた反応液を、室温まで冷却し、そこに、水(300ml)とトルエン(300ml)を混合し分液した。次いで、有機層を塩化ナトリウム飽和水溶液(300ml)で5回洗浄した。得られた有機層を硫酸ナトリウムで乾燥させた後、展開溶媒にヘキサン、充填剤にシリカゲルを用いてカラムクロマトグラフィーで精製することにより、化合物MM−1を得た。
ESI−MS:460[M]+
1H−NMR(270MHz,CDCl3);δ=0.69(t,4H),1.83(m,4H),1.93(m,4H),4.85(d,4H),5.56(m,2H),7.44−7.53(m,6H).
【0281】
<合成例6>(化合物MM−3の合成)

アルゴン雰囲気下、300mlの3つ口フラスコ中で、2,7−ジブロモフルオレン(8.1g)、8−ブロモ−1−オクテン(10.0g)、水酸化カリウム(6.0g)、ヨウ化カリウム(0.42g)及びジメチルスルホキシド(60ml)を混合し、4時間、80℃に加温した。反応終了後、室温まで冷却し、そこに、水(100ml)とトルエン(100ml)を混合し、分液した後、得られた有機層を塩化ナトリウム飽和水溶液(100ml)で5回洗浄した。得られた有機層を硫酸ナトリウムで乾燥させた後、展開溶媒にヘキサン、充填剤にシリカゲルを用いて、カラムクロマトグラフィーにより精製することにより、化合物MM−3を得た。
ESI−MS:544[M]+
1H−NMR(270MHz,CDCl3);δ=0.58(m,4H),1.06(m,8H),1.18(m,4H),1.92(m,8H),4.90(d,4H),5.73(m,2H),7.43−7.52(m,6H).
【0282】
<合成例7>(化合物MM−Xの合成)

5L3つ口フラスコを窒素置換し、1−ブロモ−3−n−ヘキシルベンゼン226gを計り取り、2.5Lの脱水THFに溶解させた。得られた溶液を−75℃以下に冷却し、2.5M n−ブチルリチウム/ヘキサン溶液358mlを滴下し、−75℃以下に保ちながら5時間攪拌した。得られた溶液に2−メトキシカルボニル−4,4’−ジブロモビフェニル150gを400mlの脱水THFに溶解させた溶液を−70℃以下に保ちながら滴下した。得られた溶液を室温までゆっくりと昇温後、終夜攪拌した。反応溶液を0℃で攪拌しながら、そこに、150mlの水を滴下した。溶媒を留去した後、残渣に水200mlを加え1Lのヘキサン1回と100mlのヘキサン2回で抽出した。有機層を合わせ、飽和食塩水200mlで洗浄し、水層を100mlのヘキサンで再抽出した後、得られた有機層を硫酸マグネシウムで乾燥させた。溶媒を留去したところ、264gの化合物MM−Xの粗生成物を得た。精製は行わず、次の工程に用いた。
なお、2−メトキシカルボニル−4,4’−ジブロモビフェニルは、Journal of the American Chemical Society (1956), 78, 3196-3198.に記載の方法で合成した。
【0283】
<合成例8>(化合物MM−Yの合成)

3L3つ口フラスコに合成例7で合成した化合物MM−Xを264g取り、900mlのジクロロメタンに溶解させ、窒素置換した。得られた溶液を0℃以下に冷却し、5℃以下に保ちながら三フッ化ホウ素ジエチルエーテル錯体245mlを滴下した。室温までゆっくり昇温後、終夜攪拌した。反応溶液を2Lの氷水中に攪拌しながら注ぎ、30分攪拌した。得られた溶液を分液し、水層を100mlのジクロロメタンで抽出した。有機層を合わせ、10重量%リン酸カリウム水溶液1L加えて分液し、有機層を1Lの水2回で洗浄した。有機層を硫酸マグネシウムで乾燥後、溶媒を留去して得られたオイルを200mlのトルエンに溶解させ、シリカゲルを敷いたグラスフィルターを通し、ろ過した。溶媒を留去した後、500mlのメタノールを加えて激しく攪拌した。得られた結晶をろ過し、メタノールで洗浄した。ヘキサン/酢酸ブチル混合溶媒で再結晶を行い、化合物MM−Yを121g得た。
1H−NMR(300MHz,CDCl3);δ0.86(6H,t)、1.26(12H,m)、1.52(4H,m)、2.51(4H,t)、6.87(2H,d)、7.00(2H,s)、7.04(2H,d)、7.12(2H,t)、7.46(2H,dd)、7.48(2H,d)、7.55(2H,d)ppm
【0284】
<合成例9>(化合物MM−5の合成)

2L3つ口フラスコに化合物MM−Yを50g取り、窒素置換した。脱水THF500mlを加え、−70℃以下に冷却した。得られた溶液を−70℃以下に保ちながら2.5M n−ブチルリチウム/ヘキサン溶液68mlを滴下した。滴下後、温度を保ちながら4時間攪拌した。2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン44mlを加えた後、室温までゆっくり昇温し終夜攪拌した。−30℃に冷却し、2M塩酸/ジエチルエーテル溶液78mlを滴下した後、室温まで昇温した。溶媒を留去した後、トルエン400mlを加えて溶解し、シリカゲルを敷いたグラスフィルターを通してろ過し、得られた溶液の溶媒を留去したところ50gの粗生成物が得られた。窒素雰囲気下でトルエン/アセトニトリル溶媒から再結晶し、34gの化合物MM−5を得た。
1H−NMR(300MHz,CDCl3);δ0.86(6H,t)、1.26−1.29(12H,m)、1.31(24H,s)、1.52−1.53(4H,m)、2.50(4H,t)、6.92(2H,d)、7.00(2H,d)、7.08(2H,t)、7.13(2H,s)、7.77(2H,d)、7.81−7.82(4H,m)ppm.
【0285】
<実施例6>(高分子化合物P−1の合成)
不活性雰囲気下、2,7−ビス(1,3,2−ジオキサボロラン−2−イル)−9,9−ジオクチルフルオレン(1.06g)、2,7−ジブロモ−9,9−ジオクチルフルオレン(0.22g)、ビス(4−ブロモフェニル)−(4−sec−ブチルフェニル)−アミン(0.55g)、化合物M−4(0.20g)、ビストリフェニルホスフィンパラジウムジクロライド(1.4mg)、トリオクチルメチルアンモニウムクロライド(商品名:Aliquat336、アルドリッチ製)(0.25g)、及びトルエン(40ml)を混合し、105℃に加熱した。得られた反応液に、2Mの炭酸ナトリウム水溶液(6ml)を滴下し、15時間還流させた。反応後、フェニルホウ酸(240mg)を加え、さらに4時間還流させた。次いで、そこに、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液(10ml)を加え、80℃で4時間撹拌した。得られた反応液を、室温まで冷却後、水(30ml)で3回、3重量%の酢酸水溶液(30ml)で3回、水(30ml)で3回洗浄し、アルミナカラム、シリカゲルカラムを通すことにより精製した。得られたトルエン溶液をメタノール(300ml)に滴下し、1時間撹拌した後、得られた固体をろ取し乾燥させたところ、下記式:

(式中、括弧の外に添えた数字は、各種繰り返し単位のモル比を表す。)
で示される高分子化合物P−1を0.7g得た。高分子化合物P−1のポリスチレン換算の数平均分子量は1.1×105であり、ポリスチレン換算の重量平均分子量は3.8×105であった。
なお、ビス(4−ブロモフェニル)−(4−セカンダリブチルフェニル)−アミンは、WO2002/045184に記載の方法で合成した。
【0286】
<実施例7>(高分子化合物P−2の合成)
不活性雰囲気下、2,7−ビス(1,3,2−ジオキサボロラン−2−イル)−9,9−ジオクチルフルオレン(1.05g)、2,7−ジブロモ−9,9−ジオクチルフルオレン(0.77g)、化合物M−4(0.31g)、ビストリフェニルホスフィンパラジウムジクロライド(1.4mg)、トリオクチルメチルアンモニウムクロライド(商品名:Aliquat336、アルドリッチ製)(0.25g)、及びトルエン(40ml)を混合し、105℃に加熱した。得られた反応液に、2Mの炭酸ナトリウム水溶液(6ml)を滴下し、20時間還流させた。反応後、そこに、フェニルホウ酸(240mg)を加え、さらに4時間還流させた。次いで、そこに、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液(10ml)を加え、80℃で4時間撹拌した。得られた反応液を、室温まで冷却後、水(30ml)で3回、3重量%の酢酸水溶液(30ml)で3回、水(30ml)で3回洗浄し、アルミナカラム、シリカゲルカラムを通すことにより精製した。得られたトルエン溶液をメタノール(300ml)に滴下し、1時間撹拌した後、得られた固体をろ取し乾燥させたところ、下記式:

(式中、括弧の外に添えた数字は、各種繰り返し単位のモル比を表す。)
で示される高分子化合物P−2を0.8g得た。高分子化合物P−2のポリスチレン換算の数平均分子量は4.1×104であり、ポリスチレン換算の重量平均分子量は1.3×105であった。
【0287】
<実施例8>(高分子化合物P−3の合成)
不活性雰囲気下、2,7−ビス(1,3,2−ジオキサボロラン−2−イル)−9,9−ジオクチルフルオレン(1.06g)、2,7−ジブロモ−9,9−ジオクチルフルオレン(0.66g)、N,N’−ビス−(4−ブロモフェニル)−ビス−(4−ブチルフェニル)−p−フェニレンジアミン(0.14g)、化合物M−4(0.20g)、化合物MM−1(0.09g)、酢酸パラジウム(0.4mg)、トリス(o−メトキシフェニル)ホスフィン(2.8mg)、トリオクチルメチルアンモニウムクロライド(商品名:Aliquat336、アルドリッチ製)(0.25g)、及びトルエン(40ml)を混合し、105℃に加熱した。得られた反応液に、2Mの炭酸ナトリウム水溶液(11ml)を滴下し、18時間還流させた。反応後、そこに、フェニルホウ酸(240mg)を加え、さらに4時間還流させた。次いで、そこに、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液(10ml)を加え、80℃で4時間撹拌した。得られた反応液を、室温まで冷却後、水(30ml)で3回、3重量%の酢酸水溶液(30ml)で3回、水(30ml)で3回洗浄し、アルミナカラム、シリカゲルカラムを通すことにより精製した。得られたトルエン溶液をメタノール(300ml)に滴下し、1時間撹拌した後、得られた固体をろ取し乾燥させたところ、下記式:

(式中、括弧の外に添えた数字は、各種繰り返し単位のモル比を表す。)
で示される高分子化合物P−3を0.7g得た。高分子化合物P−3のポリスチレン換算の数平均分子量は1.2×105であり、ポリスチレン換算の重量平均分子量は3.9×105であった。
【0288】
<実施例9>(高分子化合物P−4の合成)
不活性雰囲気下、2,7−ビス(1,3,2−ジオキサボロラン−2−イル)−9,9−ジオクチルフルオレン(1.05g)、2,7−ジブロモ−9,9−ジオクチルフルオレン(0.55g)、下記式:

で示される化合物MM−4(0.55g)、化合物M−5(0.09g)、酢酸パラジウム(0.4mg)、トリス(o−メトキシフェニル)ホスフィン(2.8mg)、トリオクチルメチルアンモニウムクロライド(商品名:Aliquat336、アルドリッチ製)(0.25g)、及びトルエン(40ml)を混合し、105℃に加熱した。得られた反応液に、2Mの炭酸ナトリウム水溶液(11ml)を滴下し、22時間還流させた。反応後、そこに、フェニルホウ酸(240mg)を加え、さらに4時間還流させた。次いで、そこに、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液(10ml)を加え、80℃で4時間撹拌した。室温まで冷却後、水(30ml)で3回、3重量%の酢酸水溶液(30ml)で3回、水(30ml)で3回洗浄し、アルミナカラム、シリカゲルカラムを通すことにより精製した。得られたトルエン溶液をメタノール(300ml)に滴下し、1時間撹拌した後、得られた固体をろ取し乾燥させたところ、下記式:

(式中、括弧の外に添えた数字は、各種繰り返し単位のモル比を表す。)
で示される高分子化合物P−5を0.7g得た。高分子化合物P−5のポリスチレン換算の数平均分子量は4.2×104であり、ポリスチレン換算の重量平均分子量は7.5×104であった。なお、化合物MM−4は、EP1310539に記載の方法で合成した。
【0289】
<実施例10>(高分子化合物P−5の合成)
不活性雰囲気下、2,7−ビス(1,3,2−ジオキサボロラン−2−イル)−9,9−ジオクチルフルオレン(1.06g)、2,7−ジブロモ−9,9−ジオクチルフルオレン(0.66g)、化合物M−7(0.55g)、酢酸パラジウム(0.4mg)、トリス(o−メトキシフェニル)ホスフィン(2.8mg)、トリオクチルメチルアンモニウムクロライド(商品名:Aliquat336、アルドリッチ製)(0.25g)、及びトルエン(40ml)を混合し、105℃に加熱した。得られた反応液に、2Mの炭酸ナトリウム水溶液(11ml)を滴下し、4時間還流させた。反応後、そこに、フェニルホウ酸(240mg)を加え、さらに4時間還流させた。次いで、そこに、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液(10ml)を加え、80℃で4時間撹拌した。室温まで冷却後、水(30ml)で3回、3重量%の酢酸水溶液(30ml)で3回、水(30ml)で3回洗浄し、アルミナカラム、シリカゲルカラムを通すことにより精製した。得られたトルエン溶液をメタノール(300ml)に滴下し、1時間撹拌した後、得られた固体をろ取し乾燥させたところ、下記式:

(式中、括弧の外に添えた数字は、各種繰り返し単位のモル比を表す。)
で示される高分子化合物P−6を0.9g得た。高分子化合物P−6のポリスチレン換算の数平均分子量は1.0×105であり、ポリスチレン換算の重量平均分子量は3.9×105であった。
【0290】
<実施例11>(高分子化合物P−6の合成)
不活性雰囲気下、化合物MM−5(1.48g)、2,7−ジブロモ−9,9−ジオクチルフルオレン(0.22g)、化合物MM−4(0.82g)、化合物M−9(0.23g)、酢酸パラジウム(0.4mg)、トリス(o−メトキシフェニル)ホスフィン(2.8mg)、及びトルエン(44ml)を混合し、105℃に加熱した。得られた反応液に、20%テトラエチルアンモニウム水酸化物の水溶液(6.6ml)を滴下し、4時間還流させた。反応後、そこに、フェニルホウ酸(240mg)を加え、さらに18時間還流させた。次いで、そこに、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液(22ml)を加え、80℃で4時間撹拌した。室温まで冷却後、水(30ml)で3回、3重量%の酢酸水溶液(30ml)で3回、水(30ml)で3回洗浄し、アルミナカラム、シリカゲルカラムを通すことにより精製した。得られたトルエン溶液をメタノール(300ml)に滴下し、1時間撹拌した後、得られた固体をろ取し乾燥させたところ、下記式:

(式中、括弧の外に添えた数字は、各種繰り返し単位のモル比を表す。)
で示される高分子化合物P−6を1.5g得た。高分子化合物P−6のポリスチレン換算の数平均分子量は2.2×105であり、ポリスチレン換算の重量平均分子量は8.5×105であった。
【0291】
<実施例12>(高分子化合物P−7の合成)
不活性雰囲気下、化合物MM−5(1.48g)、2,7−ジブロモ−9,9−ジオクチルフルオレン(0.22g)、化合物MM−4(0.82g)、化合物M−4(0.20g)、酢酸パラジウム(0.4mg)、トリス(o−メトキシフェニル)ホスフィン(2.8mg)、及びトルエン(44ml)を混合し、105℃に加熱した。得られた反応液に、20重量%テトラエチルアンモニウム水酸化物の水溶液(6.6ml)を滴下し、18時間還流させた。反応後、そこに、フェニルホウ酸(240mg)を加え、さらに4時間還流させた。次いで、そこに、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液(22ml)を加え、80℃で4時間撹拌した。室温まで冷却後、水(30ml)で3回、3重量%の酢酸水溶液(30ml)で3回、水(30ml)で3回洗浄し、アルミナカラム、シリカゲルカラムを通すことにより精製した。得られたトルエン溶液をメタノール(300ml)に滴下し、1時間撹拌した後、得られた固体をろ取し乾燥させたところ、下記式:

(式中、括弧の外に添えた数字は、各種繰り返し単位のモル比を表す。)
で示される高分子化合物P−7を1.3g得た。高分子化合物P−7のポリスチレン換算の数平均分子量は5.1×104であり、ポリスチレン換算の重量平均分子量は1.0×105であった。
【0292】
<比較例1>(高分子化合物CP−1の合成)
不活性雰囲気下、2,7−ビス(1,3,2−ジオキサボロラン−2−イル)−9,9−ジオクチルフルオレン(1.06g)、ビス(4−ブロモフェニル)−(4−セカンダリブチルフェニル)−アミン(0.87g)、下記式:

で示される化合物MM−6(0.04g)、ビストリフェニルホスフィンパラジウムジクロライド(1.4mg)、トリオクチルメチルアンモニウムクロライド(商品名:Aliquat336、アルドリッチ製)(0.25g)、及びトルエン(40ml)を混合し、105℃に加熱した。得られた反応液に、2Mの炭酸ナトリウム水溶液(6ml)を滴下し、7時間還流させた。反応後、そこに、フェニルホウ酸(240mg)を加え、さらに4時間還流させた。次いで、そこに、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液(10ml)を加え、80℃で4時間撹拌した。室温まで冷却後、水(30ml)で3回、3重量%の酢酸水溶液(30ml)で3回、水(30ml)で3回洗浄し、アルミナカラム、シリカゲルカラムを通すことにより精製した。得られたトルエン溶液をメタノール(300ml)に滴下し、1時間撹拌した後、得られた固体をろ取し乾燥させたところ、下記式:

(式中、括弧の外に添えた数字は、各種繰り返し単位のモル比を表す。)
で示される高分子化合物CP−1を0.8g得た。高分子化合物CP−1のポリスチレン換算の数平均分子量は3.4×104であり、ポリスチレン換算の重量平均分子量は6.7×104であった。なお、化合物MM−6は、US2004/035221に記載の方法で合成した。
【0293】
<比較例2>(高分子化合物CP−2の合成)
不活性雰囲気下、2,7−ビス(1,3,2−ジオキサボロラン−2−イル)−9,9−ジオクチルフルオレン(1.06g)、2,7−ジブロモ−9,9−ジオクチルフルオレン(0.22g)、ビス(4−ブロモフェニル)−(4−セカンダリブチルフェニル)−アミン(0.55g)、下記式:

で示される化合物MM−2(0.21g)、ビストリフェニルホスフィンパラジウムジクロライド(1.4mg)、トリオクチルメチルアンモニウムクロライド(商品名:Aliquat336、アルドリッチ製)(0.25g)、及びトルエン(40ml)を混合し、105℃に加熱した。得られた反応液に、2Mの炭酸ナトリウム水溶液(6ml)を滴下し、7時間還流させた。反応後、そこに、フェニルホウ酸(240mg)を加え、さらに4時間還流させた。次いで、そこに、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液(10ml)を加え、80℃で4時間撹拌した。室温まで冷却後、水(30ml)で3回、3重量%の酢酸水溶液(30ml)で3回、水(30ml)で3回洗浄し、アルミナカラム、シリカゲルカラムを通すことにより精製した。得られたトルエン溶液をメタノール(300ml)に滴下し、1時間撹拌した後、得られた固体をろ取し乾燥させたところ、下記式:

(式中、括弧の外に添えた数字は、各種繰り返し単位のモル比を表す。)
で示される高分子化合物CP−2の収量は0.9gであった。高分子化合物CP−2のポリスチレン換算の数平均分子量は8.4×104であり、ポリスチレン換算の重量平均分子量は2.0×105であった。なお、化合物MM−2は、特開2008/106241に記載の方法で合成した。
【0294】
<比較例3>(高分子化合物CP−3の合成)
不活性雰囲気下、2,7−ビス(1,3,2−ジオキサボロラン−2−イル)−9,9−ジオクチルフルオレン(1.06g)、化合物MM−3(0.22g)、N,N−ジ(4−ブロモフェニル)アニリン(0.73g)、ビストリフェニルホスフィンパラジウムジクロライド(1.4mg)、トリオクチルメチルアンモニウムクロライド(商品名:Aliquat336、アルドリッチ製)(0.25g)、及びトルエン(40ml)を混合し、105℃に加熱した。反応溶液に2Mの炭酸ナトリウム水溶液(6ml)を滴下し、20時間還流させた。反応後、そこに、フェニルホウ酸(240mg)を加え、さらに4時間還流させた。次いで、そこに、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液(10ml)を加え、80℃で4時間撹拌した。室温まで冷却後、水(30ml)で3回、3重量%の酢酸水溶液(30ml)で3回、水(30ml)で3回洗浄し、アルミナカラム、シリカゲルカラムを通すことにより精製した。得られたトルエン溶液をメタノール(300ml)に滴下し、1時間撹拌した後、得られた固体をろ取し乾燥させたところ、下記式:

(式中、括弧の外に添えた数字は、各繰り返し単位のモル比を表す。)
で表される高分子化合物CP−3を0.8g得た。高分子化合物CP−3は、ポリスチレン換算の数平均分子量が5.3×104であり、ポリスチレン換算の重量平均分子量が1.9×105であった。
【0295】
<合成例10>(高分子化合物P−8の合成)
不活性雰囲気下、下記式:

で表される化合物MM−8(7.28g)、2,7−ジブロモ−9,9−ジオクチルフルオレン(4.94g)、下記式:

で表される化合物MM−9(0.74g)、ビストリフェニルホスフィンパラジウムジクロライド(7.0mg)、トリオクチルメチルアンモニウムクロライド(商品名:Aliquat336、アルドリッチ製)(1.30g)、及びトルエン(100ml)を混合し、105℃に加熱した。反応溶液に2Mの炭酸ナトリウム水溶液(27ml)を滴下し、2時間還流させた。反応後、そこに、フェニルホウ酸(120mg)を加え、さらに4時間還流させた。次いで、そこに、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液(60ml)を加え、80℃で4時間撹拌した。室温まで冷却後、水(130ml)で3回、3重量%の酢酸水溶液(130ml)で3回、水(130ml)で3回洗浄し、アルミナカラム、シリカゲルカラムを通すことにより精製した。得られたトルエン溶液をメタノール(1.5L)に滴下し、1時間撹拌した後、得られた固体をろ取し乾燥させたところ、下記式:

(式中、括弧の外に添えた数字は、各繰り返し単位のモル比を表す。)
で表される高分子化合物P−8を8.0g得た。高分子化合物P−8は、ポリスチレン換算の数平均分子量が5.1×104であり、ポリスチレン換算の重量平均分子量が1.4×105であった。なお、化合物MM−8は、WO2008/111658に記載の方法で合成し、化合物MM−9は、EP1394188に記載の方法で合成した。
【0296】
<残膜率の測定と評価>
・液状組成物の調製
化合物M−7、高分子化合物P−1〜P−7、高分子化合物CP−1〜CP−3を、それぞれ、キシレンに溶解させることにより、それぞれの化合物が約1重量%の液状組成物を調製した。
【0297】
・ガラス基板上での残膜率の評価
この液状組成物をガラス基板上に滴下し、スピンコーター(商品名:MS−A100型、ミサワ社製)を用い、1000rpmで15秒の条件で成膜した。得られた膜の膜厚(H1)を、プロファイラー(商品名:P−16+、KLA−Tencor社製)を用いて測定した。
次いで、窒素置換されたグローブボックス中で、ハイパワーホットプレート(商品名:HP−ISA、アズワン製)を用いて、上記ガラス基板上の膜を、表1に示すベーク温度で20分間ベークした。得られたガラス基板上の膜を室温まで冷却後、キシレン溶液に浸した後、スピンコーター(商品名:MS−A100型、ミサワ社製)を用い、1000rpmで15秒の条件でリンスを行った。作製した膜の膜厚(H2)を、プロファイラー(商品名:P−16+、KLA−Tencor社製)を用いて測定した。
(H2)/(H1)を残膜率とし、得られた結果を表1に示す。
【0298】
【表1】

【0299】
・評価
化合物M−7及び高分子化合物P−1〜P−7は、高分子化合物CP−1〜CP−3に比して、高い硬化性を有することが認められた。さらに、化合物M−7及び高分子化合物P−1〜P−7は、低温である130℃〜150℃の領域でも、高い硬化性を有することが認められた。
【0300】
<エレクトロルミネッセンス素子の作製と評価1>
・高分子化合物P−5溶液の調製
高分子化合物P−5をキシレンに溶解させ、ポリマー濃度1.2重量%のキシレン溶液を調製した。
・高分子化合物P−8溶液の調製
高分子化合物P−8をキシレンに溶解させ、ポリマー濃度1.2重量%のキシレン溶液を調製した。
・エレクトロルミネッセンス素子の作製
スパッタ法により150nmの厚みでITO膜を付けたガラス基板上に、ポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルホン酸(Bayer製、商品名:BaytronP AI4083)の懸濁液を0.2μmメンブランフィルターで濾過した液を用いて、スピンコートにより70nmの厚みで薄膜を形成し、ホットプレート上で200℃、10分間乾燥させた。次に、高分子化合物P−5のキシレン溶液を用いて、スピンコートにより1600rpmの回転速度で成膜し、ホットプレート上で150℃、20分間加熱することにより薄膜を硬化させた。成膜後の膜厚は約20nmであった。さらに、高分子化合物P−8のキシレン溶液を用いて、スピンコートにより1500rpmの回転速度で成膜した。成膜後の膜厚は約60nmであった。さらに、これを減圧下130℃で10分間乾燥させた後、陰極としてバリウムを約5nm蒸着し、次いでアルミニウムを約100nm蒸着してエレクトロルミネッセンス素子を作製した。なお真空度が1×10-4Pa以下に到達した後に金属の蒸着を開始した。
・エレクトロルミネッセンス素子の性能評価
得られたエレクトロルミネッセンス素子に電圧を印加することにより、この素子から460nmにピークを有するEL発光が得られた。また、初期輝度100cd/m2での輝度50%までの減少時間(寿命)は、26時間であった。
【0301】
<エレクトロルミネッセンス素子の作製と評価2>
・高分子化合物P−6溶液の調製
高分子化合物P−6をキシレンに溶解させ、ポリマー濃度1.2重量%のキシレン溶液を調製した。
・エレクトロルミネッセンス素子の作製
スパッタ法により150nmの厚みでITO膜を付けたガラス基板上に、ポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルホン酸(Bayer製、商品名:BaytronP AI4083)の懸濁液を0.2μmメンブランフィルターで濾過した液を用いて、スピンコートにより70nmの厚みで薄膜を形成し、ホットプレート上で200℃、10分間乾燥させた。次に、高分子化合物P−6のキシレン溶液を用いて、スピンコートにより1600rpmの回転速度で成膜し、ホットプレート上で150℃、20分間加熱することにより薄膜を硬化させた。成膜後の膜厚は約20nmであった。さらに、<エレクトロルミネッセンス素子の作製と評価1>で調製した高分子化合物P−8のキシレン溶液を用いて、スピンコートにより1500rpmの回転速度で成膜した。成膜後の膜厚は約60nmであった。さらに、これを減圧下130℃で10分間乾燥させた後、陰極としてバリウムを約5nm蒸着し、次いでアルミニウムを約100nm蒸着してエレクトロルミネッセンス素子を作製した。なお真空度が1×10-4Pa以下に到達した後に金属の蒸着を開始した。
・エレクトロルミネッセンス素子の性能評価
得られたエレクトロルミネッセンス素子に電圧を印加することにより、この素子から470nmにピークを有するEL発光が得られた。また、初期輝度100cd/m2での輝度50%までの減少時間(寿命)は、22時間であった。
【0302】
<エレクトロルミネッセンス素子の作製と評価C1>
・高分子化合物CP−1溶液の調製
高分子化合物CP−1をキシレンに溶解させ、ポリマー濃度1.2重量%のキシレン溶液を調製した。
・エレクトロルミネッセンス素子の作製
スパッタ法により150nmの厚みでITO膜を付けたガラス基板上に、ポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルホン酸(Bayer製、商品名:BaytronP AI4083)の懸濁液を0.2μmメンブランフィルターで濾過した液を用いて、スピンコートにより70nmの厚みで薄膜を形成し、ホットプレート上で200℃、10分間乾燥させた。次に、高分子化合物CP−1のキシレン溶液を用いて、スピンコートにより1600rpmの回転速度で成膜し、ホットプレート上で150℃、20分間加熱することにより薄膜を硬化させた。成膜後の膜厚は約20nmであった。さらに、<エレクトロルミネッセンス素子の作製と評価1>で調製した高分子化合物P−8のキシレン溶液を用いて、スピンコートにより1500rpmの回転速度で成膜した。成膜後の膜厚は約60nmであった。さらに、これを減圧下130℃で10分間乾燥させた後、陰極としてバリウムを約5nm蒸着し、次いでアルミニウムを約100nm蒸着してエレクトロルミネッセンス素子を作製した。なお真空度が1×10-4Pa以下に到達した後に金属の蒸着を開始した。
・エレクトロルミネッセンス素子の性能評価
得られたエレクトロルミネッセンス素子に電圧を印加することにより、この素子から460nmにピークを有するEL発光が得られた。また、初期輝度100cd/m2での輝度50%までの減少時間(寿命)は、1時間であった。
【0303】
<エレクトロルミネッセンス素子の作製と評価C2>
・高分子化合物CP−2溶液の調製
高分子化合物CP−2をキシレンに溶解させ、ポリマー濃度1.2重量%のキシレン溶液を調製した。
・エレクトロルミネッセンス素子の作製
スパッタ法により150nmの厚みでITO膜を付けたガラス基板上に、ポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルホン酸(Bayer製、商品名:BaytronP AI4083)の懸濁液を0.2μmメンブランフィルターで濾過した液を用いて、スピンコートにより70nmの厚みで薄膜を形成し、ホットプレート上で200℃、10分間乾燥させた。次に、高分子化合物CP−2のキシレン溶液を用いて、スピンコートにより1600rpmの回転速度で成膜し、ホットプレート上で150℃、20分間加熱することにより薄膜を硬化させた。成膜後の膜厚は約20nmであった。さらに、<エレクトロルミネッセンス素子の作製と評価1>で調製した高分子化合物P−8のキシレン溶液を用いて、スピンコートにより1500rpmの回転速度で成膜した。成膜後の膜厚は約60nmであった。さらに、これを減圧下130℃で10分間乾燥させた後、陰極としてバリウムを約5nm蒸着し、次いでアルミニウムを約100nm蒸着してエレクトロルミネッセンス素子を作製した。なお真空度が1×10-4Pa以下に到達した後に金属の蒸着を開始した。
・エレクトロルミネッセンス素子の性能評価
得られたエレクトロルミネッセンス素子に電圧を印加することにより、この素子から460nmにピークを有するEL発光が得られた。また、初期輝度100cd/m2での輝度50%までの減少時間(寿命)は、14時間であった。
【0304】
<エレクトロルミネッセンス素子の作製と評価C3>
・高分子化合物CP−3溶液の調製
高分子化合物CP−3をキシレンに溶解し、ポリマー濃度1.2重量%のキシレン溶液を調製した。
・エレクトロルミネッセンス素子の作製
スパッタ法により150nmの厚みでITO膜を付けたガラス基板上に、ポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルホン酸(Bayer製、商品名:BaytronP AI4083)の懸濁液を0.2μmメンブランフィルターで濾過した液を用いて、スピンコートにより70nmの厚みで薄膜を形成し、ホットプレート上で200℃、10分間乾燥させた。次に、高分子化合物CP−3のキシレン溶液を用いて、スピンコートにより1600rpmの回転速度で成膜し、ホットプレート上で150℃、20分間加熱することにより薄膜を硬化させた。成膜後の膜厚は約20nmであった。さらに、<エレクトロルミネッセンス素子の作製と評価1>で調製した高分子化合物P−8のキシレン溶液を用いて、スピンコートにより1500rpmの回転速度で成膜した。成膜後の膜厚は約60nmであった。さらに、これを減圧下130℃で10分間乾燥させた後、陰極としてバリウムを約5nm蒸着し、次いでアルミニウムを約100nm蒸着してエレクトロルミネッセンス素子を作製した。なお真空度が1×10-4Pa以下に到達した後に金属の蒸着を開始した。
・エレクトロルミネッセンス素子の性能評価
得られたエレクトロルミネッセンス素子に電圧を印加することにより、この素子から460nmにピークを有するEL発光が得られた。また、初期輝度100cd/m2での輝度50%までの減少時間(寿命)は、11時間であった。

【特許請求の範囲】
【請求項1】
下記式(I):

〔式(I)中、Ar1はアリーレン基、2価の複素環基又は2価の芳香族アミン基を表す。J1はフェニレン基を表し、J2はアルキレン基を表し、Xは酸素原子又は硫黄原子を表す。jは0又は1であり、kは0〜3の整数であり、lは0又は1であり、1≦j+k+l≦5を満たす。mは1又は2である。R1は、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基又はニトロ基を表す。複数存在するR1は、同一であっても異なっていてもよい。J1、J2、X、j、k及びlは、複数存在する場合、各々、同一であっても異なっていてもよい。〕
で示される2価の基を含む化合物。
【請求項2】
jが1である請求項1に記載の化合物。
【請求項3】
1が水素原子、アルキル基、アルコキシ基、ハロゲン原子、ニトロ基又はシアノ基である請求項1又は2に記載の化合物。
【請求項4】
Ar1が、フェニレン基又はフルオレン−ジイル基である請求項1〜3のいずれか一項に記載の化合物。
【請求項5】
Ar1が、下記式(II):

〔式(II)中、Yは、酸素原子、硫黄原子、−N(R22)−、−O−C(R23)(R24)−、又は−Si(R25)(R26)−を表す。R22、R23、R24、R25及びR26はそれぞれ独立に、水素原子、アルキル基、アルコキシ基、アリール基又はアリールアルキル基を表す。該式は、置換基を有していてもよい。〕
示される2価の基である請求項1〜3のいずれか一項に記載の化合物。
【請求項6】
Ar1が、下記式(III):

〔式(III)中、R3は、水素原子、アルキル基、アルコキシ基又は置換アミノ基を表す。5個存在するR3は、同一であっても異なっていてもよい。〕
で示される2価の基、又は下記式(IV):

〔式(IV)中、R4は、水素原子、アルキル基、アルコキシ基又は置換アミノ基を表す。10個存在するR4は、同一であっても異なっていてもよい。〕
で示される2価の基である請求項1〜3のいずれか一項に記載の化合物。
【請求項7】
上記式(I)中、下記式(Ia):

(式(Ia)中、j、k、l、J1、J2及びR1は、上記と同じ意味を有する。)
で表される基が、下記式(Ib):

(式(Ib)中、k、l、J2及びR1は、上記と同じ意味を有する。)
で示される基である請求項1〜6のいずれか一項に記載の化合物。
【請求項8】
上記式(Ib)で表される基が、下記式(Ic):

(式(Ic)中、k、l及びJ2は、上記と同じ意味を有する。)
で示される基、又は下記式(Id):

(式(Id)中、k、l及びJ2は、上記と同じ意味を有する。)
で示される基である請求項8に記載の化合物。
【請求項9】
上記式(I)で示される2価の基を有する化合物が、上記式(I)で示される2価の基を繰り返し単位として有する高分子化合物である、請求項1〜8のいずれか一項に記載の化合物。
【請求項10】
さらに、下記式(A):

〔式(A)中、Ar2はアリーレン基、2価の複素環基又は2価の芳香族アミン基を表す。J3は直接結合、アルキレン基又はフェニレン基を表し、nは1又は2を表す。J3は、複数存在する場合、同一であっても異なっていてもよい。〕
で示される繰り返し単位を有する請求項9に記載の化合物。
【請求項11】
Ar2がアリーレン基であり、J3が直接結合であり、nが2である請求項10に記載の化合物。
【請求項12】
さらに、下記式(B):

〔式(B)中、Ar3はアリーレン基、2価の複素環基又は2価の芳香族アミン基を表す。J4は直接結合、アルキレン基又はフェニレン基を表し、R5は水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基又はニトロ基を表し、oは1又は2を表す。複数存在するR5は、同一であっても異なっていてもよい。J4は、複数存在する場合、同一であっても異なっていてもよい。〕
で示される繰り返し単位を有する請求項9〜11のいずれか一項に記載の化合物。
【請求項13】
Ar3がアリーレン基であり、J4がアルキレン基であり、oが2である請求項12に記載の化合物。
【請求項14】
さらに、下記式(C):

〔式(C)中、R6は、アルキル基、アリール基、アリールアルキル基又はアリールアルコキシ基を表す。2個存在するR6は、同一であっても異なっていてもよい。〕
で示される繰り返し単位を有する請求項9〜13のいずれか一項に記載の化合物。
【請求項15】
6が、アルキル基、アリール基又はアリールアルキル基である請求項14に記載の化合物。
【請求項16】
ポリスチレン換算の数平均分子量が1×103〜1×108である請求項9〜15のいずれか一項に記載の化合物。
【請求項17】
正孔輸送材料、電子輸送材料及び発光材料からなる群から選ばれる少なくとも1種と、請求項1〜16のいずれか一項に記載の化合物とを含有する組成物。
【請求項18】
請求項1〜16のいずれか一項に記載の化合物と、溶媒とを含有する液状組成物。
【請求項19】
請求項1〜16のいずれか一項に記載の化合物を含有する薄膜。
【請求項20】
請求項1〜16のいずれか一項に記載の化合物を架橋してなる薄膜。
【請求項21】
陽極及び陰極からなる電極と、該電極間に設けられ請求項1〜16のいずれか一項に記載の化合物を含む有機層とを有する発光素子。
【請求項22】
上記有機層が、発光層又は電荷輸送層である請求項21に記載の発光素子。
【請求項23】
請求項21又は22に記載の発光素子を備えた面状光源。
【請求項24】
請求項21又は22に記載の発光素子を備えた表示装置。
【請求項25】
請求項1〜16のいずれか一項に記載の化合物を用いてなる有機トランジスタ。
【請求項26】
請求項1〜16のいずれか一項に記載の化合物を用いてなる有機光電変換素子。
【請求項27】
下記式(X):

〔式(X)中、Ar1はアリーレン基、2価の複素環基又は2価の芳香族アミン基を表す。J1はフェニレン基を表し、J2はアルキレン基を表し、Xは酸素原子又は硫黄原子を表す。X1及びX2はそれぞれ独立に、ハロゲン原子を表す。kは0〜3の整数であり、lは0又は1であり、mは1又は2である。J1、J2、X、k及びlは、複数存在する場合、各々、同一であっても異なっていてもよい。〕
で示される化合物。
【請求項28】
下記式(XI):

〔式(XI)中、Ar1はアリーレン基、2価の複素環基又は2価の芳香族アミン基を表す。J1はフェニレン基を表し、Xは酸素原子又は硫黄原子を表す。X1及びX2はそれぞれ独立に、ハロゲン原子を表す。kは0〜3の整数であり、lは0又は1であり、mは1又は2である。J1、X、k及びlは、複数存在する場合、各々、同一であっても異なっていてもよい。〕
で示される化合物と、下記式(XII):

〔式(XII)中、X3はハロゲン原子を表し、J2はアルキレン基を表す。〕
で示される化合物とを、塩基中で反応させることを含む、下記式(X):

〔式(X)中、Ar1、J1、J2、X、X1、X2、k、l及びmは上記と同じ意味を有する。〕
で示される化合物の製造方法。

【公開番号】特開2010−53349(P2010−53349A)
【公開日】平成22年3月11日(2010.3.11)
【国際特許分類】
【出願番号】特願2009−168725(P2009−168725)
【出願日】平成21年7月17日(2009.7.17)
【出願人】(000002093)住友化学株式会社 (8,981)
【Fターム(参考)】