説明

Fターム[2F065HH04]の内容

光学的手段による測長装置 (194,290) | 入射光 (9,091) | 強度分布 (4,196) | スポット光、ビーム光 (1,478)

Fターム[2F065HH04]に分類される特許

201 - 220 / 1,478


【課題】レンズをデフォーカスさせた場合であっても、スポット光の重心位置を高精度に算出することができる画像処理装置および画像処理方法を得る。
【解決手段】光源からの光を集光させたスポット光が入射した画像におけるスポット光の重心位置を算出する画像処理装置(方法)であって、スポット光が入射した画像の各画素の輝度値に基づいて、画像の1次重心を決定する1次重心決定手段(ステップ)と、1次重心を中心とする所定半径の円を描く円描画手段(ステップ)と、所定半径の円と各画素との重複割合を算出する重複割合算出手段(ステップ)と、重複割合を、0から1までの重みに切り詰める重み設定手段(ステップ)と、各画素の輝度値に重みを乗算して、スポット光の重心位置を算出する重心位置算出手段(ステップ)とを備えたものである。 (もっと読む)


【課題】コンパクトなユニット内に組み込むことができ、複数の自由度の位置測定値を提供できる位置センサを提供する。
【解決手段】位置センサは、ターゲットの位置データを測定するように構成される。位置センサは、放射ビームを照射するように構成された放射源と、放射ビームを第1の回折方向に少なくとも1つの1次放射ビームに回折するように構成された第1の格子と、1次回折ビームの光路内に配置され、第1の格子で回折された1次回折ビームを、第1の回折方向に実質的に垂直な第2の回折方向に回折するように構成された第2の格子とを含む。第2の格子はターゲットに接続される。第1の検出器は、第1の格子によって回折されたビームの少なくとも一部を検出するように構成され、少なくとも1つの第2の検出器は第1の格子と第2の格子によって回折されたビームの少なくとも一部を検出するように構成される。 (もっと読む)


【課題】対象物の撮像面の位置を簡易かつ安価に、しかも短時間で検出する装置を提供することにある。
【解決手段】レーザ光軸が互いに交差するように配置された少なくとも3台のレーザ光照射手段と、前記少なくとも3台のレーザ光照射手段に対する所定位置で、それらのレーザ光照射手段からレーザビームを照射された対象物の表面を撮像する1台の単眼の撮像手段と、前記撮像手段が前記対象物の撮像面を撮像した1枚の画像での前記レーザビームの少なくとも3つの照射点の位置と前記撮像手段の撮像光軸との位置関係から幾何学的演算により前記撮像手段に対する前記対象物の撮像面の距離と向きとを求めて出力する演算手段と、を具えてなる、撮像面位置検出装置である。 (もっと読む)


【課題】オフセット量を正確かつ容易に取得する。
【解決手段】第1の位置情報に基づいて特定される位置Ob上にビーム照射部が位置するように移動させた後に、照射部をX方向(矢印A1,A2の向き)に移動させながらレーザービームを照射させたときのレーザービームの反射光量の変化、およびY方向(矢印B1,B2の向き)に移動させながら照射させたときの反射光量の変化に基づいてマーク21の位置Mx1,Mx2,My1,My2を取得すると共に、位置Mx1,Mx2,My1,My2と、第2の位置情報とに基づいて基板保持機構によって保持されているオフセット量取得用基板におけるマーク21の位置Mbを特定し、位置Mb,ObのX方向に沿った位置ずれ量Xb、およびY方向に沿った位置ずれ量Ybを、照射部のX方向に沿った移動量、およびY方向に沿った移動量をそれぞれ補正するためのオフセット量として特定する。 (もっと読む)


【課題】照明光の連続性を確保し、被測定物の視認性や人の作業効率に影響を与えることなく、高精度かつ確実に被測定物の3次元形状を導出する。
【解決手段】3次元形状測定装置110は、被測定物102に特定色の光を投射する投光源150と、被測定物で反射された反射光のうち特定色の反射光を受光し投影像を形成する受光素子160と、2値化された制御信号を生成する信号生成部170と、被測定物に照明光を照射する複数の照明装置120a、120b、120cのうち特定色を含む照明光を照射する照明装置120aを、制御信号が第1状態を示す間消灯する照明制御部162と、制御信号が第1状態を示す間に、受光素子に投影像を形成させる投影像形成制御部172と、受光素子で形成された投影像に基づいて被測定物の3次元形状を導出する3次元形状導出部176とを備える。 (もっと読む)


【課題】油田における坑井ボアの内部寸法を計測するための装置において、過酷な環境(高温または高圧)でも、使用に耐えられるものを提供する。
【解決手段】坑井ボアWBの内部寸法を計測するための検層システムLSは、坑井ボアWBの内部に配置されるようになされた検層工具1を備える。検層工具1はセントラライザー5を含み、全体として、検層工具1および下ノーズ5’に連結された複数の機械式アーム6、7等を含む。機械式アーム6、7等は、坑井ボア壁WBWと接触し、検層工具1が正しく位置決めされるように、半径方向に展開するとともに、坑井ボアWBの内部寸法を計測するために使用される光学式センサのカリパーアームを形成する。また、検層工具1は、光ファイバライン2に連結されており、適合した地表ユニット(例えば、車輛3および対応するシステム4)によって坑井ボアWBの内部へ展開される。 (もっと読む)


【課題】対象物の外縁と回転保持台の回転軸との距離が三次元測定機の測定可能範囲の長さよりも長い場合であっても回転軸の位置および姿勢の情報を取得する。
【解決手段】情報処理システムは、対象物の三次元形状を測定する三次元測定機と、所定の特徴部と、保持基準部とを備えた校正用対象物と、校正用対象物を保持する回転保持手段と、三次元測定機に対する回転保持手段の回転軸の位置および姿勢の情報である回転軸情報を取得する回転軸情報取得手段と、を備える。そして、保持基準部は、特徴部に対する回転軸の位置および姿勢が既知の配置関係に保持されるための基準であり、回転軸情報取得手段は、保持基準部によって回転保持手段に保持された校正用対象物の特徴部を三次元測定機が測定して得た測定情報を、前記既知の配置関係に基づいて変換することにより回転軸情報を取得する。 (もっと読む)


【課題】 測定対象が変わっても測定対象の反射率などの光学特性、あるいは形状や機械的特性に依存せずに検出感度やノイズの割合が調整可能で、測定対象への照射光による測定対象の熱変形の影響が小さくでき、最適な条件下で測定精度を確保することが可能な光学式変位検出方法を提供する。
【解決手段】 測定対象となるカンチレバー6に光を照射する光源10と、光源10を駆動する光源駆動回路21と、光源10からカンチレバー6に照射した後の光を受光し、光強度を検出する光検出器16と、光検出器16の検出信号を所定の増幅率で増幅する増幅器22から構成される光学式変位検出機構において、光強度調整器28と増幅率調整器27を設けカンチレバー6への照射光強度や光検出器16の増幅率を調整できるようにした。 (もっと読む)


【課題】表面反射と裏面反射を有し、且つ、厚さを有する物体のチルト角と厚さを同時に測定できる厚さチルトセンサを提供する。
【解決手段】厚さチルトセンサは、測定対象物に向けて測定用光を出射する投光部と、測定対象物の表面反射光及び測定対象物の裏面反射光を受光する受光部とからなる光学系を備えており、投光部は、投光素子と投光レンズと平行光を細くする手段とを具備し、平行光を細くする手段により得られた細い平行光を測定用光とし、受光部は、表面反射光を受光するチルト角測定部と、表面反射光及び裏面反射光を受光する厚さ測定部とを具備し、チルト角測定部は、チルト角測定用受光レンズとチルト角測定用受光素子とを具備し、測定対象物のチルト角を測定し、厚さ測定部は、厚さ測定用受光レンズと厚さ測定用受光素子とを具備し、測定対象物の厚さを測定する。 (もっと読む)


【課題】位相変調された干渉信号を検出し、干渉信号の位相を求める信号処理演算を行うことによってナノメータオーダでの分解能で表面形状測定を行うことのできる、表面形状の測定方法及び測定装置を提供する。
【解決手段】半導体レーザ光源11からのレーザ光を偏光方向が互いに直交し位相が異なる2つの光の合成光に変換してから回転多面体ミラー32に導き、レンズ33を通過した合成光を構成する2つの光を偏光ビームスプリッタ34により分離してその一方の光を参照面ミラー42、他方の光を被測定物体41の表面に照射する。参照面ミラー42からの反射光と被測定物体41の表面からの反射光を偏光ビームスプリッタ34により再び重ね合わせ、偏光板52を通過させることにより参照面ミラー42からの反射光と被測定物体41の表面からの反射光を干渉させる。 (もっと読む)


【課題】測定光および参照光の光軸を容易に一致させることが可能な斜入射干渉計を提供する。
【解決手段】斜入射干渉計1は、光源2と、光を平行光にするレンズ3,4と、平行光を測定光および参照光に分離し、測定光を被測定面Sに対して斜めに射出する光分離部5と、参照光、および被測定面で反射された測定光を合成して干渉光とする光合成部6と、干渉光を検出する検出部と、光源2から光分離部5までの光路内に設けられるとともに、光の光断面サイズよりも小さいサイズの光通過孔81を有し、この光通過孔81でのみ光を通過させるスポット形成部8と、を具備した。 (もっと読む)


【課題】光学部品の点数を少なく、構造を簡単化して、光センサーの小型化及び低コスト化を実現する。
【解決手段】振動検出用光センサー1は、光源2、偏光ビームスプリッター3、対物レンズ4、波長板ユニット5、及び1個の受光素子6を備える。波長板ユニットは1/4波長板7と振動板8とが一体化され、光センサーの小型化、構造及び組立の簡単化、低コストが図れる。受光素子6は、光軸x2を振動板の反射光の光軸x1と平行にかつ僅かにずらして配置される。それに対応して、受光素子に入射するビームスポット形状は、その中心cを受光面6aの中心Oから僅かにずらして離れた位置に置いて投影される。受光素子から検出される光量は、振動板の変位に対応して増減する。 (もっと読む)


【課題】光学部品の点数を少なく、構造を簡単化して、光センサーの小型化及び低コスト化を実現する。
【解決手段】振動検出用光センサー1は、光源2、偏光ビームスプリッター3、対物レンズ4、波長板ユニット5、及び光検出部として二次元イメージセンサー6,14を備える。波長板ユニットは1/4波長板7と振動板8とが一体化され、光センサーの小型化、構造及び組立の簡単化、低コストが図れる。二次元イメージセンサーの受光面6a,14aには、振動板の反射面8aの位置に対応して、同心で異なる半径の円形のビームスポット形状が入射する。二次元イメージセンサーの出力信号からビームスポット形状の面積又は半径を測定することによって、振動板の位置又は変位量を検出する。 (もっと読む)


【課題】二平面を備える層の両方の面に局所的な変形が生じた場合にも、より正確に層間変位を計測することができる変位計測装置を提供する。
【解決手段】変位計測装置1Aは、天井2と、前記天井2に対し所定間隔を隔てて設けられた床3と、不動点部材とを備える層間の水平方向の変位を光学的に計測する。天井2から前記床3に向かって基準光LSを照射して、前記天井2と前記床3の相対変位を検出する基準変位計測部7と、前記天井2または前記床3と、前記不動点部材との間に参照光LRを照射して、前記不動点部材に対する前記天井2または前記床3の相対変位を検出する参照変位計測部8Aとを備える。 (もっと読む)


【課題】加工部片の寸法測定を容易にかつ小作業域で、できるようにする。
【解決手段】測定する部片を主軸台57と心押し台60との間に維持するため、固定された主軸台57と、固定された主軸台に対向し、主軸台57に近付くか、離れて移動するために線形軸に沿って移動可能である、移動可能な心押し台60とが取り付けられた基準支持40と、測定下の部片によって遮られるコリメート光のビームをx軸にわたって誘導するための光源110を担持し、さらに、光源110と整列し、測定下の部片によって遮られなかったコリメート光のビームの残留光を受けるように配置されている、光学検出器120を担持している、線形軸に沿って移動可能な可動往復台100とを有す。 (もっと読む)


【課題】投射光領域の輪郭が不明瞭な場合でも、移動体の正確な位置を検出する。
【解決手段】移動体の位置を検出する位置検出システムであって、天井面を撮影した画像から前記移動体に装着されかつ鉛直制御された光源から該天井面へ投射された投射光の画像領域を抽出する抽出手段と、前記投射光の画像領域の重心位置を算出する算出手段と、前記重心位置を床面の前記移動体の位置へと変換する位置変換手段とにより達成される。 (もっと読む)


【課題】 光源からの光を測定対象や光検出器の受光面へ位置合わせを行う際に、位置合わせを容易に、かつ確実に行うことが可能な光学式変位検出機構のスポット光の位置合わせ方法を提供する。
【解決手段】 測定対象となるカンチレバー6に光を照射する光源10と、光源10を駆動する光源駆動回路21と、光源10からカンチレバー6に照射した後の光を受光し、光強度を検出する光検出器16と、光検出器16の検出信号を所定の利得で増幅する増幅器22から構成される光学式変位検出機構において、光検出器16で検出される検出感度を利得(増幅率)調整器を用いて実際に測定対象を測定する時よりも小さい値に設定して、光検出器16の所定の位置に光検出器用位置決め機構18により光のスポット20の位置決めを行うようにした。 (もっと読む)


【課題】被測定物の視認性や人の作業効率に影響を与えることなく、高精度かつ確実に被測定物の3次元形状を導出する。
【解決手段】3次元形状測定装置110は、被測定物102に投光する投光源150と、被測定物で反射された反射光を受光し投影像を形成する受光素子160と、2値化された制御信号を生成する信号生成部170と、被測定物に照明光を照射する照明装置120を制御信号が第1状態を示す間消灯する照明制御部162と、制御信号が第1状態を示す間に、受光素子に投影像を形成させる投影像形成制御部172と、受光素子で形成された投影像に基づいて被測定物の3次元形状を導出する3次元形状導出部176とを備える。 (もっと読む)


【課題】レーザ走査干渉を用いて円筒面の形状を簡単に、かつ、短時間で測定することができ、同時に円筒面の表面画像を得ることのできる、円筒面の形状計測方法を提供する。
【解決手段】テレセントリックfθレンズ8の焦点面近傍に近接配置した参照平面9a及び被観察円筒面10aからの反射光を前記テレセントリックfθレンズ8により平行光束に変換し、結像レンズ11によって集光してテレセントリックfθレンズ8の焦点面と共役の位置に設置したピンホール12aを通過させ、ピンホール12aを通過した反射光の光量を受光素子13で計測する。レーザ光源1からのレーザ光を連続点灯又はパルス点灯させるとともに、走査光を被観察円筒面10aの母線に沿って走査させ、かつ、被観察円筒面10aを有する被測定物10をその円筒軸10bを中心に回転させながら計測する。 (もっと読む)


【課題】 規格内の大きさの受光センサを用いても、受光センサを大きくした場合と同じように、3次元形状の測定可能範囲が大きいか、又は分解能を高くする。
【解決手段】 レーザ光照射器から測定対象物(OB)の表面にレーザ光を照射し、測定対象物OBの表面の照射スポット位置にて発生する散乱光の一部である反射光を集光レンズ32で集光するとともに、集光された反射光をダイクロイックミラー30で互いに異なる少なくとも第1方向及び第2方向に分離する。分離された反射光を、複数の受光素子からなる受光センサ14,24でそれぞれ受光する。受光センサ14,24は、レーザ出射器からの距離が異なる測定対象物OBの表面からの反射光をそれぞれ受光するとともに、一部距離を重複させる。受光センサ14,24による受光信号を用いて、3角測量法の原理に基づいてレーザ光照射器から測定対象物OBの表面までの距離を計算する。 (もっと読む)


201 - 220 / 1,478