説明

Fターム[2G047BC03]の内容

超音波による材料の調査、分析 (29,493) | 測定する量 (4,172) | 超音波の振幅、減衰 (602)

Fターム[2G047BC03]に分類される特許

161 - 180 / 602


【課題】高い測定精度を保証し、浸炭層を精度よく的確に測定可能な管状体の浸炭層測定方法及び装置を提供する。
【解決手段】超音波を用いて管状体101の所定部位に形成される浸炭層を測定する。管状体101の外周に沿って一又は一対の探触子11を移動させ、浸炭層の通過による超音波特性の変化を検出し、この検出結果に基づき浸炭層深さを測定する。管状体101内を伝播する超音波経路が管状体101の略板厚中央部を通過するように、一対の探触子11の発信側から受信側へと超音波を発信する。 (もっと読む)


【課題】基台に対する板状部材の接着状態の不良を検査すること。
【解決手段】凹部が形成された基台301及びこの基台301の凹部に係合し当該凹部の底面に接着される板状部材を有する保持テーブル3における基台に対する板状部材の接着状態を検査する超音波検査装置1において、基台301の凹部の底面と板状部材302の被接着面との接着部位に超音波を照射し、当該接着部位からの反射エコーを測定し、上記接着部位からの反射エコーを、色情報を有する画像データに変換し、この画像データの色情報に応じて板状部材302の被接着面と基台301の凹部の底面との間の接着状態の不良を判定することを特徴とする。 (もっと読む)


【課題】形状,焼入れ条件等が種々異なる部材に適用可能であり、部材の硬さ分布を正確に測定することができる測定方法を提供する。また、軸受部品の硬さ分布が保証された高性能の転がり軸受を提供する。
【解決手段】被検材に超音波パルスを入射し、被検材の表面から心部までの間の各深さ位置でそれぞれ反射された反射波を受信して、各反射波の強度を取得する。また、超音波パルスの入射から反射波の受信までの時間を、各反射波について測定し、その反射波がどの深さ位置で反射されたものかを算出する。各反射波の強度と反射された深さ位置とにより、被検材の表面からの距離と反射波の強度との関係を示す反射波形曲線を描く。標準材を用いて予め取得した、反射波の強度と非焼入れ組織の比率との相関関係及び非焼入れ組織の比率と硬さとの相関関係に基づいて、反射波の強度を硬さに変換して、被検材の硬さ分布曲線を得る。 (もっと読む)


【課題】溶接部の異常の有無を高い精度で検出することができる溶接部の異常検出方法を提供する。
【解決手段】溶接部5の異常検出方法は、AE波を発生させる振動発生部11をスピンドル3におけるテーパ部3bの外周面に配置すると共に、AE波を検出する振動検出部12をシャフト本体2の外周面に配置する配置工程と、振動発生部11からAE波を発生させ、スピンドル3から溶接部5を通ってシャフト本体2に伝播したAE波を振動検出部12によって検出する検出工程と、振動検出部12からの出力信号に基づいて、溶接部5における異常の有無を判定する判定工程と、を備えている。 (もっと読む)


【課題】フェーズドアレイ法による超音波探傷において、探傷時に複数のエコーから形状エコーと欠陥エコーを容易に判別できる超音波探傷方法及び装置を提供する。
【解決手段】超音波アレイセンサ101は、超音波受発信部102で制御されて検査対象100に超音波を送信し、検査対象から現れる反射波を検出する。データ記憶装置103は予め検査対象100の形状データを記憶する。計算装置104は、入力装置105により入力された条件でデータ記憶装置103に記憶された検査対象100の形状データに対しレイトレース解析を行い、その解析結果からセクタスキャン模擬データを作成する。表示装置106は、超音波アレイセンサ101による探傷結果と計算装置104によるセクタスキャン模擬データを重ねて表示し、さらにデータ記憶装置103に記憶された検査対象100の形状データと計算装置104により解析された超音波伝搬経路を重ねて表示する。 (もっと読む)


【課題】汚泥堆積層と上澄水相との界面のみを検出するのではなく、汚泥堆積層内の層同士の界面を検出することができる方法と、この方法を用いた固液分離槽の管理方法を提供する。
【解決手段】汚泥は、固液分離槽20内を徐々に沈降していき、汚泥堆積層を形成する。この汚泥堆積層は、最上部が自由沈降層であり、その下側に順次、凝集沈降層、圧密沈降層および濃縮層が形成される。各層同士の間の界面を検出するための界面レベル計を用い、1〜60秒に5回以上受信信号強度を読み込み、その平均値を受信信号強度とする。このデータを用いて各層同士の間の界面を求める。 (もっと読む)


【課題】酸素を含有する空気中で、低濃度の水素を検出可能な水素ガスセンサを提供する。
【解決手段】板状の圧電体11、圧電体11の表面の一部に配置されたパラジウム―プラチナ合金からなる薄膜状のガス感応部32、及びガス感応部32に接するガスの水素濃度に依存するガス感応部32の物性の変化を検出する検出部として機能する櫛歯状の電極22を備える水素ガスセンサを提供する。 (もっと読む)


【課題】CMUTなどの容量型電気機械変換装置の弾性波に対する出力信号の調整などを加工により可能とする技術を提供する。
【解決手段】容量型電気機械変換装置100は、第1の電極104と、第1の電極104と対向し空隙105を隔てて配設された第2の電極106とを備えるセル102を有する。容量型電気機械変換装置100において、少なくとも1つのセル102は、物質の付加と除去のうちの少なくとも一方の加工が施された加工部102を有する。 (もっと読む)


【目的】コンクリート構造物などの構造物における損傷進展の初期段階、例えば凍害や中性化といった劣化による初期段階での微少な内部欠陥を確実に検知できて、コンクリート構造物の予防保全的管理にも確実に寄与できる構造物の内部欠陥探知装置を提供することを目的とする。
【構成】構造物に弾性波発振部を形成すると共に、弾性波発振部から発振された弾性波を受振する弾性波受振部を形成し、弾性波発振部より弾性波を発振させると共に、発振させた弾性波を弾性波受振部により受振してなり、弾性波発振波長の振幅あるいはエネルギーと弾性波受振波長の振幅あるいはエネルギーの比を減衰比として取得し、取得した減衰比により構造物の内部欠陥及び/又は内部欠陥箇所を探知する、ことを特徴とする。 (もっと読む)


【課題】溶接部における欠陥を検出するための方法及びシステムを提供する。
【解決手段】溶接部に沿った複数の測定箇所より集められた超音波応答信号を処理して溶接部内の欠陥の存在を決定するための方法は、それぞれの測定箇所からの超音波応答信号をフィルタリングして、それぞれの測定箇所に対するフィルタリングされた応答信号を生成することを含み得る。その後、それぞれの測定箇所に対する超音波エネルギーが、対応するフィルタリングされた応答信号を用いて計算され得る。そして、それぞれの測定箇所に対する超音波エネルギーは、隣接する測定箇所の超音波エネルギーと比較されて潜在的欠陥位置が識別される。測定箇所の超音波エネルギーが、隣接する測定箇所の超音波エネルギーよりも小さい時に、測定箇所は潜在的欠陥位置である。そして、潜在的欠陥位置の近傍の測定箇所における超音波エネルギーのゆらぎを解析することによって、溶接部内の欠陥の存在が決定される。 (もっと読む)


多層構造の第1層の隠れ部分の異常を検出するシステム及び方法が提供されている。多層構造を貫通して延在するファスナーの少なくとも一つの露出端部に監視要素が提供されており、別の監視要素が第1層の露出部分に提供されている。少なくとも一つの監視要素により、第1層の隠れ部分を含む多層構造に検査信号が導入される。検査信号は次に、第1層の隠れ部分を含む多層構造の少なくとも一部を通って検査信号が伝播した後で、少なくとも別の一つの監視要素によって感知される。最後に、感知された検査信号に基づいて、第1層の隠れ部分の異常が検出できる。
(もっと読む)


【課題】 被検体の無破壊試験で被検体の構造の欠陥の超音波によって生じる信号の処理のための回路装置において、被検体の構造の欠陥を高速度で、かつ改善された信号雑音比で検出すること。
【解決手段】 デジタル化した信号の振幅と伝搬時間が記憶素子(SP)に記憶され、該記憶素子に保存された振幅値の位相同期加算のための加算素子(SUM)が該記憶素子(SP)に後置され、欠陥に関して評価可能な信号が加算素子の出力に現れる回路装置が提案される。 (もっと読む)


【課題】アンカボルトの長手方向側面に腐食があっても、中心周波数fを徐々に小さくし、アンカボルトの腐食進行の度合や形状(湾曲、先端先鋭)による超音波伝達経緯中の減衰の影響を受けにくい相対的に低い周波数に基づいて時系列波を求め、反射波の起生を確保することができ、アンカボルトの形状探査に寄与するアンカボルトの形状探査方法およびその装置を提供する。
【解決手段】アンカボルト端面より広帯域超音波を発信S1し、同一端面で広帯域超音波を受信S2し、受信した広帯域受信波からフーリエ変換にて広帯域受信波スペクトルS3を求める第1演算機能と、広帯域受信波スペクトルS3より中心周波数をfとする狭帯域スペクトルを抽出して、フーリエ逆変換にて狭帯域スペクトルの時系列波S5を、中心周波数fを徐々に小さくしていく経緯の中で順次求める第2演算機能と、を備えた演算手段を設け、時系列波よりアンカボルト先端からの反射波の起生を求めるS6ことを特徴とする。 (もっと読む)


【課題】予め評価対象となる構造物について振動試験を行なわなくともよく、更には得られた結果についての信頼性に優れた健全度評価方法を提供する。
【解決手段】構造物に振動を加えることにより検出される振動データに基づいて、構造物の固有振動数f(Hz)と、nを自然数とした場合に互いに異なる質量m(kg)を構造物に負荷したn個の状態におけるその構造物の固有振動数f2n(Hz)とを算出する。次に、算出した固有振動数f及び固有振動数f2nと構造物に負荷した質量mと下記式(1)に基づき評価時における構造物の質量を推定する。次に、推定した構造物の質量に基づき、評価時における構造物の曲げ剛性を算出してこれを評価値とする。次に、評価値に基づいて構造物の健全度を評価する。
【数1】


・・・(1) (もっと読む)


【課題】 測定精度が高く、かつ低消費電力な機械特性測定装置を提供する。
【解決手段】 本発明の機械特性測定装置10は、測定物に接触させる圧電振動子12aを含む振動センサ12と、前記圧電振動子12aに電気エネルギーを供給する定電圧発振回路11と、前記圧電振動子12aに生じた振動電流を測定する振動電流測定部13と、オン/オフ切り替え可能な第1のスイッチング手段14と、オン/オフ切り替え可能な第2のスイッチング手段14とを備え、前記定電圧発振回路11が、前記振動センサ12に前記第1のスイッチング手段14を介して、電気的に接続され、前記振動センサ12が、前記振動電流測定部13に前記第2のスイッチング手段14を介して、電気的に接続されていることを特徴とする。 (もっと読む)


【課題】超音波検出器と光源を同側に配置する光音響波計測装置において、光束を生体に対して斜入射するため、生体深部への照明効率が低く生体深部に大きな光エネルギーで照明することができないという課題を有する。
【解決手段】超音波検出器と同じ側から被検体に対して光束を照射し光音響波を計測する光音響計測装置であって、超音波検出器と、前記超音波検出器の検出面前方に設けられた回折格子部材と、光束を発生する光源と、前記光源からの光束を前記回折格子部材に導く光学系と、を有しており、前記回折格子部材は、当該回折格子部材に導かれた光束を、前記超音波検出器の検出面に対向する被検体表面に出射するように構成されている。 (もっと読む)


【課題】試験サンプルの溶接部に沿う複数の測定箇所から収集された超音波応答信号を処理し、上記溶接部における欠陥の存在を決定する方法を提供すること。
【解決手段】本方法は、各測定箇所からの超音波応答信号をフィルタリングし、各測定箇所に対して複数のフィルタリング済み応答信号を生成する段階であって、各フィルタリング済み応答信号は特定種類の欠陥に対応するという段階を含み得る。その後、各測定箇所に対する上記複数のフィルタリング済み応答信号に基づき、上記溶接部に対して複数のエネルギ分布が算出され得る。上記複数のエネルギ分布は、対応する基準エネルギ分布と比較され、上記溶接部における欠陥の存在が決定され得る。 (もっと読む)


【課題】検出感度の向上したレーダ装置を提供することにある。
【解決手段】送信アンテナ101は、パルス発振器103が出力する振幅の異なる複数のパルスを波動に変換して被検査物に放射する。受信アンテナ102により受信された波動の反射波は、アナログ・ディジタル変換器106によりディジタル値に変換され、計算機201に取り込まれる。パルス幅制御器108は、パルス発振器103が出力する複数の振幅の異なるパルスに対して、それぞれ、異なるパルス幅のパルスを出力するように、パルス発振器103を調節する。 (もっと読む)


【課題】 製品から発生する打音の周波数の範囲が広い場合であっても、精度良く製品を検査できるようにする。
【解決手段】 打撃アーム13を回動させて検査対象物OBを叩いて打音を発生させ、打音が発生している初期において、周波数測定回路44により打音の周波数を測定し、測定された周波数を中心周波数としたバンドパスフィルタ45の通過帯域を設定する。そして、フィルタ処理された打音信号からロックインアンプ46によりエンベロープ波形信号を生成し、エンベロープ波形信号の電圧値を積分回路49により所定時間積分する。この積分値は、打音の減衰度合いを表す値に相当し、電圧計50により測定される。電圧測定値が基準値未満であれば、検査対象物OBにクラックが発生していると判定する。 (もっと読む)


【課題】装置の大型化やコストの増大を回避又は抑制しながら、紙幣の新旧を正確に判別できる紙葉類疲労判別装置、紙幣処理装置及び紙葉類疲労判別方法を提供する。
【解決手段】集音制御部は、所定位置を通過する紙幣から発せられる音の集音動作をマイクロホンに行わせ、サンプリング部は、マイクロホンの出力信号を一定の周期でサンプリングする(♯12)。振幅差算出部は、各サンプリングデータについて、1つ前及び1つ後のサンプリングデータとのデータ値の差をそれぞれ第1振幅差及び第2振幅差として算出する(♯14)。プロット部は、前記第1,第2振幅差をX軸,Y軸とする2次元座標系に、各サンプリングデータについての第1,第2振幅差をX,Y座標とする点をプロットし(♯15)、座標系変換部は、各プロット点の分布を極座標系で表した分布に変換する(♯16)。判定部は、このプロット点の分布に基づいて紙幣の疲労状態を判定する。 (もっと読む)


161 - 180 / 602