説明

Fターム[2G059AA01]の内容

光学的手段による材料の調査、分析 (110,381) | 測定目的 (9,910) | 成分分析、濃度測定 (3,785)

Fターム[2G059AA01]に分類される特許

3,741 - 3,760 / 3,785


反射率を修正するシステム及び方法は、試験物質の存在で反射率が実質的に変化しないところの第一の波長で試験製品に関する反射率定数を決定することと、試験製品が試験物質を装填された状態で、シグナル・ノイズ比が最大になるところの第二の波長で反射率を測定し、第一の波長で計測反射率を測定することと、反射率と、計測反射率に対する反射率定数の比との積として修正反射率を決定することと、を含む。
(もっと読む)


本発明は半導体処理システムに関するが、このシステムは、材料による特有の波長の赤外光の吸収に基づいて、関心のある材料を分析することによってプロセスを制御するために、赤外線ベースの熱電堆検出器を用いる。具体的には、赤外光ビームが、赤外光源から関心のある材料を含むサンプリング領域を通って熱電堆検出器へと、線形透過経路を通して透過される。線形透過経路は、赤外光の透過中の信号損失の危険を低減する。赤外光の透過経路は、透過中のかかる信号損失を最小限にするために、非常に滑らかで反射性の内面を含んでもよい。
(もっと読む)


ダクト(4)内のガス中における通常ゼロすなわち許容できるレベルより上の一過性微粒子の存在を検出するための装置および方法。前記装置は、ダクト(4)のほぼ全断面にわたって投影することができる赤外線、紫外線および可視光線から選択した照射用の少なくとも1つのエミッタ(2)と、微粒子からの照射の任意の閃光を検出するための少なくとも1つの検出器(8,18,25)とを備える。装置および方法は、例えば、病院および発電所のような微粒子の堆積または存在が望ましくないエリア内の微粒子を検出、監視する際に特に役に立つ。
(もっと読む)


画像処理装置は、透過型の照明(10)により照明された撮像対象(30)を、光学フィルタ(14)を介して、カメラ(18)で撮像し、分光特性推定部(22)及び色素量推定部(24)によって、上記撮像された多バンド画像から、撮像対象(30)の画素毎に上記撮像対象(30)に関連した物理量を計算するとき、上記計算する物理量の独立成分数に等しい数の光学フィルタ(14)を上記撮像に使用する。 (もっと読む)


本発明は、化学種又は生物種用の表面プラズモンマイクロセンサ又はナノセンサに関し、サポート(1)表面上に分布するパッド(2)を備え、前記パッド(2)は、少なくとも一つ以上の導電性材料を備えるとともに、前記化学種又は生物種を固定可能であり、前記パッド(2)は、1μm未満の寸法を有している。
(もっと読む)


スペクトル測定システムからのデータのダイナミックレンジを改善可能な方法および装置を提供する。分光器測定を行う際、画像の品質と、ユーザが所望の特徴を区別する能力を改善することができる光源およびスペクトル測定システムを提供する。 (もっと読む)


本発明は、ターゲットに対して親和性を有する表面の近くにターゲットを移動させることによってターゲットを検出することに関連する。この移動は電気泳動の使用を伴い、それは、電気泳動力が発生しうる電圧を下げる酸化剤及び還元剤の存在によって増強されて良い。このより低い電位により、ターゲットが検出される、例えば濃縮の間の検出の手段及びターゲットを固定化することなく複数回検出する能力が可能になる。タグはターゲットへと、移動及び/又は検出可能性を与えるために結合させられて良い。ターゲットは分子の例えば、核酸又はタンパク質であり、そして都合良くは微生物である。微生物は表面上に固定化された場合に固定されて増殖して良く、微生物の様々な抗微生物剤に対する感受性の特定が可能になる。
(もっと読む)


媒質内の物質の濃度などの、媒質の物理的特性を決定するための方法及びデバイスが開示される。デバイスは、光源2と、少なくとも第1及び第2の光ファイバ5、6が互いに平行に配置され、前記第1の光ファイバ5は光源からサンプル1に放射線を送出し、前記サンプルから第1の後方散乱放射線を集めるように配列され、前記第2の光ファイバ6は第2の後方散乱放射線を集めるように配列されたプローブと、第1及び第2の後方散乱放射線を発生する分光計7、前記第1及び第2の後方散乱放射線に基づき第1及び第2の信号発生するための分光計7と、前記第1の及び第2の信号から微分後方散乱信号を決定し、前記測定された微分後方散乱信号の曲線当てはめにより後方散乱関数へと前記物理的特性を計算するように適合されたプロセッサ9とを備える。光ファイバの口径がサンプル中の光子の平均自由行程よりも短いか長いかに応じて、異なる後方散乱関数が使用される。
(もっと読む)


このガスセンサーは、少なくとも2つの光源と、投影光学部品と、少なくとも1つの光の入口を備える光反射室と、を備える。このガスセンサーは光反射室と共に働く検出器をさらに備え、この検出器を用いて光源からの光が検出され得る。前記投影光学部品を用いて室の光の入口にそれぞれ投影され得る少なくとも2つの光源を備える。 (もっと読む)


本発明は血液透析、血液透析濾過、血液濾過または腹膜透析のための装置に関する。この装置は、透析および、または輸液が流れるように意図された少なくとも1つの導管10,14を備えている。この装置は、前記液体中の少なくとも1つの光学的に活性の物質を測定するための測定装置48を備えている。この測定装置48は、液体中の前記物質が前記液体を透過された偏光された光ビームに与える影響を測定することにより前記液体中の物質の濃度を測定するように構成されている。本発明はまた、このような装置を備えたシステムおよび解析および、または輸液中の光学的に活性の物質の濃度の測定を行う方法に関する。 (もっと読む)


ガス検出装置は少なくとも1つの面発光レーザ(34、36)及び検出すべきガスを収納している検出域(48)を通過した光線(50、52)を検出するために少なくとも1つの光センサ(54、56)を含んで構成されている。第一の実施例ではこの光センサはホトダイオードであり、検出信号は電子微分演算器(64)より時間に関して微分され、その値を2つのロックイン増幅器(84、86)に送りF−検出及び2F−検出が生成される。Fはレーザ源の波長変調の周波数であり、得られた2つの測定信号を除した商は正確なガス濃度値を提供する。第二の実施例では、光センサは入射光を時間により微分した値に比例する検出信号を直接に提供する焦電センサである。このように第二の実施例では微分演算器を必要としない。
(もっと読む)


人体内の対象領域の少なくとも一つのパラメータの非侵襲的モニタリングに使用される方法とシステムを提示する。当該システムは、測定ユニットと制御ユニットを備える。測定ユニットは、照射アセンブリ(101A)と光検出アセンブリ(101B)とを有し、採集光を示す測定データを生成する光学ユニットと、所定の超音波周波数範囲の音波を発生するように構成された音響ユニット(110)と、を備える。測定ユニットは、所定の周波数範囲の音波が対象領域内で照射領域と重なり対象領域外の領域とは実質的に重ならず、かつ検出アセンブリが対象領域からの散乱光と対象領域外の領域からの散乱光を採集するという動作条件を提供する。測定データは、超音波で標識付けされた光の部分と標識付けされていない光の部分の両方を有する散乱光を示し、対象領域と対象領域外の領域のそれぞれの光応答を識別可能にする。
(もっと読む)


本発明は、以下の工程を含む、疾患の生物学的プロファイルに対する化学的複数成分混合物の影響を決定するための方法を提供する:(a)多変量解析を用いて、疾患の症状を有する生体システム群の生物学的プロファイルを参照(または健常)生体システム群の生物学的プロファイルと比較することにより、疾患の生物学的プロファイルを決定する工程;(b)多変量解析を用いて、疾患の生物学的プロファイルに対する1つまたは複数の合成組成物の一連のサンプルの影響を決定する工程であって、これらサンプル中、1つまたは複数の合成組成物の濃度が異なる、工程;(c)工程(b)で得られた情報に基づいて、疾患の生物学的プロファイルに対して所望の影響を示すことが期待される複数成分合成産物混合物のセットを調製する工程;および(d)多変量解析を用いて、疾患の生物学的プロファイルに対する工程(c)で調製された複数成分混合物セットの影響を決定する工程。本発明はまた、医薬物を調製するための方法、および合成産物ベースの医薬物を調製するための、工程(c)で調製されるような複数成分合成産物混合物の使用を提供する。

(もっと読む)


微量検体中の測定対象物質の濃度を短時間に測定でき、かつ、測定に供する検体量が不正確であっても測定対象物質の濃度を正確に測定できる濃度測定方法を提供する。光導波路層と該光導波路層の表面に設置された抗体固定化層とを具備するセンサチップを用いる測定対象物質の濃度測定方法であって、該センサチップの抗体固定化層に検体溶液及び酵素標識された抗体溶液を滴下して抗原抗体反応させ検体を固定した後、発色試薬溶液を滴下し、発色かつ沈殿する酵素反応産物を生成して、該抗体固定化層内に前記酵素反応産物を沈殿させ、外部から前記センサチップ入射された光を該抗体固定化層で全反射させて、この全反射させた光の物理量の変化を観測する濃度測定方法である。 (もっと読む)


試料をテラヘルツ放射線によって照射し、非鏡面放射線を検出して、試料の内部構造を特徴付ける方法及び装置。表面によって鏡面反射されるテラヘルツ放射線が、試料の内部構造から生じる弱い信号をマスキングしないように最小にされる。
(もっと読む)


本発明は、拡散を利用する光音響ガスセンサに関連し、音響圧力センサを含む音響圧力センサ室と検知室とを備え、検知室と音響圧力センサ室との間に設けられる連結通路は、被分析ガス流を制限するが、光音響信号の伝達を制限しない。 (もっと読む)


本発明は、気相または液相中の目的分子を多孔質材料に選択的に吸着させ、吸着された目的分子を検出する検出法に関する。本発明の検出方法は、前記多孔質材料が、ナノサイズの細孔を有し、該細孔が高秩序な周期的細孔構造を有し、且つ、細孔の径、形状および細孔内部の表面の構造、並びに細孔内部の表面の化学的親和性が、目的分子の吸着に適合されていることを特徴とする。本発明はさらに、前記多孔質材料とその製造方法を提供する。 (もっと読む)


本発明はセンサ1を使用する測定方法に関する測定値に対して、特に「ドリフト」誤差に関する温度依存誤差補償を行う方法および電子配置6に関する。電子回路6は1つ以上のガスおよび/またはガス混合物の存在の確立および/またはガスまたはガス混合物の濃度の演算に適合する。選択した測定サイクルT1の間に発生し確立した最高測定値Mmaxまたは最低測定値Mminはメモリー69’に格納する。選択した期間T1の間に発生し評価した最低アナログ値または最高デジタル測定値を前記メモリー69’に格納し、選択した測定サイクルまたは期間T1の最後に発生し評価した測定値Mmax、Mminと、格納したアナログまたはA/D変換器を介したデジタルの制御値65’を比較し、評価した最低または最高測定値と前記格納した制御値の差を、次の期間T2に発生する測定値の関係および/または対応する測定値の補償K1の基礎として使用することを提案する。 (もっと読む)


患者の骨組織の状態を診断するため、または診断を補助するための方法において、この患者の骨組織の一部分が、光源を使用して照射される。この骨組織は、例えば、皮膚を通してかまたは切開を介して、インビボで照射され得る。あるいは、骨組織の生検が照射され得る。次いで、この骨組織によって散乱されたか、反射されたか、または透過された光についてのスペクトル内容の情報が決定され、そして少なくとも部分的に、この患者が骨組織の状態を有するか否かを決定するために使用される。
(もっと読む)


【課題】
【解決手段】 生体試料を分類するシステム。生体試料中の関心のある対象物の数を同定する。関心のある各対象物の第1の特徴(例えば、核の面積)と、関心のある各対象物の第2の特徴(例えば、核の積分光学濃度)を測定し、この第1及び第2の特徴の分散プロットを生成する。この分散プロット内のポイント分布に基づいて試料が正常か、擬似に分類される。 (もっと読む)


3,741 - 3,760 / 3,785