説明

Fターム[2G085DA03]の内容

粒子加速器 (3,302) | 荷電粒子ビームの取扱い (129) | ビームの改変 (126) | 粒子ビームの変換(電荷変換、X線等の発生) (103)

Fターム[2G085DA03]に分類される特許

21 - 40 / 103


本開示は、電子スイッチの発熱が好都合に低い、少なくとも2つの異なるエネルギー領域のX線の生成に使用するための定在波線形加速器(LINAC)の高速切り替え操作のためのシステムおよび方法に関する。ある実施形態では、LINACの高速切り替え操作中、電子スイッチの発熱は、定在波LINACのそれぞれの側面空洞内に配置されている複数の電子スイッチの制御され、タイミング調整された起動により、または電子スイッチを含む変更された側面空洞の使用により、好都合に低く維持することができる。 (もっと読む)


【課題】一台の粒子加速器によって放射線治療用及びRI製造用の各用途に応じた電流量の加速粒子を取り出すことを可能とし、その結果として、稼働率の向上を図り易くなる粒子加速器及び粒子加速システムを提供することを目的とする。
【解決手段】放射線治療用の陽子ビームB1及びRI製造用の陽子ビームB2のそれぞれをサイクロン3から取り出すために、サイクロン3に少なくとも二つ設けられた取出ポート25,27と、サイクロン3内を周回する負イオンPを取出ポート25,27に誘導するフォイル21b,23bと、負イオンPをサイクロン3に供給するイオン源18と、フォイル21b,23bの進退量及びイオン源18による負イオンPの供給量の少なくとも一方を制御して取出ポート25,27から取り出される陽子ビームB1,B2の電流量を制御する制御装置35と、を備える粒子加速システム1Aである。 (もっと読む)


【課題】荷電変換用膜の課題であるダイヤモンド薄膜の脆弱性及びCNTSの低電子密度という問題を解決し、新規な機能をもつ、荷電変換用部材を提供する。
【解決手段】不織布カーボンナノチューブシート上にダイヤモンド薄膜が堆積されてなることを特徴とする荷電変換用デバイスであって、ダイヤモンド薄膜は、積層体の基板であるCNTS自身をダイヤモンド薄膜合成の炭素源として用いたマイクロ波プラズマCVD法により形成される。 (もっと読む)


RF生成器が、入力部分と出力部分、さらに前記入力部分と前記出力部分との間に伸長する開口部を有する構造物を含んで成り、出力部分は第1の空洞および第2の空洞を有し、前記第1および第2の空洞は互いに電磁気的に結合しないように互いに離されている。RFエネルギーを与える方法が、電子ビームを受け入れる工程と、前記電子ビームを使用して生成される第1のRFエネルギーを、第1の空洞を通して与える行程と、前記電子ビームを使用して生成される第2のRFエネルギーを、第2の空洞を通して与える行程と、を含み、前記第1および第2の空洞が、互いに電磁気的に連結されないように、互いに離れている。
(もっと読む)


【課題】
重イオン加速器に関する。重イオン加速器は電荷と質量の比が完全電離の状態でも2前後で、電場加速では電子や陽子に比べて核子あたりの加速効率は良いとはいえない。本発明は重イオン加速器の類例のないほどの超小型化を可能にする。あるいは大型にすることで、類例のないほどの高エネルギー重イオンを可能にする。
本発明はその応用の一つとして、重粒子線によるがん治療装置に大きなインパクトを与える。エネルギーが400MeV/u(uは核子を表す)強の重粒子線は放射線耐性の強いあるいは、低酸素腫瘍で、従来の放射線治療の効果が少ない悪性の腫瘍に治療効果が高い事がしられている。しかし、そのための重粒子線癌治療装置は規模が大きく、これを収容する建屋も既存の病院に収まらないほど長大で、初期コストも維持費も極めて割高なため、悪性腫瘍の治療などには極めて良い成績がしられているのも関わらず、一般への普及が遅れている。にもかかわらず、そのすぐれた治療効果から重粒子線加速器の小型化の実現とその普及はがんの放射線治療医学界から切望されていることである。
【解決手段】 重イオンを内包した高密度の中空電子雲あるいは電子リングを本発明で提案しているような特殊で新しいレーザー照射技術等によって瞬時に生成し、中空電子雲を直のRF電場により重イオンと共に瞬時に引き出し・加速する方法を提供することで、高い加速効率かつ極めて小型の安価な加速器を実現可能せしめる。その応用のひとつとして要望の強い、既設の病院のサイズに設置可能な重粒子の超小型テーブルトップ重イオン加速器を実現せしめる。 (もっと読む)


【課題】逆コンプトン散乱現象を利用して硬X線を生成するX線射出装置において、安定して硬X線を射出する。
【解決手段】第1導光部4及び第2導光部5が、平行レーザ光L1の分岐手段2への基準入射条件からのズレ量に起因する変化が対称面Aに対して対称となるように電子加速用レーザ光L2及び衝突用レーザ光L3を導光する。 (もっと読む)


【課題】ビームラインが短く、分解能が高く、且つ短時間で2次元領域の測定が可能な分析装置、特にXAFS分析装置又は小角散乱X線分析装置を提供すること。
【解決手段】荷電粒子発生手段によって生成された荷電粒子を内部に周回させる荷電粒子周回手段(1)と、
周回する荷電粒子の周回軌道(13)上に配置された横長ターゲット(14)に、周回する荷電粒子を衝突させて発生したX線を分光して単色X線を発生させる分光手段(2)と、
分光手段(2)から出力される単色X線を測定対象の試料(4)に照射し、試料(4)から出力されるX線を測定する測定手段(3)とを備える。 (もっと読む)


【課題】従来よりも光子密度の高い、エネルギー幅が狭くほぼ単色のX線を発生することができるX線集光装置を提供すること。
【解決手段】本発明のX線集光装置は、白色X線を集光する装置であって、複数の結晶素子(11)を備え、楕円(12)の一方の焦点(A)に位置する光源から放射されたX線(13)が結晶素子(11)によってブラッグ反射されて楕円(12)の他方の焦点(B)に集光するように、各々の結晶素子(11)の結晶格子面の方向が形成されている。 (もっと読む)


【課題】冷却水の滞留を抑えてターゲットの排熱効率を容易に向上できるターゲット装置を提供する。
【解決手段】固体状のターゲット10に接する冷却板15を備えるターゲット装置であり、冷却板15には、ターゲット10に接して流動する冷却水Wが通過する螺旋溝17が形成されている。螺旋溝17は、隣接して並んでおり、冷却板15は、隣接する一対の螺旋溝17を区画する隔壁部28を有する。隔壁部28は、ターゲット10に近い側の方がターゲット10から遠い側よりも薄くなっている。したがって、螺旋溝17を流動する冷却水Wがターゲット10に接する接触面積が拡がる。さらに、ターゲット10に近接して対面する隔壁部28の先端29bは狭くなるため、冷却水Wがターゲット10との隙間Sに進入して滞留する虞が少なくなる。 (もっと読む)


【課題】 サイクロトロンから粒子ビームを抽出するためにサイクロトロンの周囲の負に帯電された粒子ビームから電子をストリッピングするためのストリッピング部材を提供する。
【解決手段】 このストリッピング部材は、前記粒子ビームが第一ストリッパー箔を通過するように前記サイクロトロンの周囲に設けられるのに適合した第一ストリッパー箔を含んでおり、さらに前記負に帯電された粒子ビームが、前記第一ストリッパー箔が損傷したとき、第二ストリッパー箔を通過するように、前記第一ストリッパー箔より大きな周囲半径で前記サイクロトロンの周囲の第一箔と並んで設けられるのに適合した第二ストリッパー箔を含むことを特徴とする。 (もっと読む)


本発明は、癌腫瘍の多軸荷電粒子照射治療の一部として使用される荷電粒子ビーム加速方法及び装置を有する。加速器は、方向転換磁石、エッジ・フォーカス磁石、磁場収束磁石、及び抽出の利点を有するシンクロトロン、及び、シンクロトロンの全体のサイズを最小にし、厳しく制御された陽子ビームを供給し、必要な磁場のサイズを直接低減し、必要な動作電力を直接低減し、及びシンクロトロンから陽子を抽出する処理中であってもシンクロトロンにおける陽子の連続的な加速を可能にし、抽出された荷電粒子ビームのエネルギー及び強度を独立して制御する制御要素を備えている。 (もっと読む)


本発明は、癌腫瘍に対する荷電粒子照射治療と併用されるX線方法及び装置を有する。そのシステムは、陽子ビーム癌治療システムの陽子ビーム経路と実質的に同じ経路に位置し、長い寿命を有し、及び又は、患者の呼吸と同期するX線を使用する。そのシステムは、陽子ビーム経路に近接したところに配置されたX線発生源を叩く電子ビームを生成する。陽子ビーム経路の近傍にX線を発生することによって、実質的に陽子ビーム経路であるX線経路が生成される。そのシステムは、発生されたX線を用いて、癌腫瘍のまわりの局部的な体の組織範囲のX線画像を収集し、そのX線画像は、陽子ビーム経路に対する体の位置合わせを細かく調整すること、及び又は陽子ビーム経路を正確且つ精密に目標の腫瘍に制御すること、に使用できる。 (もっと読む)


本発明は、癌腫瘍の多軸荷電粒子照射治療と併用される荷電粒子ビーム入射方法及び装置を有する。陰イオン源は、陰イオン・ビーム源、真空システム、イオン・ビーム・フォーカス・レンズ、及び又は2連型加速器を備えている。陰イオン源は、陰イオン・ビームをフォーカスするために電場線を使用する。陰イオン源プラズマ室は磁性材料を有し、その磁性材料は高温プラズマ室及び低温プラズマ領域の間に磁場障壁を設ける。入射システム真空システム及びシンクロトロン真空システムは変換箔によって分離され、その変換箔において陰イオンが陽イオンに変換される。その箔は、入射システム真空室に高めの部分圧力及びシンクロトロン真空システムに低めの圧力を用意する真空管の端に貼付される。 (もっと読む)


【課題】フォイルの移動及び切替えを一の駆動系により実現することができるフォイルストリッパーを提供する。
【解決手段】本発明に係るフォイルストリッパー46は、少なくとも2枚のフォイル47を回転軸72まわりに回転可能に備え、一のフォイルを加速粒子軌道上に配置するカセットロール71と、カセットロール71を加速粒子軌道に沿って移動させる駆動機構56と、回転軸72まわりに設けられた複数のインデクスピン74a〜74dと、カセットロール71の移動軌道上に設けられ、インデクスピンの1つと当接可能なレバー83であって、第1の当接面87及び第2の当接面88を備え、第1の当接面87でインデクスピンと当接する場合には動作が規制され、第2の当接面88で当接する場合には、第2の当接面88とインデクスピンとの当接状態を解消するように移動可能なレバー83と、を備えている。 (もっと読む)


単色空間電荷で中性化された中性ビームで活性化される化学プロセスによって基板を処理する化学プロセスシステム及び当該化学プロセスシステムの使用方法が記載されている。当該化学プロセスシステムは、第1プラズマポテンシャルで第1プラズマを生成する第1プラズマチャンバ、及び、前記第1プラズマポテンシャルよりも大きい第2プラズマポテンシャルで第2プラズマを生成する第2プラズマチャンバを有する。前記第2プラズマは前記第1プラズマからの電子束を用いて生成される。さらに当該化学プロセスシステムは、前記第2プラズマチャンバ内に基板を設置するように備えられた基板ホルダを有する。
(もっと読む)


【課題】中性子発生器を使用する中性子検層計器、特に、中性子出力及び中性子発生器作動寿命を最適化するようにこのような計器内の中性子発生器の作動パラメータを制御する方法を提供する。
【解決手段】パルス式中性子発生器を作動させる方法は、中性子発生器のターゲット電流を所定の値に調節する段階を含む。中性子発生器の中性子出力に関連するパラメータを測定する。測定されたパラメータを所定の範囲に維持するように中性子発生器のターゲット電圧を調節する。 (もっと読む)


【課題】中性子発生装置のターゲット部を、容易に回収できるターゲット回収装置を提供する。
【解決手段】中性子減速装置7は、ターゲット6を有するターゲット装置5を収容する収容室8aを有する。ビームダクト11に対して中性子減速装置7を相対移動させ、収容室8a内からターゲット装置5を露出させる。ターゲット装置5の鉛直下方に回収容器43を配置しておき、ターゲット装置とビームダクト11とを着脱自在に接続する主接続手段13の接続を解く。すると、ビームダクト11から離脱したターゲット装置は落下し、回収容器43に収容される。その結果として、ターゲット装置5と一緒にターゲット6をビームダクト11から取り外して容易に回収できる。 (もっと読む)


【課題】小型化を図ることを可能にした中性子線回転照射装置を提供する。
【解決手段】 中性子線回転照射装置1は、イオンビームが照射されて中性子を発生するターゲット7を有する中性子発生部2と、中性子を減速する減速材9と、中性子発生部2の出射側に設けられたコリメータ3と、イオンビームを偏向させるための2つの偏向電磁石4,5と、イオンビームを輸送するビームダクト6とを備える。ターゲット収容部10とビームダクト6Cとを連通する連通口10aは、ターゲット収容部10の頂部10bよりも低い位置に配置され、イオンビームのターゲット7への照射方向F1と中性子の取出方向F2とがなす角度αは90°である。 (もっと読む)


【課題】本発明は、1個の電子源でマイクロ波増幅管と加速管の双方に電子ビームを供給できる高エネルギー電子ビーム発生装置及びX線装置を提供することを課題とする。
【解決手段】電子源、入力空洞及び出力空洞からなるマイクロ波増幅管と、マイクロ波増幅管の電子ビームの一部を加速管に供給するビーム制限用スリットと、単一あるいは複数の加速空洞からなる加速管を直列に配置するとともに、マイクロ波増幅管のマイクロ波出力を加速管に供給するマイクロ波導波管を備えたことを特徴とする高エネルギー電子ビーム発生装置及びX線装置である。 (もっと読む)


ベータトロンは、第1磁極面を有する第1ガイド磁石および第2磁極面を有する第2ガイド磁石を備えたベータトロン磁石を含む。第1および第2ガイド磁石は、中心配置のアパーチャを有し、第1磁極面は、ガイド磁石ギャップによって第2磁極面から分離している。コアは、両ガイド磁石と当接(abut)する関係で、中心配置のアパーチャ内に配置される。コアは、少なくとも1つのコアギャップを有する。駆動コイルは、両方のガイド磁石磁極面の周りに巻回される。軌道制御コイルは、コアギャップの周りに巻回された収縮(contraction)コイル部分と、ガイド磁石磁極面の周りに巻回されたバイアス制御部分とを有する。収縮コイル部分およびバイアス制御部分は、反対の極性で接続される。コアおよびガイド磁石内の磁束は、ベータトロン磁石の周辺部分を通って戻る。
(もっと読む)


21 - 40 / 103