説明

Fターム[2G088GG21]の内容

放射線の測定 (34,480) | 測定手段 (6,504) | 半導体検出器 (1,713)

Fターム[2G088GG21]の下位に属するFターム

Fターム[2G088GG21]に分類される特許

81 - 100 / 1,645


【課題】AECセンサを変更した場合に既存の装置を改造することなく変更前と同じAECを行う。
【解決手段】電子カセッテ13のAEC部67の補正回路76は、電子カセッテ13の検出画素65の検出信号を旧AECセンサ25の検出信号に相当する検出信号とする。補正回路76は、旧AECセンサ25に代えて検出画素65をAECセンサとして用いた場合のX線源10と電子カセッテ13のFPD35の撮像面36との間に配置される中間部材の構成の違いによる検出信号への影響を排除するように補正を行う。検出信号は、そのまま(瞬時値)、または積分回路77で積算値とされて、検出信号I/F80から線源制御装置11の検出信号I/F26に向けて送信される。 (もっと読む)


【課題】画像データの転送におけるボトルネックの発生を抑制する。
【解決手段】X線平面検出器20の動作は、読出工程と送出工程とを備える。読出工程では、1つのゲートラインに所定の信号を与えて、そのゲートラインに対応する複数の31画素から画素値を読み出す行読出工程を、すべての前記ゲートラインに対して実行する。送出工程では、行読出工程で読み出された画素値を外部機器に送出する行送出工程をすべてのゲートラインに対して実行する。1回目の行読出工程で読み出された画素値(A1〜A6)は、画素値(B1〜B6)を読み出す2回目の行読出工程と並行して行われる行送出工程で通信部26によって外部機器に伝達される。その後、順次、行読出工程と行送出工程を並行して行っていく。 (もっと読む)


【課題】補正精度の向上と画像再構成処理の高速化とが可能になる放射線撮像装置を提供する。
【解決手段】コリメータ26の貫通孔27に対し、複数の検出器21が対応する放射線撮像装置1であって、前記検出器21で取得された画像を、前記貫通孔27に対する相対位置が等しい検出器21ごとに分離して、分離画像を生成する分離画像生成手段12と、前記分離画像生成手段12で生成された分離画像ごとに画像処理を行う画像処理手段12と、を備える。 (もっと読む)


【課題】コンパクトで操作性が良好なサーベイメータを構成する。
【解決手段】サーベイメータは可搬型の放射線測定装置であり、それは先端部10、中間部12及びグリップ部14を有する。中間部12の上面には表示部が設けられている。中間部12に対して屈曲部を介して先端部10が連なっており、先端部10が傾斜部を構成している。グリップ部14はくびれ形状を有している。先端部10内には放射線検出部が設けられ、それは左右方向に並んだ複数のセンサを有している。 (もっと読む)


【課題】AECセンサを変更した場合に既存の装置を改造することなく変更前と同じAECを行う。
【解決手段】電子カセッテ13のAEC部67の補正回路76は、電子カセッテ13の検出画素65の検出信号を旧AECセンサ25の検出信号に相当する検出信号とする。補正回路76は、旧AECセンサ25に代えて検出画素65をAECセンサとして用いた場合のX線源10と電子カセッテ13のFPD35の撮像面36との間に配置される中間部材の構成の違いによる検出信号への影響を排除する。検出信号は積分回路77で積算値とされて比較回路78で線源制御装置11側の照射停止閾値と比較される。積算値が閾値に達したとき照射信号I/F81から線源制御装置11の照射信号I/F27に照射停止信号が送信される。 (もっと読む)


【課題】陽極照射型検出器モジュールを下流の回路に接続する際に用いるのに適した相互接続構造を提供する。
【解決手段】特定の実施形態では、相互接続構造は、低い原子番号の材料又はポリマー材料をベースとし又はそれらを含み、及び/又は該相互接続構造による放射線の減弱を最小にし又は小さくするようにな密度又は厚さで形成される。 (もっと読む)


【課題】前置増幅部前段の性能特性の変動による影響が抑制されたX線分析装置を提供する。
【解決手段】標準サンプルから放出された蛍光X線を検出する半導体X線検出素子、及び半導体X線検出素子の出力信号を受信する初段FET回路を含む前置増幅部前段と、前置増幅部前段を冷却する冷却装置と、前置増幅部前段から出力される検出信号を分析する信号分析装置と、検出信号を分析して得られる前置増幅部前段の性能特性を示す性能値、及び前置増幅部前段の温度をリアルタイムで監視し、冷却装置を制御して性能値が規定値を満たすように前置増幅部前段の温度を調整させる制御装置とを備え、前置増幅部前段が調整された温度において、測定対象物から放出された蛍光X線を分析する。 (もっと読む)


【課題】放射線二次元検出器の大型化及びデータ収集の高速化が可能な放射線二次元検出装置を提供する。
【解決手段】放射線二次元検出装置1は放射線二次元検出器2、データ収集装置7を備える。放射線二次元検出器2は複数の画素電極5を検出素子3の一面に取り付ける。データ収集装置7は複数の計測装置8、複数のA/D変換器12、制御装置13及び複数の記憶領域(例えば14A)が形成されたメモリ14を有する。放射線二次元検出器2は放射線の入射により画像電極5から放射線検出信号を出力し、計測装置8のチャージアンプがこの放射線検出信号の電荷を積分する。チャージアンプの出力である電圧がA/D変換器12でデジタルデータに変換され、このデジタルデータが1つの記憶領域に格納される。各画像電極5からの放射線検出信号により得られたデジタルデータが、画像電極5に対応している記憶領域に別々に格納される。 (もっと読む)


【課題】画質の低下を抑制することができる、放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影プログラム、及び放射線画像撮影方法を提供する。
【解決手段】画素20の列毎に、バイアス線25が備えられており、複数のバイアス線25のうち、10mm間隔で設けられたバイアス線25Aが電流検出器120を介してバイアス電源110に接続されている。また、残りのバイアス線25Bは、電流検出器120を介さずに直接バイアス電源110に接続されている。画素20では、照射された放射線量に応じて放射線検知素子103で電荷が発生すると、発生した電荷に応じて、バイアス線25に電流が流れる。電流検出器120は、バイアス線25Aに流れる電流を検出し、制御部106は、検出した電流(電流値)が閾値以上になった場合を、放射線の照射開始のタイミングとして検出し、放射線画像の撮影を開始させる。 (もっと読む)


【課題】X線位相コントラストイメージング用の高アスペクト比グリッドの製造方法を提供する。
【解決手段】半導体基板306に高アスペクト比の凹部302を形成すると共に、凹部底表面にメッキ金属の初期成長サイトの生成を凹部側表面よりも促進するための表面プロファイル特徴部を形成する。その後、メッキにより金属を凹部に充填する。金属が充填された高アスペクト比の凹部を、X線位相コントラストイメージング装置においてX線格子として用いることができる。 (もっと読む)


【課題】撮影画像と、その撮影情報とを、容易に、効率的に、且つ確実に一致させることが可能な撮影システムを提供する。
【解決手段】所定の撮像手段(X線フラットパネルセンサ)を用いた可搬型撮影装置107において、入出力手段104は、所定の情報管理側(RIS)から可搬型記憶媒体102を介して撮影情報を取得する。記憶手段105は、撮影直後に当該撮影情報が付加された撮影画像を記憶する。 (もっと読む)


【課題】 人体をはじめとする被検体と回折格子の間での熱の伝達を従来よりも低減させることができるX線撮像装置を提供すること。
【解決手段】 被検体105を撮像するX線撮像装置は、X線源からのX線を回折して干渉パターンを形成する回折格子102と、回折格子の温度調節をする温度調節部と、回折格子からのX線を検出する検出器と、を備える。温度調節部は、被検体設置前の回折格子の温度Taが下記式を満たすように回折格子の温度調節をする。
a×b×|(Ta−Tb)|<(d/2)
a:回折格子の周期方向における、回折格子の固定位置から回折格子のX線照射範囲の端部までの長さ
b:回折格子の線膨張係数
d:回折格子のピッチ
Tb:被検体撮像時の回折格子の温度 (もっと読む)


【課題】一般人が簡便かつ迅速に正確な放射線量等の情報を共有することが可能な線量計付き携帯通信端末装置及び環境放射線モニタリングシステムを提供する。
【解決手段】放射線検出部3と、前記放射線検出部3に接続され放射線量を演算する信号処理部4と、位置検出手段と、前記放射線量及び各種情報を保存するメモリ12と、前記放射線量及び各種情報を表示する表示部5と、外部との間でデータの送受信をおこなう通信機能と、を有する線量計付き携帯通信端末装置1において、前記放射線検出部3、信号処理部4及び表示部5の電源として前記線量計付き携帯通信端末装置1に搭載された電源を共用する。 (もっと読む)


【課題】放射線撮影装置において、被写体に応じた適切な奥行感を有する立体視画像を撮影する。
【解決手段】第1の撮影方向から被写体へ放射線を照射して被写体を透過した放射線を放射線検出器131によって検出する。放射線検出器131に到達した到達線量Tを測定し、到達線量Tに基づいて、輻輳角Δθを設定する。第2の撮影方向から被写体へ放射線を照射して被写体を透過した放射線を放射線検出器131によって検出する。放射線検出器131からの検出信号に基づいて第1および第2の撮影方向毎の放射線画像データを生成する。 (もっと読む)


【課題】放射線撮影装置において、被写体の撮影部位に応じた適切な奥行感を有する立体視画像を撮影する。
【解決手段】被写体の撮影部位を受け付けて輻輳角Δθを設定する。第1の撮影方向から被写体へ放射線を照射して被写体を透過した放射線を放射線検出器131によって検出する。放射線検出器131に到達した到達線量Tを測定し、到達線量Tに基づいて、輻輳角Δθを調整する。第2の撮影方向から被写体へ放射線を照射して被写体を透過した放射線を放射線検出器131によって検出する。放射線検出器131からの検出信号に基づいて第1および第2の撮影方向毎の放射線画像データDL,DRを生成する。 (もっと読む)


【課題】装置自体で放射線の照射開始を検出する場合に、コンソール上にプレビュー画像を的確に表示させることが可能であり、1回の放射線画像撮影を短時間で行うことが可能な放射線画像撮影装置を提供する。
【解決手段】放射線画像撮影装置1の制御手段22は、放射線画像撮影前に読み出したリークデータdleakに基づいて放射線の照射が開始されたことを検出すると電荷蓄積状態を経た後、画像データDの読み出し処理を行わせ、読み出した画像データDに基づくプレビュー画像用のデータDtをコンソール58に送信する送信処理を開始すると同時に、リークデータdleakの読み出し処理等を1回行わせ、放射線が照射されない状態で電荷蓄積状態を継続させた後、電荷蓄積状態の継続が終了した時点で、プレビュー画像用のデータDtの送信処理が完了していなければ当該送信処理を停止させた後、オフセットデータOの読み出し処理を行わせる。 (もっと読む)


【課題】光子計数検出装置を小型化して高解像度画像を提供するためのマルチエネルギー放射線に含まれた光子のエネルギー帯域を区分する光子エネルギー帯域区分装置及びその方法を提供する。
【解決手段】センサに入射されたマルチエネルギー放射線に含まれた光子を、各エネルギー帯域に対して区分して計数する読み取り回路を含む光子のエネルギー帯域を区分する装置において、センサによる光子から光電変換を受けて変換された電気信号が入力されて累積する積分器と、積分器によって累積された電気信号と、複数の臨界値の内のいずれか一つの臨界値とを比較する比較器と、比較結果に従って、いずれか一つの臨界値から他の臨界値へ順次に変更することを指示し、比較器から入力された変更された臨界値それぞれについて順次に比較した結果に基づいて光子のエネルギー帯域を区分するデジタル信号を出力する信号処理部とを有する。 (もっと読む)


【課題】装置自体で放射線の照射開始を検出する場合に、放射線画像撮影装置からコンソールに対して、プレビュー画像用のデータを途中で送信が停止されることなく送信することが可能な放射線画像撮影装置を提供する。
【解決手段】放射線画像撮影装置1の制御手段22は、放射線画像撮影前にスイッチ手段8を介してリークした電荷qに相当するリークデータdleakの読み出し処理を行い、読み出したリークデータdleakに基づいて放射線の照射開始を検出し、放射線の照射開始を検出すると、電荷蓄積状態を経た後、各放射線検出素子7からの画像データDの読み出し処理を行わせ、画像データDの読み出し処理後に、オフセットデータOの読み出し処理を行わせ、オフセットデータOの読み出し処理の後で、読み出した画像データDに基づくプレビュー画像用のデータDtをコンソール58に送信する。 (もっと読む)


【課題】被測定試料中に含まれる元素および放射性物質をそれぞれ特定することができる、蛍光X線分析装置を提供する。
【解決手段】
本発明の蛍光X線分析装置は、X線領域(1keV〜50keV)を計測する蛍光X線検出器と、γ線領域(50keV〜1.5MeV)を計測するγ線検出器と、分析処理手段とを備える。励起X線管が、被測定試料に対してX線を照射する。蛍光X線検出器は被測定試料に含まれる元素固有の蛍光X線を検出し、γ線検出器は核種固有のγ線を検出する。分析処理手段が、蛍光X線のスペクトルとγ線のスペクトルとを求める。
必要に応じて、分析処理手段は、蛍光X線のスペクトルに基づいて試料に含まれる元素を特定してその含有量を求め、γ線のスペクトルに基づいて試料に含まれる放射性物質の核種を特定してその含有量を求める。 (もっと読む)


【課題】原子力発電所のような高バックグラウンド環境下で測定可能で多核種分析に好適な放射線検出装置および検出方法を提供する。
【解決手段】測定対象物1の周囲に設けられた少なくとも1組のガンマ線計測用の検出器2a〜2cを備え、当該検出器2a〜2cが検出したパルス状信号の時刻と波高値から、2つの検出器の検出時間差が所定の時間幅以内である波高値の情報のみを抽出し、波高値について、波高値が所定の大きさのパルス状信号を真の計数領域としてその個数を計測し、それ以外のパルス状信号をバックグラウンド領域としてその個数を計測し、真の計数領域の計数率とバックグラウンド領域の計数率の比を求め、所定の時間幅を変更して真の計数領域の計数率とバックグラウンド領域の計数率の比が最大となる時間幅を決定することで、信号数とバックグランド数との比が向上し、高バックグラウンド環境下での測定が可能となる。 (もっと読む)


81 - 100 / 1,645