説明

Fターム[3D203DB05]の内容

車両用車体構造 (101,630) | 装備品との関連(2) (2,379) | 駆動用バッテリー (336)

Fターム[3D203DB05]に分類される特許

101 - 120 / 336


【課題】車体前部を前後方向に短く構成しながら、衝突時のエネルギ吸収ストロークを確保することができる車体前部構造を得る。
【解決手段】車体前部構造10は、フロントピラー18とトーボード30を含むアッパボディ12と、フロントピラー18下端が結合されたロッカ46とフロントサイドメンバ60とを含むロアフレーム14と、トーボード30に対し前後方向に相対変位可能にフロントサイドメンバ60に設けられた下側クラッシュ部66と、フロントサイドメンバ60に対し前後方向に相対変位可能にアッパボディ12の前端に設けられた上側クラッシュ部70とを備えている。 (もっと読む)


【課題】ダクトの導入口付近に異物が付着、堆積すること又はダクトの導入口付近への異物の付着、堆積状態が維持されることを抑制することができる冷却風導入構造を得る。
【解決手段】冷却風導入構造10は、自動車Vが走行するための駆動力を発生するパワーユニット12と、車体に対し相対変位可能に支持されパワーユニット12が配置されたパワーユニット室14を車両下方から覆うアンダカバー26と、パワーユニット12に対する車両後方に配置された冷却ユニット22と、アンダカバー26におけるパワーユニット12と冷却ユニット22との間で路面Rを向けて開口された導入口26Aから冷却ユニット22に空気を導くダクト28と、アンダカバー26に設けられて導入口26Aからダクト28内への異物の侵入を抑制する各フラップ36と、パワーユニット12の振動を前記アンダカバー26に伝達するトルクロッド42及び脚部45と、を備えている。 (もっと読む)


【課題】車室内の容積の変化を抑制して、音振性能を向上させることが出来る自動車の車体構造を提供する。
【解決手段】フロントウインドウシールドガラス15の前縁部15a近傍の裏面側は、カウルトップカバーブラケット部材12の上面部12aに添着されたシール部材11を介して、縦壁面部8よりも車両後方位置で、下方から支持されている。
前記ガラス15の面内外方向hwへのガラス膜振動が、車室内外側に向けて変位する際には、エアボックス4の縦壁面部8が、乗員室3外内側方向dwに向けて変位され、何れのガラス膜振動の方向であっても、逆位相に縦壁面部8が振動するように構成されている。 (もっと読む)


【課題】走行中、アンダーカバーからの排水能力を確保しながら、空気抵抗の上昇抑制により車両全体としての空力性能の向上を達成することができる車両の床下構造を提供すること。
【解決手段】車両の床下をリアアンダーカバー7で覆い、前記リアアンダーカバー7に排水手段Dを設けた。この車両の床下構造において、排水手段Dは、前側壁端部26から車両後方に向かって上向きに傾斜し、その壁の少なくとも一部を貫通して水抜き口73を開口した前側傾斜壁21と、前側傾斜壁21に接続する折曲壁部27から後側壁端部28に向かって下向きに傾斜し、その壁面に走行風整流面25を有する後側傾斜壁22と、を備える。リアアンダーカバー7からの車両前後方向の窪み形状を、前側傾斜壁21による第1内角θ1が後側傾斜壁22による第2内角θ2より大きな角度であり2つの壁面長さL1,L2を異ならせた。 (もっと読む)


【課題】ハイブリッド車等の電動駆動装置の一部のユニットハウジングを車室容量を過度に狭めることなく装着できると共に車体後部の剛性を高くでき、耐久性を確保できる車体補強構造を提供する。
【解決手段】車輪WをモータMで駆動して走行する車両Cのフロア2の下面に結合され、かつ、車幅方向Xに長いクロスメンバ3の左右端にそれぞれ接合された前後に長い左右のサイドメンバ4と、モータMの駆動ユニットUを収容すると共にフロア2の上方であって前記左右のサイドメンバの上方に左右端が位置して配置されたユニットハウジング8と、該ユニットハウジング8の左右端に設けた左右の締結部9と、フロア2の左右端に接合され車室Rの側壁を形成する車室対向壁板材6の縦壁部vwと、前記締結部と前記縦壁部とを互いに締結する左右の締結手段11とを備えた。 (もっと読む)


【課題】後突による衝撃荷重入力時、サイドメンバに衝撃荷重が集中することを抑制し、サイドメンバの変形を防止できる電動車両の車体後部構造を提供すること。
【解決手段】車両前後方向に延びるサイドメンバ11と、このサイドメンバ11に支持するバッテリーケース21と、このサイドメンバ11に支持するリヤサスペンションアーム31と、このサイドメンバ11に設けられた共通ブラケット40と、を備える。そして、共通ブラケット40は、バッテリーケース21を支持するバッテリーマウント部42と、リヤサスペンションアーム31を支持するサスペンションマウント部43と、を有する。 (もっと読む)


【課題】電気自動車のバッテリ及びモータの搭載構造において、ヨー慣性モーメントを低減させるとともに、モータのトルク反力を分散させる。
【解決手段】モータ5を、前輪7,9及び後輪65,67の車輪軸FA,RAの間に配置され且つ回転軸5aが車両前後方向に向いた状態で支持するモータ支持部材69と、このモータ支持部材69の車両後方に配置され、該モータ支持部材69が連結され、バッテリ3を支持するバッテリ支持部材71とを設ける。 (もっと読む)


【課題】モータを備えた電気自動車の前部車体構造において、モータのコンパクトなレイアウトを実現する技術を提供することにある。
【解決手段】前輪15bを駆動するためのモータ部3と、当該モータ部3から出力された動力を前輪15bに伝達するデファレンシャルギヤ装置5とを有する電気自動車1の前部車体構造である。モータ部3は、車室R前壁を構成するダッシュパネル35の前方で、その出力軸が上下方向に延びるように配設されている。 (もっと読む)


【課題】モータを備えた電気自動車において、車両の重心を低くするとともに、低ヨー慣性モーメントのレイアウトを達成する技術を提供する。
【解決手段】左右の前輪をそれぞれ駆動するための左右のモータ部3a,3bと、各々左右の前輪に連結され、各モータ部3a,3bから出力された動力を左右の前輪にそれぞれ伝達する左右の減速ギヤ部5a,5bと、左右の前輪のサスペンション装置S,Sをそれぞれ支持するサスペンションクロスメンバ9と、左右のモータ部3a,3bに電力を供給するためのバッテリ部11と、を備えた電気自動車1の車体構造である。左右のモータ部3a,3bは、左右の減速ギヤ部5a,5bの後方で、ロータシャフトが車両前後方向に延びるようにそれぞれ配設され、且つ、サスペンションクロスメンバ9上にそれぞれ搭載されている。 (もっと読む)



【課題】電気自動車の前部車体構造において、サスペンションクロスメンバ上方の空間を確保しつつ、良好な衝撃吸収が可能な車体構造を提供する。
【解決手段】左右の前輪15a,15bを駆動するためのモータ部3a,3bと、モータ部3a,3bから出力された動力を当該前輪15a,15bに伝達する減速ギヤ部5a,5bと、左右の前輪15a,15bのサスペンション装置S,Sをそれぞれ支持するサスペンションクロスメンバ9と、車体の左右両側で前後方向に延びる左右一対のフロントサイドフレーム21a,21bと、を備えた電気自動車1の前部車体構造である。モータ部3a,3bは、前輪15a,15bの駆動軸75よりも後方でサスペンションクロスメンバ9に取り付けられている。サスペンションクロスメンバ9の上方に左右一対のフロントサイドフレーム21a,21bを連結する連結部材33が設けられている。 (もっと読む)


【課題】車体内に導入された冷却風が外部に排出される際の空気抵抗を効果的に低減できるとともに、車体内の被冷却機器を効率的に冷却できる車両用アンダーカバーを提供する。
【解決手段】冷却風取入口14から取り入れられてエンジン20等の被冷却機器を冷却する冷却風Cを排出する排出口32が形成され、車体の下面部に配設される車両用アンダーカバー10において、排出口32の車体前方に配設され、車体前方を頂点として車体後方に向かい徐々に拡開する導風面40を有し、排出口32に配設されて車体前部12の下面部から車体下方向に突出する排気管22に対して、車両の走行により発生する走行風Wを導風面40を介して排出口32から排出される冷却風Cに導き、冷却風Cを車体後方に導くガイド部36を備える。 (もっと読む)


【課題】車体下部構造のパッケージ効率を向上させてコンパクト化することにより、車室内空間の拡大が可能な車体下部構造を提供すること。
【解決手段】座席の下方に設けられたフロアパネル11の車幅方向中央部が上方に膨出して形成された車体前後方向に延びるフロアトンネル12と、車体の後部に設けられたバッテリと、車体前後方向に延びて前記バッテリと車室とを連通し、前記車室内の空気を前記バッテリに導入するエアダクト13と、を備え、前記フロアトンネル12の上面には、車体前後方向に延びる凹部121が設けられ、前記エアダクト13は、前記凹部121に配置されることを特徴とする車体下部構造10である。 (もっと読む)


【課題】この発明は、空調ユニット及び電源装置を車両後部に配設した際に、車室後部前側の空間を確保しつつ、該車室後部の見栄えを確保することができる車両の電源装置配設構造を提供することを目的とする。
【解決手段】車室2の後部の底面を形成するフロアパン7の後部から車室2内に突出する左右一対のリアホイールハウス16と、フロアパン7の上方に配設され、電力の蓄電が可能なキャパシタ30とを備えた構造であって、リアホイールハウス16の後方には、車室2内を空調する後席空調ユニット21が配設されると共に、該後席空調ユニット21と側面視でオーバーラップする位置にキャパシタ30が配設され、後席空調ユニット21とキャパシタ30とは、リアホイールハウス16の車幅方向内側面(ハウスインナ下部26a)より車幅方向外側に位置するように配設されている。 (もっと読む)


【課題】車両用バッテリユニットの取付構造に関し、簡素な構成で、車両の操縦安定性を確保しつつバッテリケースの保護性を向上させる。
【解決手段】
ブラケット2を介してバッテリケース1を車体フレーム3に固定する車両用バッテリユニットの取付構造において、バッテリケース1の周面10に、水平方向に延びて設けられるブラケット2を固定する。また、ブラケット2に、その上面をなす第一上面部2a及び第二上面部2bと、その下面をなす下面部2cと、固定面部2dとを設ける。第二上面部2bは第一上面部2aよりもバッテリケース1側の上面をなす部位とする。
第二上面部2bと下面部2cとを固定面部2dで接続し、バッテリケース1に対して面接触させる。また、第一上面部2aと第二上面部2bとの間に脆弱部4を設け、荷重作用時に第一上面部2aを第二上面部2bに対して水平方向へ移動変形させる。 (もっと読む)


【課題】車両の通常走行時におけるサスペンションクロスメンバの支持剛性を確保しつつ、車両衝突時においては、サスペンションクロスメンバを車体から離脱させるのに必要な荷重を低減して、パワーユニットのスムーズな後退を実現させ、乗員に与える衝突荷重の影響を改善することができる自動車の下部構造を提供する。
【解決手段】サスペンションクロスメンバ11に設けられた板状の後部取付面部6bの一方には、基準ピン63と、該ピン63近傍に位置するボルト孔62aとが設けられ、他方の車体1側のトンネルフレーム17には、基準ピン63が挿通される基準孔17bと、該基準孔17bの近傍に位置するボルト孔17aとが設けられ、トンネルフレーム17と後部取付面部6bとが、ボルト孔17a、62aに挿通されたボルト23Bによって締結されている。 (もっと読む)


【課題】車両の通常走行時におけるサスペンションクロスメンバの車幅方向の支持剛性を確保しつつ、車両の前面衝突時におけるパワーユニットのスムーズな後退を実現させ、乗員に与える衝突荷重の影響を改善することができる自動車の下部構造を提供する。
【解決手段】サスペンションクロスメンバは、サスペンションクロスメンバ本体から上方に延設された中間部取付部材61と、該中間部取付部材61の上部に設けられた支持部61Aに支持されるパイプ状取付部材21とを備え、該パイプ状取付部材21は、その側面部21bの車幅方向側部、車両前後方向の前部、及び後部が、それぞれ支持部61Aに支持されるとともに、下部21cが、側面部21bの車幅方向側部、前部、及び後部の支持剛性よりも車両前後方向において低い支持剛性で支持部61Aに支持される。 (もっと読む)


【課題】現実の車両設計に即して変更箇所を最小限に抑えつつ車両の剛性を高める。
【解決手段】車両下部構造100は、車幅方向両側それぞれに設けられるサイドメンバ101と、車幅方向に延びる長尺のクロスメンバ102と、燃料タンク103とで構成される。サイドメンバ101には、ブッシュ106を保持するトレーリングアーム取付用ブラケット104が含まれる。クロスメンバ102は、各トレーリングアーム取付用ブラケット104を繋いでいる。燃料タンク103は、各トレーリングアーム取付用ブラケット104とクロスメンバ102とで囲われる車両後方側の空間領域に配置される。燃料タンク103の前面には、車両前方に向き車幅方向に平坦に延びる平坦領域が含まれる。クロスメンバ102の一部をなすストレート部121は、平坦領域117に対して車両前方に位置し、車幅方向に延び、車両前方側から見ると横長の矩形形状に見える形状をなしている。 (もっと読む)


【課題】車体を効果的に軽量化してコストダウンを図りつつ、乗員用シートの支持剛性を効果的に向上できるようにする。
【解決手段】車室の底面を形成するフロアパネル2の上方に少なくとも運転席シート3と助手席シート4とが車幅方向に並設された車両の上部車体構造であって、助手席シート4は、上記フロアパネル2に固定されるシートフレーム部材24と、該シートフレーム部材24に支持されたシートバック19等からなるシート本体部とを具備し、車室の内壁6a,6bを構成する車体部材に上記シートフレーム部材24が連結された。 (もっと読む)


【課題】モータとバッテリとが搭載される車両において、最適な重量バランスを実現しながら、前方から衝撃荷重を受けたときの車室への影響を抑制する。
【解決手段】車室内空間5と該車室内空間よりも下側の空間とを仕切るフロアパネルと、該フロアパネルの前部から立ち上がり車室内空間5と該車室内空間よりも前側の空間9とを仕切るダッシュパネル18と、該ダッシュパネル18の前方においてそれぞれ前後方向に延設された左右一対のフロントサイドフレーム27と、該左右のフロントサイドフレーム27間の空間に配設され且つ前輪2に駆動連結されたモータ11と、該モータ11に電力を供給するバッテリ12とを備えた車両において、バッテリ12を、少なくとも一部がモータ11に正面視で重複するように該モータ11の後方に配設し、モータ11を、前方から所定の大きさF以上の衝撃荷重を受けたときにバッテリ12の下方へ後退するように設ける。 (もっと読む)


101 - 120 / 336