説明

Fターム[4C082AC05]の内容

放射線治療装置 (15,937) | 放射線の種類 (1,317) | 特定放射線 (1,209) | 粒子線 (786) | 陽子、α線、荷電粒子線 (367)

Fターム[4C082AC05]に分類される特許

241 - 260 / 367


【課題】放射線医によるフィードバックの掛かった治療と診断をリアルタイムに同一フロアで実現することを可能にする粒子線治療装置を提供する。
【解決手段】人体患部に照射する陽子線や炭素イオン線等の粒子線をレーザを薄膜ターゲットテープに照射して発生・加速させる粒子線発生・加速器部3と、前記粒子線を人体患部に照射して人体患部の画像診断ならびに人体患部への粒子線照射で治療措置を行い、前記人体患部の治療措置状況を粒子線照射に伴い発生する人体患部の自己放射化現象を利用したPET装置を備えるPET診断支援部5とをコンパクトに構成して同一フロアに一体的に配置することにより、小型の粒子線治療装置を実現する。 (もっと読む)


ガントリー、放射線ビームを発生するように動作可能な放射線源、および測定デバイスを備える放射線治療システムおよびこのシステムの作動動作を行う方法。測定デバイスは、ガントリーに物理的接続され、多次元スキャニングアーム、および検出器を備える。この方法は、放射線源から放射線を発生するステップと、放射線を減衰ブロックに通すステップと、測定デバイスで放射線を受け取るステップとを含む。測定デバイスは、水と接触しないように位置決めされる。データは、受け取った放射線から生成され、システムの作動動作が、生成されたデータを使用して行われ、システム特性と事前定義標準とのマッチングが行われる。
(もっと読む)


被検体の関心領域の立体画像データを生成する段階と、基準計画に従って被検体の関心領域に向けて治療放射線ビームを放出する段階とを含む、放射線を用いて被検体を治療する方法。本方法は、立体画像データ及び治療放射線ビームの少なくとも1つのパラメータを評価して、基準計画を実時間でオンライン又はオフライン評価及びオンライン又はオフライン修正を行う段階を更に含む。 (もっと読む)


【課題】ビーム照射中にSOBP幅が所望の幅であるかどうかをリアルタイムに確認することにより、治療の精度を向上する。
【解決手段】シンクロトロン4を有する荷電粒子ビーム発生装置1と、この荷電粒子ビーム発生装置1から出射されたイオンビームのブラッグピーク幅を形成するRMW装置28、及びこのRMW装置28のイオンビーム進行方向に設けられ、イオンビームの線量を検出する線量モニタ31を備えた照射装置16と、線量モニタ31の検出値に基づいて、RMW装置28により形成されたイオンビームのブラッグピーク幅を演算するSOBP幅演算装置73とを備える。 (もっと読む)


【課題】粒子線ビームが照射される照射範囲に重要臓器が含まれ、スキャニングされた位置が治療計画の位置に対してずれたり、レンジシフタが治療計画のレンジシフタと異なったりしたときでも、重要臓器に照射される誤差線量が最小限に抑えられる粒子線がん治療装置および粒子線スキャニング照射方法を提供する。
【解決手段】粒子線がん治療装置は、3次元スポットスキャニング法を用いて出射される粒子線3を、患部2に照射し、粒子線スキャニング手段により最大限照射可能な領域に、予め定めた重要臓器が含まれるか否かを判断する重要臓器含有判断手段と、粒子線の重要臓器到達前の照射経路上に設置したとしたら、粒子線が重要臓器に到達しないように、その材質と厚さを設定した重要臓器保護手段と、重要臓器保護手段を着脱可能に配置する配置手段と、重要臓器保護手段の着脱を制御する配置手段の制御手段と、を備える。 (もっと読む)


改善された粒子ビーム処置システムは任意で交換可能な粒子ビームノズルを有する。医療用途に用いられるこれらの粒子ビームノズルは、収納場所から粒子ビーム路、又は粒子ビーム路間で自動的に移動して良い。移動はコンベア、台、レールシステム等を用いることによって実現されて良い。その改善された粒子ビーム処置システムはまた任意で、3つ以上の代替粒子ビーム路を有する。これらの粒子ビーム路は、様々な異なる角度から、及び各異なる面内に属するようにして患者へ案内されて良い。
(もっと読む)


【課題】医療機関による放射線物質薬品の使用量を抑えることを課題とする。
【解決手段】コンピュータによって、放射線物質薬品を使用する検査の予約者を識別する情報と該予約者の体重とを含む予約者レコード302を、体重の重い順に並び替えるステップと、前記予約者を、並び替えられた体重の重い順に、前記放射線物質薬品が生成されてからの経過時間を判断する基準となる基準時間からの経過時間が短い予約枠レコード304に割り当てるステップと、が実行されることとした。 (もっと読む)


【課題】 単一の共用操作装置で複数の異種の計測及び/又は治療モダリティを操作して、前記複数モダリティによる画像診断及び/又は治療を行うのに好適な複合医療診断装置、又は医用画像診断装置を備えた治療装置を提供する。
【解決手段】 複数の異種の医用画像診断装置を共用して操作する共用操作装置とを情報通信ネットワークに接続する。共用操作装置は、異種の医用画像診断装置のそれぞれに特有な画像再構成データを生成する特有操作処理手段と、画像再構成データから画像形成、解析処理、画像表示制御処理、画像アーカイブ処理及び画像ネットワーク通信処理(ソフトウェア)の後処理である共通操作処理手段とを備える。使用する医用画像診断装置を選択し、この選択した医用画像診断装置に対応する特有操作手段を選択して、これと前記共通操作処理手段とを用いて前記選択した医用画像診断装置を操作する。 (もっと読む)


【課題】照射線量制御システムのコストを低減し、かつ照射線量誤差を小さくすることができる荷電粒子ビーム加速器のビーム出射制御方法及びその加速器を用いた粒子ビーム照射システムを提供する。
【解決手段】荷電粒子ビーム加速器200を備え、この荷電粒子ビーム加速器から出射された荷電粒子ビームを被照射体16の設置位置まで輸送し、この輸送された荷電粒子ビームを前記被照射体の特定の照射部位に照射するようにした荷電粒子ビーム照射システムにおいて、少なくとも1の照射部位に対して予め設定された計画線量の照射に対応した1回の照射内で荷電粒子ビーム加速器から出射される荷電粒子ビームの出射ビーム強度を2段階以上に変化させるようにしたもの。 (もっと読む)


【課題】レンジシフタを小さくすることで、装置全体を小型化し、さらに、装置の駆動が速くなる粒子線照射装置を得る。
【解決手段】この発明に係る粒子線照射装置は、入射された粒子線1を一定方向に平行移動させ、粒子線1の入射軸を中心に回転可能なスキャン電磁石2と、スキャン電磁石2の反入射側には、ブラッグピークの深さを短くする第1のレンジシフタプレート5が積層され、スキャン電磁石2と同期して入射軸を中心に回転可能なレンジシフタ3とを備えた粒子線照射装置において、レンジシフタ3は、入射軸と平行で各第1のレンジシフタプレート5が入射軸に対して直交する方向に回動自在に支持されたレンジシフタ回転軸6と、レンジシフタ回転軸6を中心に各第1のレンジシフタプレート5を回動させて、粒子線1の通路に対して出し入れさせるエアシリンダ7とを備えている。 (もっと読む)


【課題】レーザ座標表示系における医療技術機器患者テーブルの位置決め精度のチェックを簡素化する。
【解決手段】アイソセンタに位置決め可能な患者テーブルと光学座標表示系とを備え、この座標表示系が、試験ビームを放出するために設けられた少なくとも1つのビーム源、特にレーザ放射器を有する医療技術機器、特に放射線治療機器において、患者テーブルの位置決め精度をチェックするために、1列の光電池で構成された少なくとも1つの光電池列を有しビームを検出するための試験体が設けられ、試験体の位置が患者テーブルの位置と相関している。 (もっと読む)


【課題】ビーム照射中にSOBP幅が所望の幅であるかどうかをリアルタイムに確認することにより、治療の安全性を向上する。
【解決手段】シンクロトロン4を有する荷電粒子ビーム発生装置1と、この荷電粒子ビーム発生装置1から出射されたイオンビームのブラッグピーク幅を形成するRMW装置28、及びこのRMW装置28のイオンビーム進行方向上流側及び下流側にそれぞれ設けられ、イオンビームの線量を検出する線量モニタ27及び線量モニタ31を備えた照射野形成装置16と、線量モニタ27及び線量モニタ31の検出値に基づいて、RMW装置28により形成されたイオンビームのブラッグピーク幅を演算するSOBP幅演算装置67とを備える。 (もっと読む)


【課題】放射線照射対象部位の位置決めを3次画像を用いて的確に行う。
【解決手段】患者などの放射線照射対象部位についての3次元参照画像を入力する参照CT画像入力部102と、前記3次元参照画像から位置姿勢情報に基づいて擬似透視画像を生成する擬似透視画像生成部106と、位置決めされる放射線照射対象部位についての照合透視画像を入力する照合X線透視画像入力部104とを備え、前記擬似透視画像と前記照合透視画像との相関値が所定の値を超えた時の位置姿勢と前記3次元参照画像撮像時の位置姿勢の変化量を放射線照射対象部位の並進量と回転量として、前記放射線照射対象部位を位置決めする最適化計算部110を含む位置決め手段を設けた。 (もっと読む)


【課題】電磁石電源の個数を低減できかついずれかの電源が故障した場合でも治療を継続することができる粒子線治療システム及びそのビームコース切替方法を提供する。
【解決手段】第2ビーム輸送系5A〜5Eの電磁石群に対応した電源群を有する2つの電磁石電源装置42A,42Bと、電磁石電源装置ごとに設けられ、それぞれ、前記電磁石群に対応した切替器群を有し、対応する電磁石電源装置の電源群を選択された治療室に係わる電磁石群に接続するよう切替える2つの負荷切替装置43A,43Bとを設け、電磁石電源装置のうち1つのものの電源群を最先の治療室に係わる電磁石群に接続し、他の電磁石電源装置の電源群を、その次の治療室に係わる電磁石群に接続するよう制御する。電源故障時は、故障した電源を含まない電磁石電源装置をバックアップ用として用いる。 (もっと読む)


【課題】荷電粒子ビームの走査式照射ノズル装置のコンパクト化、及びビーム輸送チェンバのメンテナンス性の向上を可能とする。
【解決手段】荷電粒子ビームの走査式照射ノズル装置1は、ビーム走査装置2、ビーム輸送チェンバ3、検出器5a、線量モニタ6、ビーム位置モニタ7、ハウジング8を有し、ビーム輸送チェンバ3のチェンバ本体30(第1及び第2チェンバセクション31,32)は樹脂(非磁性材)製、好ましくは、GFRP、或いはCFRP、或いはそれらの組み合わせ等の繊維補強樹脂の成型品である。また、チェンバ本体30は、荷電粒子ビーム10の進行方向上流側から下流側へと広がるラッパ形状を有している。 (もっと読む)


【課題】治療期間を短縮することができる粒子線治療装置を提供する。
【解決手段】シンクロトロンから出射されたイオンビームは、照射装置より患者に照射される。照射装置は、第一散乱体,第二散乱体、ブロックコリメータ及び患者コリメータを有する。第二散乱体23はPbで構成されたhighZ部23A及び樹脂で構成されたlowZ部23Bを有する。第一散乱体側から見た第二散乱体23の形状が正方形であるため、第二散乱体23を通過したイオンビームは照射装置の軸方向と直交する断面の輪郭形状が正方形になる。正方形の開口部を有するブロックコリメータで除外されるイオンビームの割合が著しく低減され、イオンビームの利用効率が向上する。このため、患者一人当たりの治療時間を短縮することができる。 (もっと読む)


【課題】出射されるイオンビームの強度制御を簡素な装置構成で実現できる荷電粒子ビーム出射方法及び粒子線照射システムを提供することを課題とする。
【解決手段】荷電粒子ビームを加速して出射するシンクロトロン3と、シンクロトロン3から導かれた荷電粒子ビームを出射する照射装置32と、シンクロトロンの運転サイクルにおける出射制御区間で、シンクロトロンから出射する荷電粒子ビームのビーム強度を制御する第1のビーム強度変調手段14と、運転サイクルにおける出射制御区間に含まれる複数の照射区間のそれぞれにおいてビーム強度を制御する第2のビーム強度変調手段15とを備えたことによって、上記課題を解決する。 (もっと読む)


【課題】偏向走査用の磁界を印加するための荷電粒子線偏向装置を、荷電粒子線の進行方向およびその直交方向に小型化する。
【解決手段】荷電粒子線の進行方向であるZ軸方向に直交するX軸方向に荷電粒子線を偏向走査させるX軸偏向走査コイル15と、Z軸方向およびX軸方向に直交するY軸方向に荷電粒子線を偏向走査させるY軸偏向走査コイル16とを備える。X軸偏向走査コイルおよびY軸偏向走査コイルは、ヨークを用いることなく高温超電導コイルを用いて形成されるとともに、Z軸方向に直交する同一平面内でY軸偏向走査コイルの外周側にX軸偏向走査コイルが位置するように配置され、Y軸偏向走査コイルおよびX軸偏向走査コイルを冷却するための冷却部22、23、24、25が設けられ、X軸偏向走査コイルおよびY軸偏向走査コイルに対して、偏向走査のために1Hz以上の周波数の交番電流が印加される。 (もっと読む)


本発明は、細胞支持体(3)の位置に固定された生細胞物質を含む照射検証装置(1)に関する。細胞支持体(3)は細胞支持体ホルダー(5、6)の間に配置される。照射検証のために、照射検証装置(1)のz座標は光線軸Zの方向に調節され、これにより、照射後に、死滅させられた細胞物質を有する領域を、照射検証装置(1)のまだ活性である細胞物質を有する領域から、照射のコンセプトを参照して空間座標内で区別することができる。細胞支持体(3)用のインサート(4)および細胞支持体ホルダー(5、6)を有する容器(2)は、放射線に透過性の材料を含む。細胞支持体ホルダー(5、6)は、ベースプレート(5)およびカバープレート(6)を有し、これらの間に細胞支持体(3)が保持プレート(5、6)に直角に配置される。保持プレート(5、6)は、互いに揃えられた止まり穴(8、9)を有し、ここに細胞支持体の端部(10、11)が配置され、細胞支持体(3)は固体のロッド(12)であり、これの外表面(13)に細胞物質が固定される。
(もっと読む)


【課題】BNCTを行うにあたり、中性子を照射する自由度を向上させること。
【解決手段】この中性子発生装置102は、高エネルギーの陽子が照射されて中性子を発生するターゲット1を備える。ターゲット1の周囲には、陽子の照射によってターゲットから発生した中性子を減速する中性子減速部3Bが配置される。また、中性子減速部3Bの外側には、ターゲット1から発生した中性子を反射させるとともに増倍させて中性子減速部3Bへ導く反射体5Bが設けられる。そして、中性子減速部3Bは、陽子の進行方向と平行なY軸の周りを回転する。 (もっと読む)


241 - 260 / 367