説明

Fターム[4C082AP07]の内容

放射線治療装置 (15,937) | 検出 (722) | 人(の状態)の検出 (240) | 位置 (135)

Fターム[4C082AP07]に分類される特許

61 - 80 / 135


検知電極を有する容量タイプの近接センサが提供される。検知電極は、導電領域113及び非導電領域117をもつ表面を有し、センサは、検知電極と対象109、111との間の電界110、112を測定するように適応される。更に、医用X線診断及び/又はX線治療及び/又は核診断/治療(例えばSPECT)のための装置、医用X線診断及び/又はX線治療及び/又は核診断/治療(例えばSPECT)のためのシステム、医用X線診断及び/又はX線治療及び/又は核診断/治療のための装置(例えばSPECT)と対象との間の衝突を回避する方法、プログラム要素及びコンピュータ可読媒体が記述される。接近する対象の感度がセンサ自体の特別なジオメトリからの改善された独立性を有する容量タイプの近接センサが開示される。
(もっと読む)


本システムは、患者サポートと、アウターガントリーであって、患者サポート上の患者の周囲の、ある範囲のポジションを通って加速器が移動することを可能とするよう、加速器が搭載されるアウターガントリーとを含む。加速器は、患者内のターゲットに達するのに十分なエネルギーレベルを有する陽子あるいはイオンビームを発生させるよう構成されている。インナーガントリーは、ターゲットに向かって陽子あるいはイオンビームを導くための開口部を具備してなる。
(もっと読む)


【課題】放射線治療される患者の負担をより軽減すること。
【解決手段】放射線治療に利用される第1治療用放射線を発生させる第1治療用放射線照射装置16−1と、第2治療用放射線を発生させる第2治療用放射線照射装置16−2と、第1治療用放射線と第2治療用放射線が一部分に照射されるように第2治療用放射線照射装置16−2と第1治療用放射線照射装置16−1を支持する支持装置15−1〜15−3と、第1治療用放射線が発生する第1タイミングと第2治療用放射線が発生する第2タイミングとを制御するタイミング制御装置6をさらに備えている。このとき、放射線照射装置を1つだけ備えている装置に比較して、被検体の一部分に照射される治療用放射線の線量率をより大きくすることができ、放射線治療を短時間化することができる。 (もっと読む)


放射線療法治療の送達を最適化するシステムと方法。システムは、治療送達を、患者の解剖学的及び生理学的変化(例えば、呼吸及び他の動きなど)や機械構成の変化(例えば、ビーム出力係数、カウチ誤差、リーフ誤差など)の様な各種要因を考慮に入れて最適化する。 (もっと読む)


患者の放射線療法治療計画を適応させるシステムと方法において、任意の個別日に患者へ送達されるフラクションサイズを、少なくとも部分的には日毎患者レジストレーションの使用(即ち、それぞれのフラクションを送達させる前に患者の画像を撮影して当日の腫瘍の位置とサイズを見る)に基づいて変えることによって、適応させるシステムと方法である。フラクションサイズは、腫瘍の生物学に基づき、動的に改変することができる。 (もっと読む)


植え込み可能なアプリケータは、ターゲット領域に放射性シード又はソース66をガイドするための少なくとも1つのガイドチャネル12を有する。複数の撮像可能な基準40が、ターゲット領域に隣接して患者に取り付けられるように構成される。電磁センサ18、20、22、20'、42が、アプリケータ及び撮像可能な基準に搭載される。電磁追跡システムは、アプリケータ搭載センサ18、20、22、20'及び基準塔載センサ42の相対位置を決定する。位置特定プロセッサ52は、高解像度画像と組み合わされる(56)センサのマップを生成する。比較プロセッサ70は、センサ位置に変化があるか監視し、計画画像を変更された計画画像76に変更(74)する移動修正変更72を生成する。小線源療法治療プロセッサ60は、アプリケータ10のチャネル12を通じて放射性源又はシード66を移動させる自動ローダ64を制御するために、計画画像又は変更された計画画像から、治療計画60aを生成する。
(もっと読む)


フォトン利用の非侵襲的外科手術システムであり、MRI装置などの画像形成装置と、少なくとも2つのビーム発生器とを備えており、それらビーム発生器は、処置対象者の体内の標的にエネルギを供給するための複数本のエネルギビームを発生し、それら複数本のエネルギビームが1箇所で交差するようにしてある。このシステムは更に、複数本のエネルギビームが処置対象者の身体を透過して進行する際に発生すると予測されるビーム偏向と、予測したビーム偏向が発生したならばその結果として形成されるはずのビーム経路とを事前算出するフィードフォワード制御手段と、前記画像形成装置により収集される情報を取得して利用するフィードバック制御手段とを備えている。 (もっと読む)


ある動いている標的の容積部の、実際の本当の放射線量の分布、特には実際の本当の有効放射線量の分布を決定するための方法は、該動いている標的の容積部の第一の動いている状態にある体積の要素の第一の位置及び該動いている標的の容積部の少なくとも一つのさらなる動いている状態にある体積の要素のさらなる位置を検出する処理、当該第一の位置を当該さらなる位置に変換することにより変換パラメーターを決定する処理、放射線照射を受けるべき複数のラスタ点を有している照射計画に従って該動いている標的の容積部を照射する処理(そこでは、あるラスタ点を照射している間、該動いている状態の何れが該動いている標的の容積部(102)によって占められているかを検出せしめている)、ラスタ点をサブ照射計画に割り当てる処理及び該サブ照射計画のラスタ点からの寄与分からそれぞれの場合について、該変換パラメーターを使用して、複数の体積の要素のうちのそれぞれについて実際の本当の線量を決定する処理を含むものである。動きにより生ずる変化を補償する訂正パラメーターを計算し、それをブラッグマキシマムの位置に適用し、適用された生物学的有効放射線量に適用する。 (もっと読む)


医療施設において使用するための患者支持デバイス。患者支持デバイスは、ベースと、ベースに結合されるテーブル・アセンブリとを備える。テーブル・アセンブリは、下側支持部と、下側支持部に結合され且つ下側支持部に対して移動可能な上側支持部とを備える。上側支持部および下側支持部の少なくとも一方は、上側支持部が下側支持部に対して移動する際の患者支持デバイスの性能を向上させることが可能なベアリング層を備える。
(もっと読む)


【課題】呼吸や脈拍などの生体活動による反復的な位置の変動に伴って照射領域が動いてしまう場合であっても、予め設定された形状および線量に基づいて正確な照射を行うことのできる、3次元スキャニング法を用いたスキャニング照射方法を提供する。
【解決手段】本発明に係るスキャニング照射方法は、線量算出ステップS2と、差分線量算出ステップS3と、照射線量設定ステップS4と、を含み、所定の条件を満たすまで差分線量算出ステップS3および照射線量設定ステップS4を繰り返して行う。 (もっと読む)


【課題】ランドマークとの相対的な位置関係がずれる軟部組織の治療部位であっても正確かつ迅速に位置決めすることができる放射線治療装置を提供する。
【解決手段】計画時CT画像11と治療時CT画像12との双方から骨部13を抽出し、骨部13のパターンの類似度に基づいて治療時CT画像12に対応する計画時CT画像11のスライス位置及びスライス面内位置を決定し、計画時CT画像11の治療部位を含むスライス画像に対応する治療時CT画像12から治療部位を含む部分画像14を切り出し、計画時CT画像11から部分画像14に最も類似する領域を含むスライス画像を探索し、探索されたスライス画像からみた治療部位の相対的な位置を算出すると共に、この相対的な位置関係を用いて算出した治療時CT画像12の部分画像の位置からみた治療部位の相対的な位置を最終的な治療部位とする。 (もっと読む)


【解決手段】 本開示は、一般に垂直な患者支持面と、患者を患者支持面と固定された関係に確保するように配置された患者固定メカニズムと、患者支持面の一端に固定され患者支持面を一般に垂直な軸の回りに回転させ選択的に患者支持面を一般に垂直な軸に直交する面に対して少なくとも部分的に平行移動するように配置された回転プラットフォームと、撮影装置が固定ビーム照射源からの照射を遮断する第一のモードと撮影装置が固定ビーム照射源からの照射を可能にする第二のモードを示す撮影装置と、患者支持面と連通され、患者支持面を一般に垂直な軸に沿って搭載位置から照射位置まで平行移動するように配置された垂直平行移動メカニズムとを、有する照射治療装置を提供する。 (もっと読む)


【課題】治療回数を減らすことができるとともに治療の際の操作者の負担を減少させることができる放射線治療システムを提供する。
【解決手段】治療用放射線ビーム照射装置3は複数の照射源3aを有している。各照射源3aから照射される治療用放射線ビーム2は一の焦点領域3bに集束するようになっている。人体内撮像装置20によって撮像された人体7内の画像に基づいて、焦点領域3bに人体7内の治療対象部分9が常に含まれるように載置台11を経時的に移動させるよう、制御装置15は載置台駆動装置30の制御を行うようになっている。 (もっと読む)


本発明は、特定の患者の特定の解剖学的組織内にある標的組織の被視認性を高めるのに効果的なシステム及び方法に提供する。例示的な実施例において、本発明に関連するシステムは、(a)標的組織領域にアブレーションのマーキングを作成するためのMRIガイド下HIFUシステムであり、HIFUを前記標的組織領域に送達するためであり、前記送達されたHIFUは前記標的組織に前記アブレーションのマーキングを作成する、トランスデューサと、前記HIFUの前記標的組織領域への送達を誘導するための、HIFU送達中の前記標的組織領域の三次元画像を作成するMRI撮像システムとを含むMRIガイド下HIFUシステム、(b)放射線治療を前記標的組織領域に送達するための放射線治療送達システム、及び(c)前記標的組織領域の三次元画像を作成するための、前記放射線治療送達システム内において動作可能であるX線、CT撮像システム、を含んでいる。前記MRIガイド下HIFUにより前記標的組織領域に作成された前記マーキングは、CT撮像システムにより作成された画像に見ることができる。CT撮像システムにより作成された画像は、前記標的組織領域に送達される放射線治療の位置を誘導する。 (もっと読む)


【課題】スポット照射中における異常発生時のビーム出射処理を適切に行うことにより、荷電粒子ビームを用いた治療における実照射線量の検出および評価を正確に行うことができる粒子線照システムおよびその制御方法を提供する。
【解決手段】シンクロトロン12と、走査電磁石5A,5Bを有し、シンクロトロン12から出射されたイオンビームを走査するスキャニング照射装置15と、シンクロトロン12からのイオンビームの出射をビーム出射停止指令に基づいて停止させ、この状態で走査電磁石5A,5Bを制御することによりイオンビームの照射位置を変更させ、この変更後にシンクロトロン12からのイオンビームの出射を開始させる。ビームの照射中に、照射継続可能な比較的軽度な異常が発生した場合に、直ちにビーム出射を停止せず、その時点での照射位置に対する照射が目標線量値に到達した時点で、ビーム出射を停止する。 (もっと読む)


【課題】放射線治療のプランニングを目的とした病変または器官の解像、位置測定および治療位置の確認のための方法と装置を提供する。
【解決手段】位置感知システムの使用を通じて診断映像システムの座標空間に関する超音波映像の位置測定を確保するために、超音波映像システムと診断映像システムの組合せを使用する。本方法は、位置測定超音波映像内の病変の位置と患者が治療ユニットの処置台に横たわっている間に撮られる超音波映像内の病変の位置を比較し、病変をその対象治療位置に配置するための正しい方策を示唆し、かつ有資格者から得られる確認による補正を実行する。 (もっと読む)


【課題】脳内に存在する物質と脳神経や身体の機能との関連を把握することが可能な技術を提供する。
【解決手段】診療支援システム1は、被検体の脳機能画像の画像データ12aを生成するfMRI装置3と、この被検体の脳内における特定の体内生成物質の存在量の分布を表す物質分布情報12bを取得する分子イメージング装置2と、表示デバイス20と、fMRI装置3により生成された画像データ12aに基づく脳機能画像G1と、分子イメージング装置2により取得された物質分布情報12bに基づく物質分布画像G2とを重畳した重畳表示画像Gを表示デバイス20に表示させる制御装置10とを備えている。 (もっと読む)


【課題】粒子線照射装置を回転ガントリー構造にしないで粒子線を患部に多方向照射でき、位置精度よく粒子線を照射できる粒子線照射システムを提供する。
【解決手段】一方向から粒子線を照射する粒子線照射装置1、患部3aの位置確認をするCTスキャナー2、CTスキャナー2の検出範囲2aから粒子線照射装置1の照射範囲まで患者3を移動させる駆動部5、患者3を固定し、駆動部5に患者3の頭尾方向を軸yとして回転可能に装着される患者固定装置4、駆動部5とCTスキャナー2を収納し、粒子線照射装置1の照射方向xと駆動部5の移動方向を含む平面に直交する軸zで回転可能な収納ユニット6を備えた粒子線照射システムA。 (もっと読む)


【課題】 所望の部位での照射位置の確認が可能な荷電粒子線照射装置を提供すること。
【解決手段】 被照射体51の回りに回転可能とされた荷電粒子線照射部1を有する照射室103を備え、被照射体51にて生成された消滅γ線を検出する検出部30を、荷電粒子線照射部1の回転中心軸Xの延在する方向に移動可能とする。
これにより、検出部30をX軸方向に移動させることで、検出部30が荷電粒子線照射部1の回転の妨げになることを防止することができる。また、被照射体の照射室103への搬入、搬出の際に検出部30が邪魔にならない。また、所望の部位の位置確認ができる。また、被照射体の大きさに合わせて検出部30をX軸方向に移動させることもできるので、検出部30による検出範囲の拡大が可能となる。 (もっと読む)


【課題】放射線が照射される部分の位置をより高精度に制御し、かつ、その部分に照射される放射線の線量をより高精度に制御すること。
【解決手段】第1点から放射状に放射される第1放射線111−1を被検体43のうちの第1部分102−1に照射するステップと、その第1点に一致する第2点から放射状に放射される第2放射線111−2を被検体43のうちの第2部分102−2に照射するステップとを備えている。このような方法によれば、より小型の放射線照射装置16を用いて、被検体43の部分に照射される放射線23の線量をより高精度に制御することができる。その結果、その放射線照射装置16を支持する支持体14の撓みが低減され、その放射線照射装置16がより高精度に位置決めされ、放射線23が照射される部位101がより高精度に制御されることができる。 (もっと読む)


61 - 80 / 135