説明

Fターム[4D006PB27]の内容

半透膜を用いた分離 (123,001) | 被処理物 (13,421) | 分離対象物 (5,501) | 特定の金属イオン、カチオン (226)

Fターム[4D006PB27]に分類される特許

41 - 60 / 226


【課題】電解水を利用してバラスト水中の有害生物を効率良く不活性化又は死滅させるようにし、バラスト水の排水が速やかに行えるようにしつつ、電解水生成部の小型化を図り、消費電力の低減を図ること。
【解決手段】バラスト水タンク1に海水を取水する取水流路2と、バラスト水タンク1のバラスト水を排水する排水流路5と、取水流路2に設けられた第1の濾過装置4と、第1の濾過装置4の下流側の取水流路2から分岐された分岐流路7と、この分岐流路7に順次設けられた第1の濾過装置4より濾過精度が高い第2の濾過装置10、電解水生成部13A及び電解水貯留部13Bと、排水流路5に設けられバラスト水タンク1から排水されるバラスト水に含まれる塩素を除去する塩素除去装置28と、バラスト水の取水時には電解水貯留部13Bの電解水の取水流路2への注入を制御すると共にバラスト水の排水時には塩素除去装置28を制御する制御装置とを備えた。 (もっと読む)


【課題】高い除去率で浄水して純度の高いアルカリイオン水を供給できるようにした電解水生成装置を得る。
【解決手段】浄水部2にナノフィルタ21を備え、ナノフィルタ21の透過水を電解槽3の陽極室32と陰極室33とに導入して電気分解し、陰極室33でアルカリイオン水を生成するとともに、陽極室32で酸性水を生成する。これにより、飲用となるアルカリイオン水は不純物の除去率が約90パーセント以上に達して高い除去率を得る。 (もっと読む)


【課題】浴室内において水垢汚れや微生物による汚れが付着することを防止できる浴室の水改質システムを提供する。
【解決手段】給水源と浴室1内に設けた吐水部2を接続する給水路3に給水源から供給された水に含まれる溶解物質を除去するための除去手段7を備える。吐水部2から除去手段7により溶解物質を除去した水を吐出可能とする。除去手段7により溶解物質を除去した除去水と溶解物質を含む濃縮水とに分離し、このうち除去水を上記吐水部2から吐出可能とする。浴室1内に前記濃縮水を吐出する吐出部25を設ける。 (もっと読む)


【課題】アルカリ蓄電池の製造の際に排出される廃液を処理することができる安価な廃液処理装置を提供する。
【解決手段】回収装置1は、電解槽2と、電解槽2内に配設された素焼部材3に仕切られた陽極室4及び陰極室6と、陽極室4内に設けられた陽極5と、陰極室6内に設けられた陰極7と、陽極5及び陰極7に電解電圧を印加する電圧印加手段8とを備える。陽極室4に廃液9を供給すると共に、陰極室6に回収媒体液10を供給し、電圧印加手段8により陽極5及び陰極7に電解電圧を印加して電解を行う。廃液9中の金属イオンの一部を陰極室6に移動させ、陰極室6に該金属イオンを含む水溶液を得る。 (もっと読む)


【課題】浴室内において水垢汚れや微生物による汚れが付着することを防止できる浴室の水改質システムを提供する。
【解決手段】給水源と浴室1内に設けた吐水部2を接続する給水路3に給水源から供給された水に含まれる溶解物質を除去するための除去手段7を備える。吐水部2から除去手段7により溶解物質を除去した水を吐出可能とする。吐水部2として除去手段7によって溶解物質が除去された水を浴室1内に散布する散布装置20を備える。 (もっと読む)


【課題】アンモニウム塩含有排水を電気透析装置によって処理するアンモニウム塩含有排水の処理装置において、カチオン濃縮室における導電率を高くし、電気透析装置の電力消費量を減少させ、効率よくアンモニウム塩含有排水を処理することが可能となるアンモニウム塩含有排水の処理装置を提供する。
【解決手段】電気透析装置10の脱塩室18にアンモニウム塩含有排水が供給され、アニオン濃縮室17から酸含有水が取り出され、カチオン濃縮室19からアンモニア水が取り出されるアンモニウム塩含有排水の処理装置において、該カチオン濃縮室19から取り出されたアンモニア水を該カチオン濃縮室に返送する返送ライン40,44と、アンモニア水に炭酸ガスを吹き込む炭酸ガス吹込槽41とを備えたアンモニウム塩含有排水の処理装置。 (もっと読む)


【課題】精製水の回収率が高く、RO膜の寿命が短くなることを抑制することができ、優れた水質の精製水を低コストで製造できる精製水製造装置の提供を目的とする。
【解決手段】原水をイオン交換樹脂によって軟水化する第1軟水化手段12と、原水を活性炭で濾過して残留塩素を除去する塩素除去手段13と、残留塩素が除去された原水を各種イオンの除去率が高いナノ濾過膜で濾過して軟水化する第2軟水化手段15と、原水を逆浸透膜で濾過して精製水を得る精製手段16と、前記逆浸透膜による濾過で前記精製水と共に得られる濃縮水を返送し、原水タンク11の原水と混合する濃縮水返送ライン59と、を有していることを特徴とする精製水製造装置1。 (もっと読む)


【課題】原水中の塩類濃度が高い場合でも、低い場合でも、カルシウムの除去能力を十分に発揮することが可能であり、カルシウム除去剤の使用量をできるだけ少なくし得る水処理方法及び水処理装置を提供すること。
【解決手段】本発明は、カルシウムイオンを含む原水を透過膜装置によって処理水と濃縮水に分離する水処理方法であって、濃縮水を晶析反応槽及び沈殿槽を経て原水槽へと返送し、
晶析反応槽においては、濃縮液に硫酸カルシウム種結晶を添加して、濃縮液中のカルシウムイオン及び硫酸イオンを硫酸カルシウム結晶として晶析させ、
沈殿槽においては、晶析反応槽から送られてきた濃縮水中の硫酸カルシウム結晶を沈殿させると共に、上清を原水槽へと返送し、沈殿槽に沈殿した硫酸カルシウム結晶の一部は、硫酸カルシウム種結晶として晶析反応槽へと回収され、
沈殿槽に沈殿した硫酸カルシウム結晶の残部は、系外へと排出されることを特徴とする。 (もっと読む)


【課題】
煩雑な工程を使用せず、かつ、比較的簡便な設備によって、リチウムイオン電池から金属を回収する有価金属回収方法を提供する。
【解決手段】
リチウム及び遷移金属元素とを含むリチウムイオン電池の正極材を酸性溶液に溶解させてリチウムイオンと遷移金属イオンとを酸性溶液内に生成させ、その酸性溶液と回収液とを陰イオン透過膜を挟んで流してリチウムイオンを酸性溶液から回収溶液へ透析させ、透析でリチウムイオンが溶解した回収液から、リチウムイオンを回収する金属回収方法。 (もっと読む)


【課題】排水等の処理水に含まれる金属を捕集、除去、回収する方法である溶媒抽出法のうち、金属と反応または吸着する物質(金属抽出剤)を内包したカプセルを使って金属を除去する水処理方法において、繰り返し使用に耐え、該カプセルの分離回収が容易である金属抽出剤内包磁性カプセルを提供する。
【解決手段】金属抽出剤と磁性物質をカプセル皮膜で内包した金属抽出剤内包磁性カプセルにおいて、磁性物質がストロンチウムフェライトまたはバリウムフェライトであることを特徴とする金属抽出剤内包磁性カプセル及び該カプセルを用いた水処理方法。 (もっと読む)


【課題】逆浸透膜装置を用いる純水製造システムにおいて、原水のシリカ濃度が高い場合であっても逆浸透膜へのシリカ析出を防止することができる純水製造システムを提供する。
【解決手段】純水製造システム10は、軟水装置11と、給水ラインを流れる水をアルカリ化するアルカリ添加装置12と、シリカ除去率が90%以下の低シリカ除去率逆浸透膜を用いる、逆浸透膜装置の中で最前段に設置される低シリカ除去率逆浸透膜装置15と、シリカ除去率が90%超過の高シリカ除去率逆浸透膜を用いる、低シリカ除去率逆浸透膜15の後段に設置される高シリカ除去率逆浸透膜装置16と、を備える。 (もっと読む)


【課題】逆浸透膜を用いる純水製造システムにおいて、水回収率を高めて処理水を有効利用できる純水製造システムを提供する。
【解決手段】純水製造システム10は、逆浸透膜を内蔵する逆浸透膜モジュール14,15と、逆浸透膜モジュール15の濃縮水を供給水とするように逆浸透膜モジュール15の後段に設置された、ナノ濾過膜を内蔵するナノ濾過膜モジュール16と、逆浸透膜モジュール14,15の透過水を外部へ供給する第一処理水ライン25と、ナノ濾過膜モジュール16の透過水を逆浸透膜モジュール14に供給水として循環させる循環ライン27と、ナノ濾過膜モジュール16の透過水を外部へ供給する第二処理水ライン26と、循環ライン27へと流れるナノ濾過膜モジュール16の透過水の一部又は全部を第二処理水ライン26へ流すための切替手段21,22,29とを備える。 (もっと読む)


【課題】イオン透過膜を用いて水和性アニオンを回収し、該水和性アニオンを脱水して水を得ることで、浄化対象水への脱水和アニオンの漏れ出し及び塩の析出を防止でき、浄化水を効率よく回収することができる水浄化装置等の提供。
【解決手段】浄化対象水と、脱水和して揮発性となる水和性アニオン及び非揮発性カチオンを含むイオン含有水溶液とを半透過膜を介して接触させ、半透過膜により浄化対象水から分離された水でイオン含有水溶液を希釈する希釈手段と、希釈手段により希釈されたイオン含有水溶液から、イオン交換膜を介して水和性アニオンと非揮発性カチオンを分離する分離手段と、分離された水和性アニオンを脱水和し、揮発することにより、脱水和アニオンが除去回収された浄化水を得る揮発手段と、揮発手段により回収除去された脱水和アニオンを、少なくとも非揮発性カチオンを含む水溶液に溶解させる溶解手段とを有する水浄化装置である。 (もっと読む)


【課題】装置としてのメンテナンスや管理を容易に行うことのできる浄水装置を得る。
【解決手段】浄水通路3の主通路31に、プレフィルターカートリッジ32および活性炭カートリッジ34(濾過部)とは別体で、合金フィルターカートリッジ(殺菌成分添加部)33を設ける。また、これらのカートリッジ32、33、34の下流側に、金属イオンを分離する膜カートリッジ3(分離部)5を設けた。 (もっと読む)


【課題】脱塩室への炭酸の逆拡散を低減することで、処理水質の低下を抑制することができる電気式脱イオン水製造装置を提供する。
【解決手段】陽極4および陰極5と、少なくともカチオン交換体が充填されたカチオン脱塩室D1,D1’と、少なくともアニオン交換体が充填されたアニオン脱塩室D2,D2’と、陽極4と陰極5との間に位置し、第1のカチオン交換膜c,c’を介してカチオン脱塩室D1,D1’と隣接する濃縮室C2,C3と、を有し、アニオン脱塩室D2,D2’とカチオン脱塩室D1,D1’とは、アニオン脱塩室D2,D2’を流出して少なくともアニオン成分が除去された中間処理水の一部がカチオン脱塩室D1,D1’に流入するように連通されており、アニオン脱塩室D2,D2’と濃縮室C2,C3とは、アニオン脱塩室D2,D2’を流出した中間処理水の他の一部が濃縮室C2,C3に流入するように連通されている。 (もっと読む)


【課題】脱イオン装置を提供する。
【解決手段】電気化学的酸化還元活物質を含む少なくとも一つの電極、及びイオン種の種類及び/または総濃度が、流入水に含まれたイオン種のそれらと異なる電解質溶液を含む脱イオン装置。 (もっと読む)


【課題】銅とガリウムを含む処理液からガリウムを回収する方法を提供する。
【解決手段】細孔支持材に設けられる液膜を提供するステップと、抽出液を含む有機溶液に分散される水相逆抽出液を含む分散逆抽出液を提供するステップと、銅とガリウムを含む処理液のPH値を3.5より大きくならないように調節し、または初期濃度が10Nまたはそれより大きい酸を含むように濃縮酸を処理液に添加して、調節するステップと、銅とガリウムを含む処理液104を細孔支持材に設けられる液膜の一方で処理し、細孔支持材に設けられる液膜の他方で分散逆抽出液102を用いることによって、選択的に銅とガリウムを含む処理液104中のガリウムを除去するステップと、一部または全部の分散逆抽出液102を有機相と水相逆抽出液に分離させるステップと、を含み、分離された水相逆抽出液に濃縮されたガリウム溶液が含まれるガリウムの回収方法。 (もっと読む)


【課題】ナノ濾過膜モジュールの熱水消毒時の消費エネルギーの増加を抑制することができるナノ濾過膜の熱水消毒方法を提供する。
【解決手段】ポリアミドを材質として用いたナノ濾過膜によって原水を軟水化するナノ濾過膜モジュール61と、精製水タンク13と、熱水供給ライン77と、ヒータ17と、熱水供給ライン77の開閉状態を個別に制御する制御部16とを備えた精製水製造装置におけるナノ濾過膜の熱水消毒方法であって、制御部16からの操作信号により、精製水タンク13に貯蓄された精製水から熱水供給ライン77を通じて精製水を上流側より還流すると同時に、ヒータ17により精製水を昇温速度5℃/分以下の割合で予め設定された所定温度まで昇温し、加熱することで、ナノ濾過膜を熱水に曝すことを特徴とする。 (もっと読む)


【課題】処理水の良好な水質を維持しながら、消費電力の低減と処理性能の向上とを実現することができる電気式脱イオン水製造装置を提供する。
【解決手段】陽極室E1と陰極室E2とからなる1対の電極室と、陽極室E1と陰極室E2との間に位置する濃縮室Cと、陽極室E1と濃縮室Cとの間に位置し、第1のカチオン交換膜c1を介して陽極室E1と隣接し、第2のカチオン交換膜c2を介して濃縮室Cと隣接し、カチオン交換体が充填されたカチオン脱塩室D1と、陰極室E2と濃縮室Cとの間に位置し、第1のアニオン交換膜a1を介して陰極室E2と隣接し、第2のアニオン交換膜a2を介して濃縮室Cと隣接し、アニオン交換体が充填されたアニオン脱塩室D2と、を有している。 (もっと読む)


【課題】従来は、尋常性乾癬等の皮膚疾患の症状を改善する効果的な手段が未だ提案されていない。
【解決手段】本発明では飲用オゾンナノバブル水により、尋常性乾癬等の皮膚疾患の症状改善をもたらしている。この飲用オゾンナノバブル水は、その塩分濃度を、生理食塩水と同等の、0.9%又はその近傍の値としており、これにより、塩分による生体組織への悪影響を抑制し、そしてその塩分濃度において、オゾンのナノバブル核による細胞賦活化能、組織保存能を効果的に発揮させることができる。この飲用オゾンナノバブル水は、塩分濃度が、0.9%又はその近傍の値の2倍以上高い水を原料水とし、そして塩分濃度を上記値に低下させるために混合する希釈用の水として、圧壊後、逆浸透膜を透過させて脱塩処理を行った水を使用している。 (もっと読む)


41 - 60 / 226