説明

Fターム[4G002AD04]の内容

鉄化合物 (3,304) | 形状 (427) | その他(いがぐり状、球状、超微粉状等) (338)

Fターム[4G002AD04]に分類される特許

21 - 40 / 338


【課題】鉄鋼スラグを原料として鉄鋼スラグを構成するCa、Fe、Mnを分離し、それぞれ有用成分として回収する方法を提供すること。
【解決手段】 本発明の石膏の2水和物およびFe、Mnの酸化物または水酸化物の製造方法は、1)鉄鋼スラグを硫酸に溶解させる第1のステップと、2)鉄鋼スラグを溶解させた硫酸から石膏およびシリカを回収する第2のステップと、3)石膏およびシリカを回収した硫酸中の水分を蒸発させ、得られる粉末を焙焼する第3のステップと、4)その焙焼物を水に溶解させ、水に不溶のFe酸化物を回収する第4のステップと、5)第4のステップの焙焼物を溶解させた水溶液中の水分を蒸発させ、得られる粉末を焙焼する第5のステップと、6)その焙焼物を水に溶解させ、水に不溶のMn酸化物を回収する第6のステップを有する。 (もっと読む)


【課題】標的物質の分離、分析等に際して粒子への標的物質の結合量が大きく、かつ、磁気分離速度も速い粒子を提供すること。
【解決手段】標的物質が結合できる磁性粒子であって、磁性を帯びたコア粒子、および、そのコア粒子の表面に粗面コーティングされたポリマーシェル部を有して成るポリマーコート層を備えた磁性粒子。かかる磁性粒子では、ポリマーシェル部の有する表面粗さによって粒子表面が粗面化されており、磁性粒子の比表面積の値(m/g)が、コア粒子を平滑な完全球体とみなした場合におけるコア粒子の比表面積の値(m/g)の1.5倍〜500倍となっている。 (もっと読む)


【課題】高帯電性と高強度と備えたフェライト粒子を提供する。
【解決手段】組成式(MFe3−X)O(ただし、MはFe,Mg,Mn,Ti,Cu,Zn,Sr,Niからなる群より選ばれる少なくとも1種の金属元素、0≦X<1)で表される材料を主成分とし、Ca元素とP元素とを含有させる。そして、Ca元素の含有量をP元素の含有量に対して重量比で0.45〜1.0の範囲とする。ここで、高帯電性と高強度とを一層向上させる観点からは、Ca元素及びP元素の総含有量を5000ppm以下の範囲とするのが好ましい。また、Ca元素とP元素とは主として同一箇所に存在しているのが好ましい。そしてまた、Ca元素とP元素とは主として結晶粒界に存在しているのが好ましい。 (もっと読む)


【課題】 ニッケル酸化鉱石の湿式精錬プラントにおいて、原料となるニッケル酸化鉱石を処理して得られる鉱石スラリーから、クロマイトを効率的に回収する方法を提供する。
【解決手段】 ニッケル酸化鉱石からニッケル及びコバルトを回収する際に、ニッケル酸化鉱石から得られた鉱石スラリーからクロマイトを分離回収するクロマイトの回収方法であって、供給される鉱石スラリー中に含有される粒子の粒径差によって、所定の分級点に基づき鉱石スラリーを分離する粒径分離工程と、粒径分離工程において分離されたオーバーサイズの鉱石スラリーを、目標とする分級点に基づいて沈降濃縮し、クロマイトを回収する沈降分離工程とを有し、粒径分離工程において分離されるオーバーサイズの鉱石スラリー中の粗粒子含有率を30〜50%に調整する。 (もっと読む)


【課題】印刷の前後での磁性酸化鉄粒子の磁気特性が変化しづらく、またインクの吐出性が良好であり、磁性を有する印刷物を形成することができるインクジェット印刷用インクの調製に用いられる磁性酸化鉄粒子分散液を提供すること。
【解決手段】本発明の磁性酸化鉄粒子分散液は、粒子全体のFeO含有率が10〜20質量%で、かつ表面におけるFeO含有率が10質量%以下あり、粒径が10〜50nmである球状の磁性酸化鉄粒子が、分散媒に分散されてなる。この分散液は、インクジェット印刷用インクの調製に用いられる。 (もっと読む)


【課題】十分な電子伝導率を有し、電極特性にすぐれた鉄負極用の複合電極材を提供する。
【解決手段】炭素基材および酸化鉄粒子を含み、前記酸化鉄粒子はFe34を主成分とし、かつ炭素基材に担持されており、前記酸化鉄粒子のD90が50nm以下である、複合電極材。該複合電極材は、活物質であるFe34を主成分とする酸化鉄粒子の粒径が小さいため、電極反応の中間生成物であるFe(OH)2層に被覆された場合でも電子伝導率が著しく低下することがない。そのため、複合電極材を用いると、十分な電子伝導率と充放電サイクル特性を有する鉄負極が提供される。該複合電極材を有する負極は、金属空気電池用負極として好適に使用される。 (もっと読む)


【課題】導電性の向上した正極材料を提供することを課題とする。
【解決手段】下記一般式(1)で示されるリチウム含有複合酸化物を形成するのに必要なリチウム源、鉄源、Q源、リン源及びW源と、炭素からなる導電材とを含む分散液に環状エーテルを添加して得られたゲルを焼成することで得られ、一般式(1):LiFe1-xx1-yy4(式中、Qは、Zr、Sn及びYからなる群から選択される少なくとも1種であり、Wは、Si及びAlから選択される少なくとも1種であり、xは0≦x≦1、yは0≦y≦1である)で表されるリチウム含有複合酸化物と前記導電材とを含むことを特徴とする正極材料により上記課題を解決する。 (もっと読む)


【課題】
高温域において、飽和磁束密度が高く、かつコアロスが低く、また、コア強度の高いフェライト材料を提供すること。
【解決手段】
酸化鉄、酸化亜鉛および酸化マンガンを含む主成分と、酸化ケイ素、酸化カルシウム、酸化ニオブ、酸化ジルコニウムおよび酸化モリブデンを含む副成分と、を有する焼結体から構成されるフェライト材料であって、前記主成分100モル%中の各酸化物の含有量が、酸化鉄:Feに換算して63〜68モル%、酸化亜鉛:ZnOに換算して12〜20モル%、酸化マンガン:残部であり、前記焼結体中の各副成分の含有量が、酸化ケイ素:SiOに換算して50〜200重量ppm、酸化カルシウム:CaCOに換算して500〜2000重量ppm、酸化ニオブ:Nbに換算して200〜500重量ppm、酸化ジルコニウム:ZrOに換算して100〜500重量ppm、酸化モリブデン:MoOに換算して100〜400重量ppmであるフェライト材料。 (もっと読む)


【課題】液体および気体中に存在する汚染物に対しての高い結合能力とともに、高い機械的安定性、さらには流動性および低い含水量を有し、かつ他の有機または無機のバインダーを使用せずに十分な機械的安定性を達成する、水酸化鉄をベースとする改善された粒子を提供する。
【解決手段】濁度試験により<600FNUの濁度を有する、本質的に酸化鉄および/またはオキシ水酸化鉄から成る粒子によって達成された。 (もっと読む)


【課題】オリビン型リン酸鉄リチウムの製造原料として有用な酸化鉄粒子を提供すること。
【解決手段】本発明の酸化鉄粒子は、スピネル構造を有し、累積体積50容量%における体積累積粒径D50が5〜100nmであり、粒子表面のFeO存在率が70%以上である。また、この酸化鉄粒子は、結晶子径が7〜50nmであることが好ましい。累積体積90容量%における体積累積粒径D90と、累積体積50容量%における体積累積粒径D50との比D90/D50が1.30以下であることも好ましい。 (もっと読む)


【課題】正電荷性の超常磁性酸化鉄ナノ粒子と、これを利用した造影剤及びその製造方法を提供する。
【解決手段】本発明による正電荷性の超常磁性酸化鉄ナノ粒子は、超常磁性酸化鉄ナノ粒子と、前記ナノ粒子の表面にコーティングされた多数のカルボキシル基を含有する高分子を含む高分子層と、前記高分子層の表面にアミド結合で連結された陽イオン性物質とを含む。本発明によれば、超常磁性酸化鉄ナノ粒子を親水性且つ強い陽イオン性を有するように、簡単に且つ再現性良く製造することができる。製造された正電荷性の超常磁性酸化鉄ナノ粒子は、高い細胞内吸収効率及び安定性を有し、非侵襲的生体画像を用いた効果的な造影剤として多様に活用されることができる。 (もっと読む)


【課題】 有機ナノチューブの中空内に、金属又は金属酸化物のナノ粒子を内包するピーポッド型有機ナノチューブを、低コストで簡単に製造することが可能となる方法を提供する。
【解決手段】 有機ナノチューブを形成する両親媒性分子として、下記の一般式(1)で表されるN−グリコシド型糖脂質を用いるものであって、水に、ナノ粒子、及び該有機ナノチューブを混合し、ナノ粒子の表面電位を電荷0点付近まで下げて攪拌することによりナノ粒子を内包したピーポッド型有機ナノチューブが製造される。
G−NHCO−R (1)
(式中、Gは糖のアノマー炭素原子に結合するヘミアセタール水酸基を除いた糖残基を表し、Rは炭素数が10〜24の不飽和炭化水素基を表す。) (もっと読む)


【課題】燃料電池に適用可能であり、層界面における剥離を抑制することのできる電極材料を提供する。
【解決手段】電極材料は、一般式ABOで表されるペロブスカイト構造と、ZrOと、を含有し、ZrOの含有量が、電極材料全体に対して0.3×10−2重量%以上1重量%以下である。 (もっと読む)


【課題】 本発明は、磁気記録媒体用六方晶フェライト粒子粉末に関するものであり、優れた磁気特性を有すると共に、磁気記録媒体のノイズ低減に効果的な六方晶フェライト粒子粉末に関するものである。
【解決手段】 六方晶フェライト粒子粉末の平均板面径(DTEM)が10〜30nmであり、単結晶化度[平均板面径(DTEM)と結晶子径(D)の比(DTEM/D)]が0.8〜1.2の範囲であって、該六方晶フェライト粒子粉末に含有される白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)の各元素の合計量が10ppm以下、且つ、Caが1000ppm以下である磁気記録媒体用六方晶フェライト粒子粉末である。 (もっと読む)


【課題】磁性ナノ粒子をマイナスチャージの蛍光物質と共に、短時間混合させて細胞に添加するだけで、高効率に細胞を磁性、蛍光の両方で標識化することを可能とし、これにより、量子ドットに留まらず、様々な蛍光物質を細胞内に導入できることができる磁性ナノ粒子複合体及び当該磁性ナノ粒子複合体による細胞の標識方法を提供する。
【解決手段】本発明に係る磁性ナノ粒子複合体は、酸化鉄表面を第3級アミンで被覆して表面をプラスに帯電させた磁性ナノ粒子とマイナスに帯電している蛍光物質とを含む。 (もっと読む)


【課題】 リチウムイオン電池の正極活物質として用いたときに、高温でのサイクル特性および保存性に優れるとともに、体積当たり放電容量が高い新規なリチウム・マンガン複合酸化物、およびこのような新規なリチウム・マンガン複合酸化物を正極活物質として用いたリチウムイオン二次電池を提供する。
【解決手段】 (i)リチウム化合物、(ii)電解二酸化マンガン、(iii)Mg,Alから選ばれる少なくとも1種の金属(M1)の化合物、(iv)ホウ素(M2)の化合物を、Li:Mn:M1:M2:Fの原子比が(x+y):(2−y−p−q):p:q(ただし、1.0≦x<1.2、0<y≦0.2、1.0<x+y≦1.2、0<p≦1.0、0.0005≦q≦0.1)の比率で混合して水懸濁液を調製し、該水懸濁液を乾燥したのち、650〜900℃の温度で焼成して得られることを特徴とするスピネル型リチウム・マンガン複合酸化物。 (もっと読む)


【課題】目的生成物の合成時間を短縮することが可能であり、かつ、合成時の低コスト化と、大量生成時の品質のばらつきを低減することが可能な鉄含有チタン酸リチウムの製造方法を提供する。
【解決手段】鉄含有チタン酸リチウムの製造方法は、組成式Li1+x(Ti1−YFe1−X(0<X<1、0<Y<1)で表され、結晶構造が立方晶岩塩型である鉄含有チタン酸リチウムの製造工程において、湿式粉砕・混合工程と、乾燥工程と、焼成工程と、粉砕・分級工程とを備える。湿式粉砕・混合工程は、水酸化リチウム水溶液中でFe源とTi源との粉砕と混合とを同時に行う工程である。乾燥工程は、湿式粉砕・混合工程で得られる混合物を乾燥させる工程である。焼成工程は、乾燥工程で得られる乾燥物を焼成する工程である。粉砕・分級工程は、焼成工程で得られる焼成物を粉砕、分級を行う工程である。 (もっと読む)


【課題】見掛け密度が小さく且つ流動性に優れ、小さな動力で撹拌混合等を行うことができるフェライト粒子及びその製造方法を提供すること。
【解決手段】一般式(MFe3−x)O(但し、MはFe,Mg,Mn,Ca,Ti,Cu,Zn,Sr,Niからなる群より選ばれる少なくとも1種の金属、0≦x≦1)で表されるフェライト粒子本体の表面をアルミナで被覆する。このようなフェライト粒子の製造方法としては、Fe原料とM原料、及び水を混合してスラリーを得る工程と、前記スラリーを噴霧乾燥させて造粒物を得る工程と、前記造粒物を焼成して焼成物前駆体を得る工程と、得られた焼成物前駆体の表面をアルミナで被覆する工程と、アルミナで表面を被覆した焼成物前駆体をさらに焼成する工程とを有する方法が好ましい。 (もっと読む)


【課題】 微細で高容量が得られる高性能なリチウム二次電池用正極活物質を用いて、高い安全性と高容量を兼ね備え、かつサイクル寿命に優れたリチウム二次電池を提供することにある。さらに、このリチウム二次電池用正極活物質を得るために用いられる前駆体とその製造方法を提供するとともに、工業的な生産にも好適なその製造方法を提供することにある。
【解決手段】 一般式LiSiO(1.90≦x≦2.15、0.90≦y≦1.10、MはMn、Fe、Ni、Coから選択される1種以上の元素)で表されるケイ酸金属リチウム塩からなるリチウム二次電池用正極活物質で、一次粒子および一次粒子が凝集した二次粒子からなるケイ酸金属リチウム塩粒子で構成され、一次粒子径は10〜300nm、二次粒子径は0.5〜10μmで、正極活物質の比表面積が25〜35m/g、炭素含有量が3〜7質量%であることを特徴とする。 (もっと読む)


【課題】大量生産が可能であり低コストで取り扱い性に優れた、1次粒子がナノ粒子である金属化合物含有粉末を提供する。
【解決手段】金属イオン含有液または金属水酸化物含有液にパルス衝撃波を伴うジェット噴流を衝突させることにより粒径50nm以下の1次粒子をもつ前記金属の化合物含有粉末を生成させる、前記金属の化合物含有粉末の製造法により達成される。例えばFeイオン含有液または水酸化鉄含有液にパルス衝撃波を伴うジェット噴流を衝突させることにより、粒径50nm以下の1次粒子をもつFe成分含有粉末が得られる。このFe成分含有粉末は、還元処理を施すことにより、ナノ粒子を1次粒子にもつマグネタイトとすることができる。塩素分や硫黄分を効果的に除去するには、さらに溶媒を用いた粉砕処理を施せばよい。 (もっと読む)


21 - 40 / 338