説明

Fターム[4G048AC06]の内容

重金属無機化合物 (15,216) | 有用性 (2,690) | 電池用 (987)

Fターム[4G048AC06]に分類される特許

101 - 120 / 987


【課題】放電容量の大きな二次電池を提供する。
【解決手段】二次電池の電極材料を、ニッケルマンガン酸リチウムが主結晶相であり、実質的に酸化マンガンおよびマンガン酸リチウムを含有していない焼結体により形成する。 (もっと読む)


【課題】炭化水素燃料や含酸素炭化水素燃料の火炎を熱源としたガス焼成炉を使用した場合においても、品質が安定したリチウム遷移金属複合酸化物を得ることができる製造方法を提供する。
【解決手段】リチウム化合物と、遷移金属元素を含む化合物とを混合して得られた原料混合物を、炭化水素および/または含酸素炭化水素燃料と支燃性ガスとを燃焼させた火炎を噴出する複数のバーナを備えたガス焼成炉で焼成するリチウム遷移金属複合酸化物の製造方法であって、
複数の前記バーナとして、前記ガス焼成炉の側壁から当該ガス焼成炉内に向かって水平方向の火炎を噴出する壁面バーナと、前記ガス焼成炉の天井から当該ガス焼成炉内に向かって垂直方向の火炎を噴出する天井バーナとを備えたリチウム遷移金属複合酸化物の製造方法。 (もっと読む)


【課題】炭化水素や含酸素炭化水素燃料の火炎を熱源としたガス焼成炉を使用した場合においても、高品質なリチウム遷移金属複合酸化物を得ることができる方法を提供する。
【解決手段】リチウム化合物と、遷移金属元素を含む化合物とを混合して得られた原料混合物を、炭化水素および/または含酸素炭化水素燃料と支燃性ガスとを燃焼させた火炎を熱源としたガス焼成炉で焼成するリチウム遷移金属複合酸化物の製造方法であって、前記支燃性ガスが、炉内を加熱した後の燃焼排ガスとの熱交換によって予熱されているリチウム遷移金属複合酸化物の製造方法。 (もっと読む)


【課題】安全性が高く、充放電サイクル耐久性、及び充放電レート特性に優れたリチウム二次電池正極用のリチウム含有複合酸化物の製造方法を提供する。
【解決手段】Ni、Co及びMnからなる群から選ばれる少なくとも2種の元素と、Mg、Al、Ga、In、Zn、Ti及びZrからなる群から選ばれる少なくとも1種の元素であるM元素とを含有する混合元素水溶液と、Ni、Co及びMnを含有する化合物粉末とを混合して、得られた前駆体原料粉末とリチウム原料粉末とを混合して焼成し、一般式Li〔Li(NiCoMn1−x〕O2−y(但し、−0.02<x<0.05、0.42<a<0.62、0.05<b<0.25、0.15<c<0.35、0<d<0.1、0≦y≦0.02、a+b+c+d=1)で表されるリチウム含有複合酸化物を製造する。 (もっと読む)


【課題】携帯電話や電気自動車に用いられているリチウムイオン電池の正極活物質である三元系正極活物質(Li(Ni1/3Mn1/3Co1/3)O)からのMnの選択的な分離のために、硫酸還元浸出溶液から酸化剤を用いてMnのみを選択的に沈殿させることにより、化学二酸化マンガンを製造する方法を提供すること。
【解決手段】本発明は、(a)硫酸及び還元剤の混合液で三元系正極活物質粉末を浸出させる第1段浸出のステップと、(b)前記第1段浸出溶液を連続浸出させる第2段浸出のステップと、(c)前記第2段浸出溶液にNaを添加し、Mnを選択的に沈殿させて化学二酸化マンガンを製造するステップと、を含む三元系正極活物質からの化学二酸化マンガンの製造方法を提供する。 (もっと読む)


【課題】Li拡散に好適な結晶構造のLiMnPO粒子の結晶形状を制御、さらには平均一次粒子径を制御することにより、高電圧、高エネルギー密度、高負荷特性、長期のサイクル特性の安定性及び安全性を実現することが可能なリチウムイオン電池用正極活物質とその製造方法及びリチウムイオン電池用電極並びにリチウムイオン電池を提供する。
【解決手段】本発明のリチウムイオン電池用正極活物質は、LiMnPOからなるリチウムイオン電池用正極活物質であり、X線回折図形から算出した格子定数a、b及びcの値が、10.41Å<a≦10.43Å、6.070Å<b≦6.095Å、4.730Å<c≦4.745Åを満たしており、平均粒子径は10nm以上かつ100nm以下である。 (もっと読む)


【課題】炭化水素燃料や含酸素炭化水素燃料の燃焼によって発生する火炎を熱源とした熱風焼成炉を使用した場合においても、高品質なリチウム遷移金属複合酸化物を得る。
【解決手段】熱風焼成炉10は、原料混合物44を収容する製品加熱部12と、複数の蓄熱体収容部13a,13bと、蓄熱体収容部13a,13b内に収容された蓄熱体14a,14bと、蓄熱体14a,14bを加熱するため蓄熱体収容部13a,13bに設けられたバーナ15a,15bと、ガス供給源16及び空気供給源17から供給される炭化水素燃料及び空気をバーナ15a,15bへ供給するガス流路18及び空気流路19と、を備えている。蓄熱体収容部13a,13bから製品加熱部12に向かって開閉弁23a,23b付きの加熱用ガス供給路22a,22bが設けられ、加熱用ガス供給路22a,22bの下流側の加熱用ガス供給路22が製品加熱部12の隔壁12aに接続されている。 (もっと読む)


【課題】ナトリウム等の不純物の混入を抑制でき、高純度の炭酸マンガンをより簡単且つ安価に得ることが可能な炭酸マンガンの製造方法を提供する。
【解決手段】マンガン溶液に、炭酸ソーダに対する苛性ソーダのモル比が1以上の混合溶液を添加して炭酸化を行った後、得られた炭酸マンガンを含むスラリーを純水で洗浄し、洗浄の最後に、液中に二酸化炭素ガスを吹き込むことを含む炭酸マンガンの製造方法である。 (もっと読む)


【課題】過放電に対する高い耐性を有するリチウムイオン二次電池を製造するのに有用な正極材料を提供すること。
【解決手段】本発明に係る正極材料は、リチウムイオン二次電池の正極に用いられるものであって、少なくともLi、Mn、CrおよびOを含む金属酸化物からなり該金属酸化物を構成する元素のモル比がLi:1.1〜1.3、Mn:0.2〜0.6、Cr:0.02〜0.6、および、O:2である。 (もっと読む)


【課題】 粒子の形状・構造や配向性をよりいっそう良好に制御することができる、リチウム二次電池の正極活物質板状粒子の製造方法を提供すること。
【解決手段】 本発明の、リチウム二次電池の正極活物質用の板状粒子の製造方法は、以下の工程を含む。(1)スリットダイコーターを用いて、原料粒子を含むスラリーを所定の基体上にシート状に成膜する。(2)成膜工程によって基体上に形成されたシート状のスラリー膜を乾燥する。(3)乾燥工程を経て得られたシート状のスラリー乾燥膜を基体上から剥離する。 (もっと読む)


【課題】サイクル特性に優れたリチウムイオン二次電池に使用することのできる活物質を、煩雑な工程を要することなく効率的に製造する方法を提供する。
【解決手段】リチウム化合物と、Mn、Ni、Co、Fe、V、Tiから選ばれる少なくとも1種の遷移金属を含む遷移金属化合物とを、無溶媒下に粉砕混合した後、得られた粉体を解砕し、酸化性雰囲気下、マイクロ波を照射して焼成することにより、リチウムイオン二次電池用活物質を製造する。 (もっと読む)


【課題】鉄鋼スラグを原料として鉄鋼スラグを構成するCa、Fe、Mnを分離し、それぞれ有用成分として回収する方法を提供すること。
【解決手段】 本発明の石膏の2水和物およびFe、Mnの酸化物または水酸化物の製造方法は、1)鉄鋼スラグを硫酸に溶解させる第1のステップと、2)鉄鋼スラグを溶解させた硫酸から石膏およびシリカを回収する第2のステップと、3)石膏およびシリカを回収した硫酸中の水分を蒸発させ、得られる粉末を焙焼する第3のステップと、4)その焙焼物を水に溶解させ、水に不溶のFe酸化物を回収する第4のステップと、5)第4のステップの焙焼物を溶解させた水溶液中の水分を蒸発させ、得られる粉末を焙焼する第5のステップと、6)その焙焼物を水に溶解させ、水に不溶のMn酸化物を回収する第6のステップを有する。 (もっと読む)


【課題】 正極活物質の活性化による電池容量の低減を抑えることができるリチウムイオン二次電池用正極活物質の製造方法を提供する。
【解決手段】 リチウムイオン二次電池用正極活物質の製造方法は、組成式:xLi・(1−x)LiM(Mは4価のマンガンを必須とする一種以上の金属元素、Mは1種以上の金属元素、0≦x<1、Liはその一部が水素で置換されていてもよい。)で表される活物質に酸溶液を接触させる酸処理工程と、酸処理を施した前記活物質にリチウム化合物を含むリチウム溶液を接触させるリチウム補填工程とを含む。 (もっと読む)


【課題】
本発明は、リチウム二次電池用の正極材料として優れたリチウムマンガン系複合酸化物を与えるマンガン酸化物およびその製造方法、並びにこれを用いたリチウムマンガン系複合酸化物を提供するものである。
【解決手段】
水銀圧入法によって測定される直径10μm以上の細孔の細孔体積率が20%以下であり、タップ密度が1.6g/cm以上であるマンガン酸化物、及びその製造方法を提供する。また、上記マンガン酸化物を用いたリチウムマンガン系複合酸化物の製造方法を提供する。 (もっと読む)


【課題】優れた初期充放電効率を発揮し得るリチウムイオン二次電池用正極活物質、これを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池を提供する。
【解決手段】リチウムイオン二次電池用正極活物質は、一般式:Li(2−0.5x)y(2−0.5x)(1−y)Mn1−x1.5x(式中、Liはリチウム、□は結晶構造中の空孔、Mnはマンガン、MはNiαCoβMnγ(Niはニッケル、Coはコバルト、Mnはマンガンを示し、α、β及びγは、0<α≦0.5、0≦β≦0.33、0<γ≦0.5を満足する。)を示し、x及びyは、0<x<1.00、0<y<1.00の関係を満足する。)で表され、結晶構造が空間群C2/mに帰属される層状遷移金属酸化物である。 (もっと読む)


【課題】高容量なリチウムイオン二次電池を得るために、Niを含んだリチウム含有複合酸化物を主体とした正極活物質から構成される合剤スラリーにおいて、長期間にわたって粘度の安定した合剤スラリーを提供する。
【解決手段】一般式LiNi(1−y)(0.9≦x≦1.1、0.45≦y≦1.0、M=Al、Mn、Co、Cr、Mg、Fe、Zr、Tiから選択される少なくとも1種の金属)で表わされるリチウム含有複合酸化物を含む正極活物質と、炭素質材料からなる導電助剤と、ポリフッ化ビニリデンを主体としたバインダと、カールフィッシャー法による水分量が100ppm以下であるN−メチル−2−ピロリドンよりなる溶剤から構成される合剤スラリーである。 (もっと読む)


【課題】
高い充填性を有するだけでなく、リチウム化合物との高い反応性を有する電解二酸化マンガン及びその製造方法を提供する。さらには、このような電解ニ酸化マンガンを用いたマンガン酸リチウムの製造方法を提供する。
【解決手段】
BET比表面積20m/g以上60m/g以下であり、細孔直径が2nm以上200nm以下の容積が少なくとも0.023cm/gであることを特徴とする電解二酸化マンガン。このような電解二酸化マンガンは、硫酸−硫酸マンガン混合溶液中にマンガン酸化物を懸濁させて電解二酸化マンガンを得る工程を有する電解二酸化マンガンの製造方法において、前記工程において、マンガン酸化物粒子を連続的に硫酸−硫酸マンガン混合溶液に混合し、硫酸−硫酸マンガン混合溶液中のマンガン酸化物粒子濃度を5mg/L以上200mg/L以下とする製造方法により製造することができる。 (もっと読む)


【課題】容量が大きく、かつ、安全性が高いリチウム二次電池用正極材料を提供する。
【解決手段】組成式Li1.1+xNi(式中、Mは、Co又はCo及びMnであり、Mは、Mo、W又はNbである。−0.07≦x≦0.1、0.6≦a≦0.9、0.05≦b≦0.38、0.02≦c≦0.06である。)で表される正極活物質のうち組成が異なる二種類以上を混合して用いる。 (もっと読む)


【課題】簡便な方法により製造することができ、かつ高い比表面積を有する水酸化ニッケルナノシートおよびその製造方法を提供する。
【解決手段】比表面積が150m/g以上である、水酸化ニッケルナノシートおよびその製造方法である。 (もっと読む)


【課題】優れたイオン伝導性を有する複酸化物積層体、当該複酸化物積層体を備える固体電解質膜・電極接合体及びリチウム二次電池、並びに複酸化物積層体の製造方法を提供する。
【解決手段】下記一般式(1)で表される組成を有する第1の複酸化物層と、当該層の少なくとも一方の面に積層した、下記一般式(2)で表される組成を有する第2の複酸化物層を備えることを特徴とする、複酸化物積層体。
CaNb 一般式(1)
(上記一般式(1)中、1≦x≦3、2≦y≦4、8≦z≦12である。)
LiLaTi 一般式(2)
(上記一般式(2)中、0<p≦1、0<q≦1、0<r≦2、1≦s≦5である。) (もっと読む)


101 - 120 / 987