説明

Fターム[4G073UA01]の内容

Fターム[4G073UA01]の下位に属するFターム

Fターム[4G073UA01]に分類される特許

41 - 60 / 234



【課題】
約5〜30nmの範囲で中心細孔半径の設計が可能な金属ドープ型珪酸カルシウムメソポーラス粉体の製造方法を提供する。
【解決手段】
非晶質珪酸カルシウム水和物の構造中に金属イオンを分散させて合成した金属ドープ型珪酸カルシウム水和物の水熱作用による自己組織化とその後の加熱脱水処理により形成されたメソ細孔の中心細孔半径が約5〜30nmの範囲で制御されていることを特徴とする金属ドープ型珪酸カルシウムメソポーラス粉体。 (もっと読む)


【課題】結晶性ケイ素含有酸化物構造とメソ・マクロ細孔構造を併せ持った材料の、新規な製造技術を提供する。
【解決手段】以下の工程1、工程2、工程3を含む、ミクロ細孔とメソ・マクロ細孔を有する結晶性ケイ素含有酸化物の製造方法:
工程1:エポキシ樹脂、ケイ素アルコキシド及び酸無水物を含有する混合物を反応させてケイ素含有酸化物−エポキシ樹脂複合体を形成する工程、
工程2:得られた複合体をアルカリ性条件下で水熱処理してケイ素含有酸化物を結晶化させる工程、
工程3:工程2で得られた結晶性ケイ素含有酸化物−エポキシ樹脂複合体から有機成分を除去する工程。 (もっと読む)


【課題】水熱処理に対して高い安定性を有するマイクロポーラス結晶性物質および排ガス中のNOxのSCR方法の提供。
【解決手段】SAPOまたはアルミノシリケートゼオライトの様な8員環細孔開口構造を有するモレキュラーシーブまたはゼオライトを含んで成る水熱的に安定なマイクロポーラス結晶性物質であって、10体積パーセントまでの水蒸気の存在下に900℃までの温度に1〜16時間にわたっての暴露の後に、その表面積およびマイクロ細孔体積の少なくとも80%を保持する結晶性物質が開示される。かかる物質の合成方法と同様に、かかる開示された結晶性物質を用いる排ガス中のNOxのSCRのような方法も開示される。 (もっと読む)


【課題】粒子径が小さく且つメソ細孔構造を有し、吸着性能や触媒活性に優れた酸化タンタルメソ多孔体微粒子を提供すること。
【解決手段】平均粒子径が100nm以下であり、窒素吸着等温線において相対圧P/Pが0.99の場合の窒素吸着量がP/Pが0.90の場合の1.4倍以上であることを特徴とする酸化タンタルメソ多孔体微粒子。 (もっと読む)


【課題】 チタン−珪素分子篩が5ミクロン以上の平均粒子径を持ち、シクロヘキサノンオキシムの製造に触媒として用いられる場合、高選択率と高転化率を達成でき、さらに濾過回収が容易である利点を兼ね備えるチタン−珪素分子篩の製造方法を提供する。
【解決手段】 1次結晶粒子分子篩の分散液を用意し、前記分散液に凝集剤と凝集助剤を加えることで粒子を凝集させて凝集粒子溶液を形成し、前記凝集粒子溶液とチタン−珪素テンプレート合成ゲルを混合し、水熱工程を行う、ことを含む、大粒子径チタン−珪素分子篩の製造方法 (もっと読む)


【課題】第2族元素をカチオン、または骨格元素として含有する結晶性多孔質無機酸化物材料の製造方法を提供する。
【解決手段】固体状のケイ素源と、第2族元素の酸化物および水酸化物のいずれか一方または双方とを含む原料固体を粉砕および混合し、メカノケミカル反応させることにより複合粉を調製する第1工程と、好ましくは第1族元素の化合物の存在下で、複合粉を水熱反応させる第2工程とを有することを特徴とする結晶性多孔質無機酸化物材料の製造方法。 (もっと読む)


炭化水素の転化反応に用いる触媒の製造方法であって、前記触媒はチタンゼオライトと炭質材料を含み、前記触媒は該触媒に含まれるチタンゼオライトの総重量に対して0.01〜0.5重量%の量で前記炭質材料を含み、当該方法は、
(i)チタンゼオライトを含む触媒を製造する工程;
(ii)前記触媒を、前記炭化水素転化反応において使用する前に、不活性雰囲気中で少なくとも一種の炭化水素を含む流体に接触させることにより、炭質材料を、該触媒に含まれるチタンゼオライトの総重量に対して0.01〜0.5重量%の量で(i)の触媒に付着させて炭質材料含有触媒を得る工程、
を含み、
(ii)において前記触媒を酸素含有ガスに接触させないことを特徴とする製造方法。 (もっと読む)


【課題】可能な限り構造規定剤を用いずに、環境負荷を可能な限り低減できるMTW型ゼオライトの製造方法を提供すること。
【解決手段】本発明のMTW型ゼオライトの製造方法は、特定のモル比で表される組成の反応混合物となるように、シリカ源、アルミナ源、アルカリ源、リチウム源、及び水を混合し、(2)SiO2/Al23比が10〜500である有機化合物を含まないMTW型ゼオライトを種結晶として用い、これを前記反応混合物中のシリカ成分に対して0.1〜20重量%の割合で該反応混合物に添加し、(3)前記種結晶が添加された前記反応混合物を100〜200℃で密閉加熱することを特徴とする。 (もっと読む)


【課題】従来のソーダライトは、粒径が小さく、なおかつ分散性が低いため、樹脂等添加剤、酸性排ガス処理、放射性物質処理、燃焼触媒としての性能が低いものであった。
【解決手段】平均粒径3〜10μm、BET比表面積0.3〜3m/gであり、且つSi/Alモル比が0.9〜1.1のソーダライト粉末を用いる。当該ソーダライトは平均粒径(Dd)とBET比表面積より求められる平均粒径(Ds)の比(Dd/Ds)が1〜3であることが好ましい。この様なソーダライトは、Si源、Al源、アルカリ金属水酸化物、水、必要に応じて構造規定剤(SDA)を混合して得られる非晶質ヒドロゲルを結晶化するソーダライトの製造において、原料組成物のSi/Alモル比が0.9〜1.1、アルカリ金属/Alモル比が3以上5未満を55〜80℃で混合することによって得られる。 (もっと読む)


ZSM−12の骨格構造およびモル関係:X:(n)YO(式中、Xは三価元素であり、Yは四価元素であり、nは約45未満、たとえば、約40未満である)を伴う組成を有する多孔質の結晶性材料であって、この材料の平均結晶サイズが約0.1ミクロン未満であり、その材料が実質的に不純物を含まない材料が記載される。この材料は、(a)前記材料を形成することができる混合物を調製する工程であって、前記混合物がアルカリまたはアルカリ土類金属(M)源、三価元素(X)の酸化物、四価元素(Y)の酸化物、ヒドロキシル(OH”)イオン、水、並びに有機モノ第四級アンモニウムカチオン指向剤(R)および有機ジ第四級アンモニウム構造遮断剤(R’)を含む工程と;(b)この混合物を、前記材料の結晶が形成されるまで十分な条件下に維持する工程と;(c)工程(ii)からの結晶性材料を回収する工程とによって製造される。この材料は、炭化水素転化プロセス触媒として使用することができる。 (もっと読む)


本発明は、イソパラフィンの最小限の形成で、重ノルマルパラフィンを、より軽いノルマルパラフィン生成物に選択的水素化変換するための触媒として、ボロシリケートZSM−48を使用するプロセスを対象とする。ボロシリケートZSM−48モレキュラーシーブは、新規な構造指向剤を使用して合成される、酸化ホウ素に対する酸化ケイ素のモル比が40から400の間を有する。
(もっと読む)


二成分修飾モレキュラーシーブを製造する方法は、モレキュラーシーブをリン含有水溶液に加えて、混合物を形成させて、前記混合物をpH1〜10で、70〜200℃の温度で、かつ0.2〜1.2MPaの圧力で、10〜200分間反応させて、次いで、濾過し、乾燥させて、得られたものを焼成し、リン修飾モレキュラーシーブを得て、その後、前記リン修飾モレキュラーシーブを銀イオン含有水溶液に加えて、リン修飾モレキュラーシーブを銀イオンと、0〜100℃で暗所で30〜150分間反応させて、次いで、濾過し、乾燥させて、焼成することを含む。得られた二成分修飾モレキュラーシーブは、総て乾物ベースで、アルミナに対するシリカ割合が15〜60の間で、88〜99wt%のモレキュラーシーブと、(酸化物に基づき)0.5〜10wt%のリンと、(酸化物に基づき)0.01〜2wt%の銀と、を含む。二成分修飾モレキュラーシーブから製造された触媒は、改善された熱水安定性及びマイクロ活性を有する。 (もっと読む)


本発明は、シリカ:アルミナモル比が30未満で、Cu:Al原子比が0.45未満である銅含有レビ沸石モレキュラーシーブであって、最大で10体積%の水蒸気の存在下で約750℃〜約950℃の温度に約1〜約48時間暴露した後で該レビ沸石モレキュラーシーブがその表面積の少なくとも60%を保持する銅含有レビ沸石モレキュラーシーブに関する。 (もっと読む)


【課題】ゼオライト及びその製造方法を提供する。
【解決手段】本発明のゼオライト1(LTA型ゼオライト等)は、金属クラスタ21(銀クラスタ等)が略直線状に配列されてなる直線状クラスタ群20を内部に有し、直線状クラスタ群20同士を略平行に配列することができる。本製造方法は、金属イオン(Ag等)を含んだゼオライト10(LTA型ゼオライト等)に対してイオン照射(Au−200MeVイオンビーム照射等)を行って、直線状クラスタ群20を形成するイオン照射工程を備える。 (もっと読む)


【課題】固体微粒子として二酸化チタンを用いた場合、二酸化チタン単体によるアルコールやアルデヒド等の有機物質の分解速度とほぼ同様の分解能を備える微粒子複合体を製造することができる微粒子複合体の製造方法を提供することを目的とする。
【解決手段】微粒子複合体の製造方法は、固体微粒子を炭素で被覆して炭素被覆固体微粒子を得る工程と、前記炭素被覆固体微粒子を含む合成媒体中に多孔体を生成可能な成分を添加し、混合することにより、前記炭素被覆固体微粒子と前記多孔体を生成可能な成分とを複合化させて微粒子含有複合前駆体(a)を得る工程と、前記微粒子含有複合前駆体(a)を焼成し、前記炭素を消失させて、前記固体微粒子と多孔体とを含有する微粒子複合体を得る工程と、から構成される。 (もっと読む)


【課題】成形体の強度を維持しつつ、成形体の薄肉化・多孔化を図ることができ、吸着性粒子の吸着性能を維持できる、吸着機能を備えた成形体を提供する。
【解決手段】吸着性粒子と、硬化性シリコーン組成物からなるバインダーとを含有してなる成形体であって、前記バインダーが常温にてゴム弾性を有することと、前記吸着性粒子の含有量が、吸着性粒子及びバインダーの合計量100質量部に対して60質量部以上、90質量部以下であることと、造孔材により多孔化されていることとを特徴とする成形体を提案する。 (もっと読む)


【課題】吸着分離剤として、また、触媒として有用な、骨格を形成するAl原子及び/又はSi原子の一部がCo原子に置換された骨格置換モルデナイト型ゼオライト、又は同アナルサイム型ゼオライト、及びそれらの製造方法を提供する。
【解決手段】コバルトの2−(2−アミノエチル)グリシン錯体を含むアルミノシリケートゲルを、水熱反応に供して、骨格を形成するAl原子及び/又はSi原子の一部がコバルトで置換された、コバルト骨格置換モルデナイト型ゼオライト、又は同アナルサイム型ゼオライトを製造する方法、及び該方法により製造されるコバルト骨格置換モルデナイト型ゼオライト、又は同アナルサイム型ゼオライト。
【効果】コバルト骨格置換モルデナイト型ゼオライト、又は同アナルサイム型ゼオライトを合成し、提供することができる。 (もっと読む)


【課題】均一で規則的に配列したメソ細孔内に多数のスルフィド基を多量に含有するメソポーラスシリカ、及び工程が簡便であるそれの製造方法を提供する。
【解決手段】メソポーラスシリカ1は、スルフィド基含有アルコキシシランが界面活性剤のミセル2を取り巻きつつ縮合したポリシロキサン骨格によって開孔したメソ細孔4を形成したシリカ粒子3が、ミセル2の除去により空洞となったメソ細孔4を露出しつつ、凝集している。その製造方法は、ミセル2を形成する工程と、スルフィド基含有アルコキシシランを、ミセル2と混合し、アルカリ性条件下で、ミセル2に取り巻かせつつ、それのポリシロキサン骨格へと縮合することによって、ミセル2が内包された開孔のメソ細孔4を有するシリカ粒子3の凝集中間体を、形成する工程と、凝集中間体を、溶媒と混合することにより、ミセル3を除去して、メソポーラスシリカ1を形成する工程とを、含む。 (もっと読む)


【課題】アルミノシリケートMCM-68の合成を行う条件下、特定の処理を行うことによりモルデナイトを生成する方法の提供。
【解決手段】MCM-68の合成を行う際に、結晶化の最中に、原料を適度に流動させることにより、モルデナイト(mordenite)が生成する。即ち、本発明は、(1)シリカ源、(2)N,N,N',N'−テトラアルキルビシクロ[2.2.2]オクト−7−エン−2,3:5,6−ジピロリジニウム(但し、アルキル基は、その炭素数が4以下であり、同じであっても異なってもよい。)の水酸化物又はハロゲン化物、(3)アルカリ金属水酸化物又はアルカリ土類金属水酸化物、及び(4)水との混合物を、オートクレーブ中でこの混合物を流動させながら加熱することから成るモルデナイトの製法、及びこの合成したままの(as-synthesized)モルデナイトを更に焼成することから成るモルデナイトの製法。 (もっと読む)


41 - 60 / 234