説明

Fターム[4G075FC11]の内容

物理的、化学的プロセス及び装置 (50,066) | 装置8(機能、物性) (2,254) | 導電体、熱伝導体 (369)

Fターム[4G075FC11]の下位に属するFターム

超伝導体
半導体 (45)

Fターム[4G075FC11]に分類される特許

21 - 40 / 324


【課題】マイクロ流体デバイス及びその製造方法を提供する。
【解決手段】
マイクロ流体チャネルを有する基板と、プライマ層及び前記プライマ層上に設けられマイクロ流体チャネルに関連して配置された導電層を含む導電性機構とを具備するマイクロ流体デバイスが提供される。前記プライマ層は、(i)有機ポリマーと、(ii)前記有機ポリマーを分散させた多孔性微粒子材料とを含む。前記有機ポリマーは、(a)ビニルラクタム反復単位を含むホモポリマーまたはコポリマー、(b)セルロースエーテル、(c)ポリビニルアルコール、及び(d)未変性ゼラチンまたは変性ゼラチンからなる群から選択される。 (もっと読む)


【課題】流動するガスを効率よく加熱することができるとともに、熱分解させることができ、さらに、単独であるいは他のガス分解装置と組み合わせて用いることができる多孔質発熱体、多孔質発熱素子及びガス分解素子を提供する。
【解決手段】連続気孔1bを有する金属多孔質体からなる多孔質発熱体1であって、発熱材料からなる外殻と、中空又は/及び導電性材料からなる芯部とを有する骨格10が、一体的に連続する3次元網目構造を構成している。 (もっと読む)


【課題】プラズマ反応方法及びプラズマ反応装置を提供する。
【解決手段】密閉空間内に、少なくとも一対の導電ループを内設させ、密閉空間内には反応流体を充填させて、少なくとも一対の導電ループに対し電場或いは/及び磁場が発生する事で、密閉空間内の導電ループの表面の粒子を磁場或いは電場により高エネルギー電子、高エネルギーイオン及び高エネルギー中性原子等に分離させるプラズマ反応を起こさせて、密閉空間内の電気エネルギーと電気エネルギー間、電気エネルギーと磁気エネルギー間、磁気エネルギーと磁気エネルギー、及び物質間の電子等の相互転換効果を更に効率化させる。 (もっと読む)


【課題】筒状MEA内を流れるガスの温度を高めて分解効率をより高めることができるとともに、外部配管やこれを接続する接続部材、及びこれらの間に設けられるシール構造が熱により損傷するのを防止し、さらに製造コストを低減させることを課題とする。
【解決手段】筒状の固体電解質層1と、この固体電解質層の内周部に積層形成された第1の電極層2と、上記固体電解質層の外周部に積層形成された第2の電極層5とを有する筒状MEAを用いて構成されるガス分解装置100であって、上記筒状MEAを収容して加熱する加熱容器と、上記筒状MEAに連続して設けられるとともに上記加熱容器から突出する突出部と、上記突出部の開口端部に設けられた接続部材と、軸を上下方向に配向した姿勢で上記筒状MEAを保持する保持手段82とを備えて構成されている。 (もっと読む)


【課題】筒状MEA(Membrane Electrode Assembly)内を流れるガスの温度を高めて分解効率をより高め、外部配管やこれを接続する接続部材、及びこれらの間に設けられるシール構造が熱により損傷するのを防止し、さらに製造コストを低減させる。
【解決手段】筒状の固体電解質層とこの固体電解質層の内周部に積層形成された第1の電極層と固体電解質層の外周部に積層形成された第2の電極層とを有する筒状MEA7において、筒状MEAを収容して加熱する加熱容器51と筒状MEAに連続して設けられるとともに加熱容器から突出する突出部41と突出部の開口端部に設けられた接続部材30とこれら部位の温度又はこれら部位を流動するガスの温度を計測できる温度センサ73と突出部又は接続部の温度あるいはこれら部分を流れるガスの温度が所定の温度以下となるように制御する制御手段72を備える。 (もっと読む)


【課題】筒状MEA内を流れるガスの温度を高めて分解効率をより高めることができるとともに、外部配管やこれを接続する接続部材、及びこれらの間に設けられるシール構造が熱により損傷するのを防止し、さらに製造コストを低減させることを課題とする。
【解決手段】筒状の固体電解質層1と、この固体電解質層の内周部に積層形成された第1の電極層2と、上記固体電解質層の外周部に積層形成された第2の電極層5とを有する筒状MEA7を用いて構成されるガス分解装置100であって、ガスを上記筒状MEA内に出入りさせる接続部材30と、上記筒状MEAを収容して加熱する加熱容器51とを備え、上記筒状MEAに、上記加熱容器の外部に突出する突出部41を設け、上記接続部材を上記突出部の先端部に設けて構成されている。 (もっと読む)


【課題】滑走型電気アーク装置用セラミック電極、その製造方法および滑走型電気アーク装置の提供。
【解決手段】滑走型電気アーク装置用セラミック電極122に関し、セラミック電極122は、背部202とヒール部206と先端部208とで規定されセラミック羽根200を有し、セラミック羽根200の放電端部204は、セラミック羽根200のほぼヒール部206から先端部208にかけて発散形状で規定され、セラミック羽根200に接続した台座表面210は、滑走型電気アーク装置内にセラミック羽根200を容易に取付けられるように構成。 (もっと読む)


【課題】設置スペースに余裕のない事業所であっても導入しやすく、且つ、導入コストを軽減できる、揮発性有機化合物処理ユニットの設置構造を提供する。
【解決手段】ガスを流通させる孔部が形成された導電性発熱体20に電極21が取り付けられている加熱部2、揮発性有機化合物の酸化分解温度を低下させる触媒体31がガス流路を備えている触媒部3、及び、加熱部及び触媒部を内部に支持する筒状のケーシング40を備え、加熱部及び触媒部がそれぞれケーシングの内部空間を軸方向に交差して区画するように配設されている処理ユニット1と、建物の壁60に設けられた通気孔61に嵌め込まれた排気用の送風機50とを具備し、処理ユニットが送風機を建物の内部空間で被覆するように、触媒部を送風機に向けた状態で壁に対して取り付けられている。 (もっと読む)


【課題】ランニングコストを抑えながら大きな処理能力を得ることができると共に、筒状MEA内を流れるガスの分解効率をより向上させることのできるガス分解素子及びそのガス分解素子を備える発電装置の提供を課題とする。
【解決手段】筒状の固体電解質層1と、この固体電解質層1の内周部に積層形成された第1の電極層2と、この固体電解質層1の外周部に積層形成された第2の電極層5とを有する筒状MEA7を備え、上記筒状MEA7の内側には分解に供せられる第1のガスを流す第1のガス流路を備えると共に上記筒状MEA7の外側に第2のガスを流す第2のガス流路を備えたガス分解素子であって、上記筒状MEA7の内側に備えられる第1のガス流路に、流れてくる第1のガスと接触して分解を促進するガス分解促進手段71を配置してある。 (もっと読む)


【課題】固体電解質を用いた電気化学反応を利用することによって、ランニングコストを抑えながら、大きな処理能力を得ることができる、ガス分解素子、ガス分解素子の製造方法及び発電装置を提供する。
【解決手段】内面側の第1の電極2と、外面側の第2の電極5と、上記第1の電極及び第2の電極によって挟まれる固体電解質1とを備えて構成される筒状体MEA7と、上記筒状体MEAの内面側に挿入され、上記第1の電極に導通する多孔質金属体11sとを備えるガス分解素子10であって、上記第1の電極の内周面に形成された多孔質の導電性ペースト塗布層11gと、上記導電性ペースト塗布層の内周側に配置された金属メッシュシート11aとを備え、上記第1の電極と上記多孔質金属体とが、上記導電性ペースト塗布層及び金属メッシュシートを介して導通させられて構成される。 (もっと読む)


【課題】画像形成装置に用いられトナー等の粉体を製造する粉体製造装置や、画像形成装置に採用され、トナー等の粉体を収容して排出する粉体収容器において、粉体の付着や固着を抑制する。
【解決手段】粉体と接触する部分を導電性ポリマーシートである導電性ポリエチレンシート1で形成するものであって、導電性ポリエチレンシート1端部同士の接合部を、ポリエチレン系接着剤3を用いて接着して、粉体が接触する面の接合部を平滑にする。 (もっと読む)


【課題】反応物質の量を減らすために微量の反応物質を取り扱うことができ、かつガス状の反応物質を効率よく捕集することで放射性同位元素標識化合物の収率を向上することができるRI化合物合成装置を提供すること。
【解決手段】流体通路30内に設けられた原料保持部34に伝熱部材40が当接する構成とし、伝熱部材40の内部に設けられた冷却部42及び加熱部44によって、伝熱部材40を介して原料保持部34を冷却及び加熱する。原料保持部34が冷却されることで、原料保持部34に進入する[11C]ヨウ化メチルガスの保持が効率良く行われる。また、[11C]ヨウ化メチルガスとスピペロンを混合し反応させるときは、原料保持部34を加熱することで、合成反応に適した温度に調整され、反応効率が向上する。その結果、[11C]メチルスピペロンの収率が向上する。 (もっと読む)


【課題】筒状MEA内を流れるガスの温度を効率よく高め、分解効率をより向上させると共にランニングコストを抑えることができるガス分解素子、そのガス分解素子を備える発電装置及びガス分解方法の提供を課題とする。
【解決手段】筒状の固体電解質層1と、この固体電解質層1の内周部に積層形成された第1の電極層2と、この固体電解質層1の外周部に積層形成された第2の電極層5とを有する筒状MEA7を備え、筒状MEA7の内側には分解に供せられる第1のガスを流す第1のガス流路を備えると共に筒状MEA7の外側に第2のガスを流す第2のガス流路を備えたガス分解素子10であって、該ガス分解素子10は素子全体を加熱するためのヒータ52を備えると共に、上記第1のガス流路に導かれる上記第1のガスを予め通過させて予備加熱を行うための予備加熱用配管53を備えている。 (もっと読む)


【課題】ランニングコストを抑えながら大きな処理能力を得ることができるとともに、筒状MEA内を流れるガスの温度を高めて分解効率をより高めることのできる、ガス分解素子を提供する。
【解決手段】筒状の固体電解質層1と、固体電解質層の内周部に積層形成された第1の電極層2と、外周部に積層形成された第2の電極層5とを有する筒状MEA7より構成されるガス分解素子10の、筒状MEA内にガス誘導パイプ11を設け、この一端部よりガスを導入し、第1の電極層に作用させて分解するように構成するとともに、誘導パイプ内に、流動ガスとの熱伝導を促進する加熱促進手段50を設ける。 (もっと読む)


【課題】プラズマ処理が効率よく行われるプラズマ処理装置を提供する。
【解決手段】プラズマ処理装置1000においては、アノード1060及びカソード1062が流路1018の途中にある。カソード1062は、それぞれ、アノード1060より流路1018の上流側及び下流側にある。アノード1060及びカソード1062は、流体通過面を横切り、流体通過面の一部のみを占める。アノード1060とカソード1062とは流路の軸方向に間隔を置いて対向する。アノード1060はパルス電源1004の正極に電気的に接続され、カソード1062はパルス電源の負極に電気的に接続される。アノード被覆は、絶縁体からなり、導電体からなるアノード本体を被覆する。凹構造がアノード被覆の表面に形成される。凹構造の群はアノードの表面に分布する。 (もっと読む)


【課題】簡易且つ低コストに微細流路を形成することができ、プレートの接合面の加工精度も要求されず、材料選択の幅が広く、十分な耐圧強度も維持しつつ、流路長を長くとることができ、コンパクト化が実現できるマイクロリアクターの流路デバイス及びこれを備えた加熱反応装置を提供せんとする。
【解決手段】流路デバイス1は、金属製のデバイス本体10に形成される内部空間10sに、金属管20を渦巻き状に屈曲変形させて構成される渦巻き管体2A,2Bを装着して反応流路とした。加熱反応装置Sは、流路デバイス1と、該流路デバイス1に接続される導入管31及び排出管32と、流路デバイス1の外面に接触した状態で周囲を囲む金属製の加熱ブロック4と、加熱ブロック4の周囲を囲む断熱壁5と、該加熱ブロック4に付設される発熱手段6と、該加熱ブロックに外気又は冷風を当てて冷却するための送風手段7とを少なくとも備える。 (もっと読む)


【課題】
揮発性有機ガス等の有害ガスを含むガスを、プラズマと触媒とを併用して、低温で浄化する方法および装置を提供する。
【解決手段】
触媒微粒子を担持したシートまたは繊維構造体からなるフィルターをプラズマ反応器に装填することにより、低い印加電圧でプラズマの発生が可能となり、触媒微粒子とプラズマとの相乗作用により、有害ガス等を含むガス中の有害ガス等を効率よく分解することを可能とした。具体的には、浄化方法は、触媒微粒子が担持された、シートまたは繊維構造体からなるフィルターが装填され、電圧の印加によりプラズマを発生する低温プラズマ反応層内に、揮発性有機ガス等の有害ガスを含む空気を通過させて、揮発性有機ガス等の有害ガスを分解することを特徴とする。 (もっと読む)


【課題】ナノスケール導電性微粒子を長時間にわたって連続的に製造することができる、ナノスケール導電性微粒子の連続製造装置を提供する。
【解決手段】本装置は、導電性の液体を収容した第1の容器10と、第1の容器に導電性の液体を供給する送液路20と、第1の容器内の導電性の液体中に配置された導電性材料からなる陰極30と、導電性の液体中において陰極から所定の距離を隔てて配置された陽極40と、陰極の近傍にグロー放電プラズマを生じさせる電圧を陰極と陽極との間に印加する電源50と、液体を収容した1つ又は複数の第2の容器60と、第1の容器及び1つ又は複数の第2の容器を連通する液体流路70とを備える。 (もっと読む)


【課題】表面にナノレベルの微細構造が形成された導電性材料を低コストで効率的に製造できる方法を提供する。
【解決手段】電解溶液3中に、不溶性陽極電極4と、被処理表面を有する導電性材料からなる、陰極電極5としての被処理材とを浸漬した後、電解溶液3中に浸漬した不溶性陽極電極4と、陰極電極5としての被処理材との間に、第1電圧以上、第2電圧未満の電圧を印加し、被処理表面を改質処理する表面改質処理工程を含み、第1電圧が、表面改質処理系の電圧−電流特性において、正電圧領域に最初に現れる第1電流極大値と、正電圧領域に最初に現れる第1電流極小値との和の1/2の電流値に対応する電圧であり、第2電圧が、完全プラズマ状態を呈する電圧であることを特徴とする表面改質された導電性材料の製造方法である。 (もっと読む)


【課題】短命活性種と長命活性種のそれぞれの特徴を生かし、放電期間全体において高い殺菌性と持続性のある殺菌性とをバランスよく両立させることを可能とする放電装置を提供すること。
【解決手段】この放電装置DA1は、気中放電の放電発光高さが第一の高さとなる第一の放電と、気中放電の放電発光高さが第二の高さとなる第二の放電とを交互に発生させるものであって、第一の高さを第二の高さよりも高くすることで、第一の放電によって発生する活性種は第二の放電によって発生する活性種よりも活性寿命が短い短命活性種を多く含む一方で、第二の放電によって発生する活性種は第一の放電によって発生する活性種よりも活性寿命が長い長命活性種を多く含むように、発生する活性種の態様を変化させる。 (もっと読む)


21 - 40 / 324