説明

Fターム[4G140FC05]の内容

水素、水、水素化物 (21,792) | 分離手段 (717) | 液体による洗浄、吸収 (36) | 液体の選択 (18)

Fターム[4G140FC05]に分類される特許

1 - 18 / 18


【課題】繰り返し使用できるイオン液体の存在下に、ギ酸から水素を継続的にかつ低コストで製造することができる水素発生システムを提供すること。
【解決手段】ギ酸とイオン液体の混合液体を収容し、加熱下でギ酸とイオン液体の混合液体中のギ酸を水素と二酸化炭素に分解する水素生成反応部;および水素生成反応部から供給された水素と二酸化炭素の混合物を水素と二酸化炭素とに分離可能な分離部を備え、分離処理後における水素を分離部から外部の水素送出先へ送出し、かつ二酸化炭素を分離部から外部の二酸化炭素送出先へ送出するかあるいは大気中に排出するように構成したことを特徴とする水素発生システム。 (もっと読む)


【課題】GTL(Gas−To−Liquid)プロセスの合成ガス製造工程に用いる合成ガス製造装置(リフォーマー)への金属成分の混入を防ぐ。
【解決手段】天然ガスとスチームおよび/または二酸化炭素を含むガスとを合成ガス製造装置内で改質反応して合成ガスを製造する合成ガス製造工程を含むGTLプロセスの合成ガス製造装置への金属混入抑制方法であって、該合成ガス製造工程で製造された該合成ガス中の炭酸ガスを分離回収し、分離回収された該炭酸ガスを該合成ガス製造工程における改質反応の原料ガスにリサイクルする際に、該リサイクルされる炭酸ガス中に含まれるニッケルの濃度が0.05ppmv以下であることを特徴とする合成ガス製造装置への金属混入抑制方法。 (もっと読む)


【課題】排ガスから、二酸化炭素をエネルギー効率よく分離することができる水素製造装置を提供すること。
【解決手段】改質ガスを得る改質部1を備え、改質ガスを二酸化炭素を含む排ガスと水素とに分離して水素を製造する水素分離部2を備え、排ガスから二酸化炭素を吸収する吸収部31と、吸収された二酸化炭素を分離回収する分離回収部32とを有するとともに、吸収部31で二酸化炭素を吸収した二酸化炭素吸収液と、分離回収部32で二酸化炭素を分離回収された二酸化炭素吸収液との間で熱交換を行う熱交換部33を有する二酸化炭素回収部3とを備え、改質ガスが改質部1から水素分離部2に移送される第一部位P1において改質ガスの保有する熱を、吸収部31から分離回収部32に移送される過程で熱交換部33で熱交換済みの二酸化炭素吸収液に供給する第一熱回収手段R1を備えた。 (もっと読む)


【課題】製造終了時に存在する不純物、特にメタンを捕捉し、かつエネルギー損失なしで水蒸気改質に向けて不純物を再循環させることを可能にする水素製造方法を提案する。
【解決手段】本発明は、炭化水素供給原料及び水蒸気からの水素製造方法であって、水蒸気の存在下、炭化水素供給原料を水蒸気改質する装置において合成ガスを生じさせ、燃料が反応に必要な熱をもたらす、工程と、先行工程で得られた合成ガスを蒸気に転化し、メタン及び二酸化炭素を含有する水素の流れを生じさせる、工程と、蒸気転化工程から得られた流れ中に存在する二酸化炭素を捕捉し、水素の流れから二酸化炭素を分離することを可能にする、工程と、水素の流れ中に存在する不純物を捕捉し、かつ水蒸気改質に向けて再循環させ、減圧段階を含む、工程とを含む方法に関する。 (もっと読む)


【課題】多結晶シリコン製造装置の反応排ガスの分離を行うために使用する補給水素の量を極力低減すること。
【解決手段】塩化水素吸収装置(30)でクロロシラン類及び塩化水素が除去された反応排ガスは吸着装置(50)に導入され、精製された水素の回収が行なわれる(S105)。吸着装置(50)には活性炭が充填されており、水素主体のガスが該活性炭充填層を通過する間に、ガス中に含まれる未分離のクロロシラン類、塩化水素、および窒素、一酸化炭素、メタン、モノシランが活性炭に吸着されてガス中から除去され、精製された水素が得られる。窒素、一酸化炭素、メタン、モノシランは吸着状態が圧縮気体であるが、塩化水素およびクロロシラン類は吸着状態が液体であり脱着時には気化熱を与える必要がある。この特性を利用して、脱着ガスの経路を分離するだけで、塩化水素およびクロロシラン類とその他の不純物成分の分離を可能としている。 (もっと読む)


【課題】石炭等を燃料として水素を製造する場合に、二酸化炭素を少ない動力で超臨界状態で回収する水素製造方法を提供すること。また、そのような水素製造方法のための水素製造装置を提供すること。
【解決手段】石炭等を燃料としてガス化させ、水素を製造する場合、水性ガス転化後の水素と二酸化炭素とを含む混合ガスを、ガス分離装置を用いて分離する。ガス分離装置として使用するアルカリ吸収装置は、吸収塔から再生塔へと吸収液を送る際には吸収液を二酸化炭素の臨界圧力以上に加圧し、再生塔から吸収塔へと吸収液を返送する際には冷却及び減圧する。また、ガス分離装置として使用する深冷分離装置は、蒸留塔内に貯留される液化炭酸ガスを二酸化炭素の臨界圧力以上に加圧した後、蒸留塔に供給される膨張前の圧縮された混合ガスとの間で熱交換する。 (もっと読む)


【課題】不純物を含んだ水素ガスを安価で効率よく、大量に高純度化できる精製法と製造装置を提供する。
【解決手段】一次水素ガス濾過槽10内に超純水32が入れられ、一次水素ガス濾過槽10に導入された水素ガスは超純水層11を通る間に精製され高純度化一次水素ガスとなり、次いで、高純度水素ガス接続管を通って二次高純度水素ガス濾過槽15に導入される。二次高純度水素ガス濾過槽15において、下方は高純度水素ガス・超純水混合室16が位置し、上方は超高純度水素ガス室19が位置する。二次高純度水素ガス濾過槽15は、下方にメッシュ板などの気体や液体の通過が自由な仕切り板18を設けると共に、その上方にも、メッシュ板などの気体や液体の通過が自由な仕切り板18'を設け、その間にカール線材を充填してある層を形成し水素の純度を高めることができる。 (もっと読む)


主成分の一酸化炭素及び水素以外に、硫化水素、HCN及び/又はCOSも含むフィード合成ガス流から精製合成ガス流を生成する方法であって、該方法は、(a)蒸気/水の存在下のシフト反応器において、フィード合成ガス流を水性ガスシフト触媒と接触させて、一酸化炭素の少なくとも一部を反応させて二酸化炭素にすることによりHCN及び/又はCOSを除去して、HCN及び/又はCOSが激減した合成ガス流を得るステップ、(b)HS除去ゾーンにおいてこのガス流を、水性アルカリ洗浄液と接触させることによりHCN及び/又はCOSが激減した合成ガス流中の硫化水素を除去して、HSが激減した合成ガス流及び硫化物を含む水性流を得るステップ、(c)硫化物を含む水性流を、バイオリアクターにおいて酸素の存在下で硫化物を酸化する細菌と接触させて、硫黄スラリー及び再生水性アルカリ洗浄液を得るステップ、(d)HSが激減した合成ガス流から二酸化炭素を除去して、精製合成ガス流及びCOを富化したガス流を得るステップを含む。
(もっと読む)


【課題】製造終了時に存在する不純物、特にメタンを捕捉し、かつ、エネルギー損失なしでそれらを水蒸気改質工程に再循環させ得る水素製造方法を提案する。
【解決手段】水蒸気の存在下に炭化水素供給材料を水蒸気改質するための装置において合成ガスを製造する工程であって、燃料が、反応に必要な熱を提供する、工程と、先行工程において得られた合成ガスを水蒸気転化し、メタンおよび二酸化炭素を含有する水素の流れを生じさせる工程と、水蒸気転化工程から得られた流れの中に存在する二酸化炭素を捕捉して、水素の流れから二酸化炭素を分離する工程と、水素の流れの中に存在するメタンおよび他の不純物(CO、CO)を捕捉し、これを水蒸気改質工程に再循環させる工程とを包含する。 (もっと読む)


【課題】アンモニア除去器を含む加圧状態の循環系に大気圧状態の熱交換水タンクからポンプ等の加圧手段を用いることなく補給水を供給できる改質ガス供給装置および供給方法を提供する。
【解決手段】水蒸気発生手段2と、改質器4と、改質ガスに含まれるアンモニア除去器5と、改質ガスを固体高分子型燃料電池9に供給する改質ガス供給手段8を備える。そしてアンモニア除去器5の排水部5aから流出する水を水蒸気発生手段2に供給する補給水供給手段6と、燃料電池冷却用の熱交換水タンク39を備え、アンモニア除去器5の排出部5aから補給水タンク35にアンモニア含有水を供給するドレン配管33と、補給水タンク35から水蒸気発生手段2へ補給水を供給する補給水供給配管13と、前記熱交換水タンク39から前記補給水タンク35に熱交換水の一部を補給水として受け入れる補給水受入配管45を有し、補給水タンク35にオーバフロー配管36を設ける。 (もっと読む)


炭素質原料から浄化合成ガス流を製造する方法であって、(a)炭素質原料を分子酸素合成ガスで部分酸化し、主成分の一酸化炭素と水素の他に水、硫化水素及び二酸化炭素を含有した合成ガスを得る工程、(b)合成ガスとメタノールを混合し、その混合物の温度を下げ、冷却された気体状合成ガスから液体のメタノール−水混合物を分離する工程、(c)工程(b)で得られた冷却合成ガスをメタノールと接触させて合成ガス中の硫化水素と二酸化炭素の含有量を減少させることで、硫化水素と二酸化炭素を含有した濃メタノールと、硫化水素と二酸化炭素の減少した合成ガス流とを得る工程、(d)濃メタノールから二酸化炭素フラクションと硫化水素フラクションを分離して、工程(b)及び(c)のメタノールとして用いる希薄メタノールを得ることにより、工程(c)の濃メタノール流を再生する工程、(e)前記メタノール−水混合物中のメタノールの一部を分離し、工程(b)及び/又は(c)において再利用する工程、(f)工程(b)で得られた前記メタノール−水混合物中に存在するメタノールの別の一部を、メタノールが一酸化炭素と水素に変換される条件下で工程(a)に循環させる工程、を含む方法。 (もっと読む)


【課題】水素リッチガスのガス成分による特性低下に鑑みてなされたもので、燃料電池スタックへ供給する水素リッチガスを、より燃料極を劣化させないものとすることのできる手段を備えた燃料電池発電システムを提供する。
【解決手段】燃料電池発電システムにおいて、燃料電池スタック7の燃料極7aの上流側に、CO2 除去装置1が設けられている。このCO2 除去装置1は、溶解槽1aと脱気槽1bとの2つの水槽から構成される。溶解槽1aと脱気槽1bとは、それぞれ個別の機能を有するとともに、2つの槽はCO2 除去装置循環部2において連通している。 (もっと読む)


【課題】混合ガス中の水素のみ選択的に水素化触媒反応器にて水素不飽和芳香族化合物に添加し、生成した水素飽和芳香族化合物から脱水素触媒反応器で水素を高純度で分離し、同時に生成した水素不飽和芳香族化合物を水素化反応器に循環させる水素化および脱水素反応操作を交互に行う場合において、水素化反応物からの脱ガスと脱水素反応を効果的に行なう方法及び装置を提供する。
【解決手段】高圧・高温下における脱水素反応の際に、反応が気相で行われるように、あらかじめ芳香族化合物に水素を添加して沸点を下げること、及びガス除去塔により効果的に脱ガスを行なう混合ガスからの水素精製方法及び装置。
【効果】バイオ、COGなど広い範囲の水素混合ガスから、不純物除去の特段の前処理なしで99%以上の高純度水素をほぼ100%に近い回収率で得ることができる。また製品圧力をガス圧縮なしで原料より高くすることも経済的に行うことが出来る。 (もっと読む)


【課題】酸素含有炭化水素を改質反応させた改質ガスのCO選択酸化によるCO低減について、改質ガス中の未反応および未分解の原料および副生成物がCO選択酸化反応に悪影響を及ぼす。
【解決手段】原料供給部1から供給した原料が改質器3によって改質ガスとされ、改質ガス中の未反応および未分解の原料および副生成物の濃度を不純物濃度検出器4によって検出し、不純物濃度が設定値よりも高い場合は改質ガスを不純物低減器5に導入して改質ガス中の不純物濃度を低減させてからCO選択酸化反応器7へ導入する。 (もっと読む)


水素、一酸化炭素、メタン、及びメタンより重い炭化水素を含むCOリッチ流を生成する新規の方法を開示する。当該方法は、全方法の資本コストを下げる複合CO精製・脱メタン装置塔(5)及び当該方法が必要とするエネルギーを減らす効率的な熱統合を利用する。この方法は、自己熱分解反応装置の流出物(1)からのCOリッチ流(10)の回収に有用である。特に、一つ以上の重成分(6)がメタン(11)と混合した時に純粋生成物としてより高い価値を有する場合、及び精製水素流(8)の生成も望まれる場合に有用である。 (もっと読む)


本発明は、水素及び一酸化炭素を同時に製造する方法であって、合成ガスを生成することと、それを二酸化炭素を除去することによって処理することと、水及び残留二酸化炭素を前記ガスを吸着剤床に通すことで除去することと、残った成分を、少なくとも、H2リッチの流れと、窒素及びアルゴンから選ばれる少なくとも1種の不純物を含むCOの流れと、メタンリッチのパージガスの流れと、フラッシュガスの流れとを形成することによって分離することとにある方法に関する。本発明の方法は、また、吸着剤床を、形成されたH2の流れの少なくとも1つのゼロでない部分を含む再生ガスを通すことによって再生することと、少なくともパージガス及びフラッシュガスを、合成ガス生成段階に供給するために再循環させることとにある。 (もっと読む)


合成ガスを製造及び変換するための方法は、改質段階18において、メタンを含む供給ガス34を改質して、水素及び一酸化炭素を含む合成ガス46を生成する。フィッシャー・トロプシュ炭化水素合成段階24において、水素及び一酸化炭素の一部をフィッシャー・トロプシュ製品48に変換する。未反応の水素及び一酸化炭素、メタン並びに二酸化炭素を含むテールガス52をフィッシャー・トロプシュ製品48から分離する。ガス処理段階28,30において、蒸気の存在下でテールガス中のメタンを改質することによってテールガスを処理し、二酸化炭素を除去して、水素リッチガス56を生成する。テールガス処理段階28,30は、コンビネーション型テールガス処理段階28,30又は複合型テールガス処理段階28,30のいずれであってもよい。テールガス処理段階28,30からの二酸化炭素を改質段階18に供給する。 (もっと読む)


【課題】 混合ガスから酸性ガスを高効率かつ低コストで分離回収し、吸収液の単位体積当りの酸性ガス吸収量を増大し、吸収液の循環量を低減し、循環エネルギを節約する。
【解決手段】 所定の温度及び圧力に維持した吸収塔13の上部に、イオン性液体を主成分とする吸収液を供給し、吸収塔13の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給して、吸収液に混合ガスを接触させる。これにより酸性ガスを吸収液に吸収させて、非酸性ガスを酸性ガスから分離して吸収塔13から回収する。吸収塔13内の温度より高い温度に維持しかつ吸収塔13の圧力と同一又は低い圧力に維持した再生塔16の上部に、酸性ガスを吸収した吸収液を供給する。これにより酸性ガスを放散させて吸収液から分離して再生塔16から回収するとともに、吸収液を再生する。この再生された吸収液を吸収塔13の上部に供給する。上記イオン性液体に一級アミン基が導入される。 (もっと読む)


1 - 18 / 18