説明

Fターム[4K001AA20]の内容

金属の製造又は精製 (22,607) | 目的金属 (6,463) | Pb (259)

Fターム[4K001AA20]に分類される特許

81 - 100 / 259


【課題】ISP法における上吹き焼結機を用いた焼結塊の生産工程において、失火トラブルを無くし、かつ点火用バーナーに使用する燃料の原単位を低減させる、点火バーナーの原料点火方法を提供する。
【解決手段】ISP法による焼鉱生産で使用される上吹き式焼結機に装入された原料に点火用バーナーを用いて点火する原料点火方法であって、前記点火用バーナーは気体・気体混焼方式バーナーで、前記点火バーナーの燃料とされる気体は、LPG、LCVガスの2種の気体から少なくとも1種を選択することを特徴とする上吹き式焼結機の原料点火方法。 (もっと読む)


【課題】湿式亜鉛製錬で発生する残渣中に含まれる鉛を、効果的にシリカから分離する。
【解決手段】湿式亜鉛製錬で発生する残渣に水を加えてパルプにしてから第1の遠心分離処理、第2の遠心分離処理、中和処理及び凝集沈澱処理を行う湿式亜鉛製錬の残渣の処理方法であって、第1の遠心分離処理で、パルプを供給流量/Σが40000〜90000m3/m2hとなるように供給し、Pb/SiO比2以上の鉛精錬原料と、第1分離液とに分け、第2の遠心分離処理で、前記第1分離液を供給流量/Σが1000〜11000m3/m2hとなるように供給し、銅精錬原料とする沈殿物と、第2分離液とに分け、前記第2分離液について中和処理、凝集沈澱処理を行い、銅製錬原料とする沈殿物と、シリカ鉱滓に分ける。第1の遠心分離処理と第2の遠心分離処理の遠心力を所定の範囲とすることによって、シリカの品位が鉛の品位よりも相対的に低い沈殿物を得る。 (もっと読む)


【課題】鉛含有物からPbを回収するに際して、例えば、非鉄製錬の乾式煙灰中のPbを回収する際に、安定して、鉛含有物から効率良く鉛を回収するとともに、中和剤の使用量を低減する方法を提供する。
【解決手段】鉛含有物中の硫酸鉛を炭酸ナトリウム溶液によりスラリーにする際、溶液のpHを8〜10にすることで、炭酸化率が95%以上にすることができる。さらに、溶液のpHを8〜9、スラリー濃度を100〜200g/L、温度を60〜80℃にすることで炭酸化残渣中のナトリウム品位が0.2〜1.5mass%程度に抑えることができる。 (もっと読む)


【課題】非鉄製錬、電子部品などリサイクル原料の溶融炉、産業廃棄物を溶融処理する乾式炉より発生する乾式煙灰中のPbの回収において、煙灰を処理して得られた電解処理用の高Bi品位のアノードに対しても高純度の鉛を回収することができる鉛の電解方法を提供する。
【解決手段】Bi品位が5から30mass%の高不純物アノードをアンチモン品位が1から3mass%になるように調整した後、電解処理し、高純度の鉛を回収する鉛の電解方法。 (もっと読む)


【課題】カルシウム成分及び鉛成分を含有する微粉末から、カルシウム成分及び鉛成分を浮遊選鉱処理によって分別して回収するに際し、微粉末と水とからなるスラリーの固形分濃度を常に最適値に保ち、高い処理効率及び浮鉱の高い鉛含有率を得ることのできる処理方法を提供する。
【解決手段】(A)微粉末と水を混合して、スラリーを調製する工程と、(B)工程(A)で得られたスラリーと硫化剤と硫酸を混合して、固体分である硫酸カルシウム及び鉛硫化物を含むスラリーを得る工程と、(C)工程(B)で得られたスラリーに疎水化剤を加えて、鉛硫化物を疎水化させる工程と、(D)工程(C)で得られたスラリーを浮遊選鉱処理して、鉛硫化物を含む浮鉱と、硫酸カルシウムを含む沈鉱を得る工程と、(E)微粉末と水とからなるスラリーの固形分濃度を所望の値にするために、工程(B)における硫酸の添加量に基づいて、微粉末と水との質量比を調整する工程を含む。 (もっと読む)


【課題】この発明は、重金属超集積植物の植え付けや採取のための負担が少なく、しかも、植えつけた植物が良好に生育できるような重金属超集積植物栽培部材および重金属回収方法を提供することを目的とする。
【解決手段】上記の目的を解決するために、本発明に係る重金属回収方法は、透水性の側面を有する栽培容器2に重金属超集積植物5と栽培用土3を入れ、この栽培容器3を重金属を含有する媒体中に設置することによって重金属超集積植物を植え付け、重金属超集積植物中に重金属を吸収させることを特徴とする。 (もっと読む)


【課題】リサイクル還元材を所定の位置に置き留めることができるリサイクル還元材の炉内投入方法を提供する。
【解決手段】本方法は、タイヤを転動させてロータリーキルン3内へ投入するものである。予め、外径Dまたは質量Mが様々なタイヤを、実際に一定の高さからキルン内へ投入し、到達位置Lを計測していくことによって、転がり抵抗係数μrについての、外径Dまたは質量Mの関数として、μr=f(D)又はf(M)・・・関数(1)を獲得しておく。投入するタイヤを用意し、その外径等を測定し、測定結果から、関数(1)に基づいて、転がり抵抗係数μrを獲得し、得られた係数μrと、所望の還元材到達位置Lとから、投入高さh=μr・L・・・数式(2)に基づいて、還元材の投入高さhを決定する。決定した投入高さhから、そのタイヤを落下させて投入する。 (もっと読む)


【課題】カルシウム成分及び鉛成分を含有する微粉末から、カルシウム成分及び鉛成分を浮遊選鉱処理によって分別して回収するに際し、大きな含有率で鉛を含む浮鉱と、大きな含有率でカルシウムを含み、かつ従来よりも小さな含有率で鉛を含む沈鉱を得ることのできる処理方法を提供する。
【解決手段】カルシウム成分及び鉛成分を含有する微粉末を処理対象物として第一の浮遊選鉱処理を行ない、浮鉱及び沈鉱を得た後、この沈鉱を処理対象物としてさらに1回以上、追加の浮遊選鉱処理を行ない、この追加の浮遊選鉱処理で得られた浮鉱を、前記の微粉末と共に第一の浮遊選鉱処理の処理対象物として用いる。第一の浮遊選鉱処理で得られた浮鉱は、大きな含有率で鉛を含む。追加の浮遊選鉱処理で最終的に得られた沈鉱は、大きな含有率でカルシウムを含み、かつ、従来よりも小さな含有率で鉛を含む。 (もっと読む)


【課題】 本発明は汚染土壌を効率的かつ安定的に浄化することを目的としている。
【解決手段】 本発明に係る汚染土壌の浄化方法は、プラグトレイのトレイ本体に備えられる多数のセルにそれぞれ培養土を充填し、各セル内にマリーゴールドの種を播き、各セル内において種を発芽・生育させて、葉が2〜4枚、各葉の最大の長さが0.3〜3cm、茎の長さが2〜4.5cm、根部以外の地上部の乾燥重量が0.02g以上、根部の長さが4〜10cm、根部の乾燥重量が0.01g以上になるまで2〜6週の間、育苗させる育苗工程と、育苗工程においてプラグトレイの各セル内で育苗させたマリーゴールドの苗を重金属で汚染された土壌の土地に移植し、8〜10週の間、育成させる育成工程と、育成工程で育成されたマリーゴールドの根、葉、茎もしくは花を含めて収穫し、それを乾燥させた後、焼却してマリーゴールドが吸収した重金属を回収する回収工程と、を備えることとしている。 (もっと読む)


【解決課題】Ru及び又はIrを含む酸性溶液(以下白金族含有溶液と称す。)から不純物を除去し、Ru及び又はIrを効率的に分離回収する方法を提供することを目的とする。
【解決手段】Ru及びまたはIrを含み、AsとCu、Fe、Ni、Zn、Bi、Pb、Te、Sn、Sbの内から1種類以上の卑金属不純物を含む酸性溶液(以下白金族含有溶液と称す。)に、
硫化剤を添加して、澱物を濾過除去後の後液中のRu及び又はIrを活性炭に吸着させる際に、
Ru及びまたはIrの吸着を妨げる不純物As,Pb,Snの少なくとも1種以上を硫化物として沈殿除去する際に、
硫化時の溶液の酸化還元電位(ORP)を70〜90mVに制御する白金族含有溶液からのRu及び又はIrの回収方法。 (もっと読む)


【課題】旋回流抑止部材の溶湯中への設置により、不純物の除去を効率的に行うものでありながら、精製中に生じる気泡や酸化物が溶湯の表面近傍へ残留して溶湯表面が凝固するのを防止することができる金属精製法及び装置等を提供する。
【解決手段】容器1に収容された精製すべき溶湯2中に冷却体3を浸漬し、この冷却体3を前記容器に対して相対的に回転させながら冷却体表面に高純度金属を晶出させる金属の精製方法において、冷却体3の回転によって引き起こされる溶湯2の旋回流を抑止するように、旋回流抑止部材61、62を溶湯中に配置して精製を行い、精製途中で前記旋回流抑止部材の旋回流に対する抑止力を低下させる。 (もっと読む)


この発明は、プラスチック材料と金属材料との混合物を含有する材料を処理する方法に関するものであり、次の工程を含む:−被処理材料を裁断する工程;−裁断した材料を熱分解する工程;−熱分解した材料に対して行われるものであって、一方における鉄系金属フラクションと他方における非鉄残渣をもたらす、第1の磁気分離工程;−非鉄残渣に対して行われるものであって、一方における非鉄金属フラクションと他方における非磁性残渣とをもたらす、第2の磁気分離工程。この発明は、本方法を実施するための設備にも関する。 (もっと読む)


【課題】バインダーの使用量と水の使用量を極力減らしても強度が高められるブリケットを製造すること。
【解決手段】酸化鉄原料および/または炭素質物質を粉砕する工程と、酸化鉄原料および炭素質物質を用いて一次粒状物を形成する工程と、さらに複数の一次粒状物を加圧することにより二次粒状物に成型する工程を含む。 (もっと読む)


【課題】カルシウム成分及び鉛成分を含有する微粉末中の鉛の含有率を測定しなくても、簡易な方法で、鉛硫化物を生成させるための硫化剤の添加量を常に最適な値に維持することができ、その結果、常に高い回収率で鉛を回収しうる、微粉末の処理方法を提供する。
【解決手段】(A)処理対象物である微粉末と水と硫化剤を混合して、鉛硫化物を含むスラリーを得る工程と、(B)該スラリーの酸化還元電位を測定し、酸化還元電位の値が−230〜−670mVの範囲内となるように、工程(A)の硫化剤の添加量を調整する工程と、(C)工程(B)を経たスラリーに硫酸を加えて、pHを1.5〜7.5に調整し、鉛硫化物及び硫酸カルシウムを含むスラリーを得る工程と、(D)得られたスラリーに捕収剤を加えて、鉛硫化物を疎水化させる工程と、(E)得られたスラリーを浮遊選鉱処理して、鉛硫化物を含む浮鉱と、硫酸カルシウムを含む沈鉱を得る工程を含む。 (もっと読む)


本発明は炉(2)を操作する方法に関し、少なくとも1種の金属元素を含む出発材料を溶融し、ある燃料体積流量の燃料およびある酸化剤体積流量の酸化剤で操作される少なくとも1つのバーナー(4)を使用して出発材料を加熱する。排気ガスライン(6)の二次燃焼領域下流の少なくとも1つの測定点(17)で炉(2)の排気ガス温度をモニタし、標準操作状態で目標燃料体積流量と目標酸化剤体積流量をバーナー(4)に送り、排気ガス温度の変化(26)を所定時間間隔で記録し所定限界値(25)と比較する。時間単位当たりの排気ガス温度の変化(26)が閾値(25)より大きい場合、バーナー(4)を所定減少期間、減少操作状態にし、燃料体積流量の酸化剤体積流量に対する比率を以下の動作:A)燃料体積流量の減少体積流量への急な減少およびB)酸化剤体積流量の増加体積流量への急な増加の少なくとも1つによって低下させ、低下期間が経過した後に前記比率を標準操作状態に戻す。 (もっと読む)


【課題】冷間強度が従来の固化材と同等以上であり、かつ、熱間強度の発現性や耐磨耗性に優れる、鉱石粉の熱間強度増進固化材、それを用いたペレット及びその製造方法を提供する。
【解決手段】ポルトランドセメントとポゾラン反応性物質を含有してなり、スラグを含まない鉱石粉の熱間強度増進固化材であり、ポゾラン反応性物質の比表面積が2500cm/g以上である熱間強度増進固化材であり、ポゾラン反応性物質がフライアッシュである熱間強度増進固化材である。セメントが早強ポルトランドセメントである前記熱間強度増進固化材であり、アルカノールアミンを含有する前記熱間強度増進固化材である。さらに、前記熱間強度増進固化材を用いたペレット及びその製造方法である。 (もっと読む)


【課題】水産物中の金属元素を除去する際に発生する酸性廃液中から金属を効率よく回収するとともに、溶離液の再利用を図れる金属回収装置及び方法を提供する。
【解決手段】水産物中に含有される金属元素をイオンとして溶出させた混合液中の金属元素を吸着材に吸着させる吸着装置11と、吸着材に吸着した金属元素を溶出させる溶離液を吸着装置11に供給する溶離液供給装置12と、吸着装置11から導出した廃溶離液に溶解している金属元素を固形化して溶離液中から分離し、金属元素を固形物として回収するとともに溶離液を再生する溶離液再生装置13と、溶離液再生装置13で再生した溶離液を溶離液供給装置12に循環させる再生溶離液循環経路14とを有している。 (もっと読む)


本発明は、プラスチック及び金属構成部材を含む電気・電子機器の処分方法であって、機器及び/又はその粉砕片を溶融加工して溶融加工物を作ることと、溶融加工物を容器に移し、溶融加工物が揮発性炭化水素を遊離させて金属を含む不揮発性残留物を残すよう、遠赤外線を用いて溶融加工物を加熱することと、揮発性炭化水素と不揮発性残留物の一方又は両方を後の使用のために捕集することを、含む方法に関する。
(もっと読む)


【課題】比較的簡単な方法で不純物を除去でき精製効率を向上した金属精製法及び装置等を提供する。
【解決手段】精製すべき溶融金属2中に冷却体3を浸漬し、この冷却体3を回転させながら冷却体表面に高純度金属を晶出させる金属の精製方法において、冷却体3の表面に晶出した金属に圧力を付加する。これにより、晶出金属5における凝固界面の不純物が晶出金属外に排出される結果、精製される金属の精製効率を改善することができる。 (もっと読む)


【課題】バインダーの使用量も水の使用量も極力減らしても強度が高められるブリケットを製造すること。
【解決手段】酸化亜鉛、酸化鉛、酸化チタンのいずれか1種以上、及び酸化鉄を含む金属酸化物の粉末を用いて一次粒状物を形成する工程と、前記酸化亜鉛、酸化鉛、酸化チタンのいずれか1種以上を含んだ状態で、複数の一次粒状物を加圧することにより二次粒状物に成型する工程を含む。 (もっと読む)


81 - 100 / 259