説明

Fターム[4K001AA20]の内容

金属の製造又は精製 (22,607) | 目的金属 (6,463) | Pb (259)

Fターム[4K001AA20]に分類される特許

141 - 160 / 259


亜鉛フェライトと、酸化物や硫酸塩としての鉛(Pb)、銀(Ag)、インジウム(In),ゲルマニウム(Ge)及びガリウム(Ga)又はそれ等の混合物から成る群より選ばれた、非鉄金属とを含む残留物を処理する方法であって、次の工程、即ち残留物を酸化性媒体内で高温にて焙焼して脱硫残留物を得る工程と、脱硫残留物を還元性媒体内で浸炭還元・溶解する工程と、浸炭メルトとスラグを液相抽出する工程と、非鉄金属を気相抽出し、次いで酸化し、それ等を固体として回収する工程とを含んで成る方法に関する。
(もっと読む)


本発明は、亜鉛及び鉛の硫化濃縮物を金属源として使用する純金属インジウムの新規製造方法を提供する。本方法は酸化亜鉛焼成物の中性浸出残渣からWaelz工程により生成される酸化亜鉛から開始する。亜鉛焼成物の中性浸出の中性アンダーフロー(又は残渣)の弱浸出のオーバーフロー(又は上澄み)もまた、より低い割合でインジウムを含有し、インジウム回収のグローバルな工程の一部となり得るか、又はなり得ない。新たな技術は、下記の段階:a)インジウム前濃縮物の生成;b)還元浸出において得られるインジウムセメント生成物の少なくとも1回の弱浸出及び少なくとも1回の強浸出を備える、インジウムセメントの生成;c)インジウム溶液の生成;d)有機溶媒によるインジウムの抽出;e)インジウムのセメンテーション;f)金属の融合、精製、及びインゴット化;g)99.995%を超える高純度の生成物を得るためのインジウムの電解;を備える。 (もっと読む)


【課題】 鉄鋼を含む金属材料と有機高分子材料とを含む処理対象物から鉄鋼材料を効率的に回収することができる鉄鋼材料分別回収装置及び方法の提供。
【解決手段】 処理炉Fに低酸素濃度熱ガス導入口10とガス排出口12を設ける。台車Rに漏斗状構造部Iを設ける。台車Rに鉄鋼スクラップSを積載して処理炉Fに収容し、低酸素濃度熱ガス導入口10を通じて処理炉F内に低酸素濃度熱ガスを送給し、処理炉Fの炉内温度を、鉄鋼スクラップS中の有機高分子材料が熱分解し、鉄鋼スクラップS中に存在し得る鉄鋼材料よりも低融点の金属材料が溶融し、鉄鋼スクラップS中に存在し得るガラス類が溶融温度に至らない温度とすることにより、鉄鋼スクラップS中の有機高分子材料について熱分解又は溶融を行うと共に、鉄鋼スクラップS中に存在し得る鉄鋼材料よりも低融点の金属材料の溶融を行う。 (もっと読む)


【課題】使用済みのクリームはんだからはんだを分離することができるはんだ分離装置を提供する。
【解決手段】溶剤を主成分とするフラックス、及び金属材料からなるはんだ粒を含有するクリームはんだを加熱手段によって加熱してクリームはんだの溶融液102を得ながら、溶融液102をフラックスとはんだとの比重差により、溶融フラックスからなる上層102aと、溶融はんだからなる下層102bとに分離する溶融槽10と、上層102a中の溶融フラックスを溶融槽10外へ移送するためにタンク11の所定の高さ位置に接続されたフラックス移送管60と、下層102b中の溶融はんだを溶融槽10外へ移送するためにタンク11の底に接続されたはんだ移送管70とを設けた。かかる構成を具備するはんだ分離装置により、クリームはんだ中からはんだを分離することができた。 (もっと読む)


【課題】粉砕操作という簡便な方法で金属を回収することができ、容易に実施可能な金属の回収方法を提供する。
【解決手段】アンモニアガス雰囲気下または窒素ガス雰囲気下で、密封容器内に、粉砕用ボールと、所定の金属を含む金属酸化物から成る化合物の粉末と、アルカリ金属の窒化物の粉末とを封入する。密封容器を所定時間、所定の速度で回転させて、化合物の粉末と窒化物の粉末とを混合して粉砕し、所定の金属を含有する混合粉末を生成する。生成された混合粉末を水洗して、所定の金属を得る。 (もっと読む)


【課題】磁性細菌の特有の性質を利用し、該磁性細菌が持つ細胞表層タンパク質に対して機能性ペプチドを融合し、更に機能的に優れた機能性磁性細菌を提供すること。
【解決手段】特定の磁性細菌を採択し、そのキャリアータンパク質のゲノム、プロテオーム解析結果に基づいて、遺伝子操作を行なうことにより、磁性細菌の細胞表層タンパク質に様々な機能性分子をディプレイすることを特徴とする。 (もっと読む)


【課題】 鉄鋼ダストをロータリーキルンで還元焙焼する際に、鉄鋼ダストが難処理原料であっても、焙焼温度を通常の温度以上に高くすることなく、鉄鋼ダスト中の鉛の揮発率を向上させることが可能な方法を提供する。
【解決手段】 亜鉛及び鉛を含有する難処理原料の鉄鋼ダストに炭素質還元剤を添加して還元焙焼することにより、亜鉛及び鉛を揮発させて回収し且つ鉄を残渣として回収する方法において、鉄鋼ダストに塩素を含む鉄酸化物を添加して混合造粒し、塩素品位が3.5〜4.5重量%及び鉄品位が20〜30重量%のペレットとした後、得られたペレットに炭素質還元剤を添加して還元焙焼する。 (もっと読む)


【課題】 鉄澱物に含有される塩素の影響及び鉄澱物の性状に起因する問題を解消して、ニッケル精製工程から発生する鉄澱物を簡単に且つ効率よく処理する方法を提供する。
【解決手段】 製鋼ダストを還元焙焼する粗酸化亜鉛の製造工程において、ニッケル精製工程から発生する鉄澱物と製鋼ダストとを、混合後の鉛と塩素の比率がPb:Clの重量比で1:2〜1:3となるように混合造粒して、得られたペレットを上記粗酸化亜鉛の製造工程に装入する。鉄澱物はペレット化することで取り扱いが容易になり、鉄澱物に含有される塩素を鉛の揮発率向上に利用でき、且つ重金属を還元鉄ペレット中に固定して製鋼原料として利用できる。 (もっと読む)


【課題】低コストで、セメントキルン燃焼ガス抽気ダストから高品位の鉛回収物を得る。
【解決手段】セメントキルンのキルン尻から最下段サイクロンに至るまでのキルン排ガス流路より、鉛含有率を上昇させたダストを含む燃焼ガスを抽気して、該ダストから鉛を回収するか、前記キルン排ガス流路より燃焼ガスを抽気して、該抽気した燃焼ガスに含まれるダストの鉛含有率を上昇させ、該ダストから鉛を回収する。鉛含有率の高いダストを回収した後で、該ダストから鉛を回収するため、低コストで高品位の鉛回収物を得ることができる。鉛含有率の高いダストを、キルン排ガス流路より抽気した燃焼ガスに含まれるダストを1回又は2回以上分級して得られる微粉としたり、セメントキルンに還元雰囲気を形成し、還元雰囲気が形成されたセメントキルンのキルン排ガス流路より抽気した燃焼ガスに含まれるダストとすることができる。 (もっと読む)


【課題】低コストで、セメントキルン燃焼ガスに含まれるダストから効率よく鉛等の微量成分を回収する。
【解決手段】セメントキルン2から排出された燃焼ガスに含まれるダストを分級する分級機8と、分級機8で分級された微粉から、浮遊選鉱法により回収対象物を回収する浮選機16とを備えるセメントキルンダスト処理装置1。セメントキルン2から排出された燃焼ガスに含まれるダストのうち、分級機8で分級された微粉側に鉛等が偏在するとともに、この微粉のみを浮選機16による処理対象物とすることにより、処理対象物自体の量が少なくなるため、除去対象のカルシウム分の量も少なくなり、カルシウム分を取り除くための硫酸等の薬剤の添加量を大幅に低減することができ、処理コストを低く抑えることができる。前記ダストは、塩素バイパス設備又はアルカリバイパス設備からのダストであってもよい。分級機8には、遠心式の超微粉気流分級機を使用できる。 (もっと読む)


【課題】有価金属の回収効率を高め、且つ、廃棄物のガス化溶融装置を連続運転している状態で連絡ダクトに堆積したダストを除去する廃棄物のガス化溶融装置を提供する。
【解決手段】 銅滓を実質的に含む廃棄物Aを投入し、廃棄物Aの一部を流動媒体の循環流中で熱分解ガス化し高温ガスと微粒子化されたチャー及び不燃成分を排出する内部循環流動層ガス化炉11と、高温ガスと微粒子化されたチャー及び不燃成分を導入して1次燃焼室35の内部に旋回流34を形成し、灰分をスラグ化し溶融スラグを生成する旋回溶融炉21と、高温ガスと微粒子化されたチャー及び不燃成分を旋回溶融炉21へ導く連絡ダクト38と、連絡ダクト83の側壁に穿設された開口部39に挿入配置され、連絡ダクト38の内壁に延在する略水平領域40に向けてクリーニングガスを噴射するガス噴射ノズル42と、を備える。 (もっと読む)


【課題】 廃集積回路基板から回収装置に有害な難燃剤成分のハロゲンガスを先に回収除去し、排ガス量を増加させるカーボン量を減少し、金、銀、銅、鉛、亜鉛、パラジウムその他の金属などの有価金属を効率よく回収する方法を提供する。
【解決手段】 ロータリーキルンタイプの過熱水蒸気処理装置1の間接加熱による内筒1aに、過熱水蒸気の雰囲気温度を500〜600℃として金、銀、銅、鉛、亜鉛、パラジウムその他の金属などの有価金属を含有するガラス繊維および樹脂製の集積回路基板からなる廃集積回路基板を、連続装入してガラス繊維と樹脂からなる積層基板を炭化により剥離し、さらに廃集積回路基板の難燃剤成分のハロゲンをガス化して回収し、一方、廃集積回路基板に含有の金、銀、銅、鉛、亜鉛、パラジウムその他の金属などの有価金属を分離回収する。 (もっと読む)


【課題】本発明は、酸化チタンを用いて自動車等の排気ガスや排気粒子物質又は電気・電子機器廃棄物の分解処理法を提供することを課題とする。さらには、該処理方法による排気物質中の微量物質又は電気・電子機器廃棄物の希少金属の回収方法を提供することを課題とする。
【解決手段】少なくとも粒子状物質(PM)を含む排気物質又は希少金属含む電気・電子機器廃棄物を、300〜600℃の範囲で加熱した酸化チタンと接触させて処理することを特徴とする処理方法による。また、排気物質又は電気・電子機器廃棄物を酸化チタンに接触させることで、排気物質中の微量物質又は電気・電子機器廃棄物中の希少金属を酸化チタンに吸着させて、回収することができる。 (もっと読む)


【課題】セメントの品質に影響を与えずに、セメントの鉛含有率を効率よく低下させる。
【解決手段】セメント焼成設備に付設され、投入された鉛含有原料M等が含有する鉛を塩化揮発させる塩化揮発炉2と、同炉2の排ガスから鉛を回収する鉛回収手段3とを備える鉛回収装置。塩化揮発炉2において塩化源Cに含まれる塩素を利用して鉛含有セメント原料M中の鉛を揮発させ、揮発した鉛を鉛回収手段3で回収することにより、セメント製造工程から効率よく鉛を回収する。鉛回収手段3は、塩化揮発炉2の排ガス中のダストを集塵する集塵手段を備えてもよい。塩化揮発炉2の熱源として、セメント焼成設備からセメント焼成設備の排ガスを抽気し、塩化揮発炉2に導入してもよく、プレヒータの最下段サイクロン12から排出された原料の一部を塩化揮発炉42に供給してもよい。塩化揮発炉2、42の塩化源Cとして、都市ごみ焼却灰を有効利用することができる。 (もっと読む)


下記に記載される式(I)のジチオカルバメートを含んでなるフロス浮選捕集剤は鉱石からの金属の選鉱および回収に有用である。
【化1】
(もっと読む)


【課題】 廃棄された鉛バッテリの電極ペースト鉛成分を、極高純度の炭酸鉛又はオキシ炭酸鉛へ変換する湿式冶金法を提供する
【解決手段】 本発明の方法は、(x)出発材料に含まれる二酸化鉛を還元し、酸浸出溶液中で、酸化鉛と他の可溶性の化合物又は物質を溶解するステップを有する。前記浸出酸は、酢酸、硝酸、フルオロ硼酸、フルオロ珪酸からなるグループに属し、以下のステップを更に含む。(a)硫酸を、不純物を含む出発材料の酸浸出懸濁液に添加するステップと、(b)硫酸鉛と非溶解の不純物からなる固相を、前記酸浸出溶液から分離するステップと、(c)前記の分離した固相内に含まれる硫酸鉛を、少なくとも溶融化化合物を含む水溶液中で、選択的に分解するステップと、(d)溶解した硫酸鉛を含む溶液を、非溶解性の不純物を含む固相残留物から分離するステップと、(e)硫酸鉛の分離した溶液に、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムを添加するステップと、(f) 沈殿した炭酸鉛又は酸化炭酸鉛を、可溶化溶液から分離するステップとを含む。 (もっと読む)


【課題】砒素含有量が高い銅製錬残渣から砒素を効率的に除去し、銅及び鉛等の有価金属を高収率で回収することができる非鉄金属製錬残渣からの金属回収方法を提供する。
【解決手段】砒素を0.1〜30質量%含有する非鉄金属製錬残渣を、不活性ガス雰囲気中で400〜1200℃の温度下で1〜8時間加熱して砒素を揮発分離した後、この加熱後の非鉄金属製錬残渣をpHが1.5を超え3.0未満の酸性水溶液に浸漬し液温を15〜25℃に保持しながら0.5時間以内で溶出処理を行った後濾過して、砒素を含有する溶出液A1と銅及び鉛を含有する溶出残渣B1とに分離する。そして、溶出残渣B1を、pHを1未満に調節した酸性水溶液或いはpHを1未満に調節した酸性水溶液と過酸化水素水との混合溶液に浸漬し、液温を20〜100℃に保持しながら0.5〜2時間溶出処理を行った後濾過し銅を含有する溶出液A2と鉛を含有する溶出残渣B2とに分離する。 (もっと読む)


【課題】砒素液に不純物として含まれている水銀や鉛の液中濃度を大幅に低減させるための砒素液の浄化方法を提供する。
【解決手段】不純物として水銀を含有する砒素液(被処理液)に硫化銅や硫化鉛等の金属硫化物を接触させることにより、水銀を前記金属硫化物中に含有させ固形分として回収する砒素液の浄化方法が提供される。また、不純物として鉛を含有する砒素液(被処理液)に炭酸ストロンチウムを加えて撹拌することにより、ストロンチウムと鉛を含有する沈殿物を生成させ、鉛を固形分として回収する砒素液の浄化方法が提供される。 (もっと読む)


【課題】冷却体を精製すべき溶融金属中に浸漬した直後における冷却体周面への金属の凝固速度が速くなるのを防止して、純度の高い精製金属を得ることができるとともに、冷却体との密着性が悪化して冷却体の回転に伴う遠心力により晶出した金属が剥離するのを防止することができる金属精製法及び装置等を提供する。
【解決手段】精製すべき溶融金属2中に冷却体3を浸漬し、この冷却体3を回転させながら冷却体表面に高純度金属を晶出させる金属精製方法において、溶融金属2に浸漬する時の冷却体3の温度を、精製すべき金属の固相線温度×0.6以上に設定する。 (もっと読む)


【課題】冷却体の周速度を大きくしたり、坩堝内周面に邪魔板を設けたりすることなく、高純度の金属を安全に効率よく精製することができる金属精製方法及び装置等を提供する。
【解決手段】坩堝1に収容した精製すべき溶融金属10中に冷却体2を浸漬し、この冷却体2を回転させながら冷却体2の表面に高純度金属を晶出させる金属精製方法である。溶融金属10の存在部分における坩堝1の内周面と冷却体2の外周面との最短距離L1を、坩堝1の内周面と冷却体2の外周面との最長距離L2の2分の1以下に設定して精製を行う。 (もっと読む)


141 - 160 / 259