説明

Fターム[4K017BA03]の内容

金属質粉又はその懸濁液の製造 (21,321) | 粉末の主成分 (4,105) | Co、Ni (669)

Fターム[4K017BA03]に分類される特許

61 - 80 / 669


【課題】液相反応技術において、粒径の大きさと分布の適正化を図ることができるとともに適度に焼結温度が高いニッケルナノ粒子を得ることにある。
【解決手段】鉄酸化物を含有する金属複合ニッケルナノ粒子の製造方法は、カルボン酸ニッケル、鉄塩及び1級アミンの混合物を、100℃〜165℃の範囲内の温度に加熱して反応液を得る錯化反応液生成工程と、反応液を、マイクロ波照射によって170℃以上の温度に加熱して鉄酸化物を含有する金属複合ニッケルナノ粒子スラリーを得るナノ粒子スラリー生成工程と、を有する。ナノ粒子は、鉄酸化物を含有し、ニッケル元素、鉄元素及び酸素元素の合計量が金属複合ニッケルナノ粒子100質量部に対し95質量部以上であり、鉄元素の量がニッケル元素と鉄元素の合計量100質量部に対し5〜50質量部の範囲内にあり、平均粒径が30nm〜150nmの範囲内にあり、該鉄酸化物が四酸化三鉄を主成分とする。 (もっと読む)


【課題】積層セラミックコンデンサの薄層内部電極を形成するに好適な金属粒子、およびその製造方法ならびに製造に使用する金属蒸着フィルムを提供する。
【解決手段】基材フィルム上にロール・ツー・ロール方式で正方形状の凹凸パターンを形成しその上に金属を蒸着し金属蒸着フィルムを得る。得られた金属蒸着フィルムから金属を分離させ、厚さ20〜50nm、平均粒径が4〜6μmの板状金属粒子を得る。金属はニッケル、銅、金、銀、白金、鉄鋼、クロムおよびインジウムからなるグループから選ばれる一種以上である。 (もっと読む)


【課題】高純度かつ安価な金属微粒子を提供する。
【解決手段】金属濃度=金属の質量(g)×100(%)/反応溶液の質量(g)(mass%)で定義したとき、金属濃度の値が1mass%以上90mass%以下の範囲となるよう金属化合物とアミン保護剤とを混合し、この溶液を加熱・攪拌することで金属化合物を還元し、アミン保護剤によって被覆された金属微粒子を析出させる金属微粒子の製造方法である。 (もっと読む)


【課題】 様々な種類のコアシェル粒子を効率良く製造することができるコアシェル粒子の製造方法を提供する。
【解決手段】 第一金属イオンが含有される第一金属イオン溶液に、0.3W/cm以上となる第一出力の超音波を照射することにより、第一金属の粒子が分散されたコア粒子分散液を得るコア粒子作製工程と、前記コア粒子分散液に第二金属イオンを混合して混合溶液とし、当該混合溶液に前記第一出力より低くなる第二出力の超音波を照射することにより、前記第一金属をコアとし第二金属をシェルとしたコアシェル粒子が分散されたコアシェル粒子分散液を得るコアシェル粒子作製工程とを含むことを特徴とする。 (もっと読む)


【課題】 対象となる金属を効率的に回収するとともに、材料密度が高い状態で対象金属を回収可能とする。
【解決手段】 液体中にプラズマを発生させる工程と、レアメタル又は貴金属を含む材料を液体に投入する工程と、材料がプラズマの照射を受けて分解し、粒子化して、液体中に沈殿する工程と、沈殿したレアメタル又は貴金属のナノ粒子を回収する工程とを有した。 (もっと読む)


【課題】使用済みの発電セルから固体電解質層を構成する金属を高い純度で回収する。
【解決手段】使用済み固体酸化物形燃料電池セルを所定の粒径で最大ピークとなる粒度分布を有する微粉末に粉砕し、この微粉末と水とを混合して所定のパルプ濃度のスラリーを作製し、このスラリーに酸を加えて所定のpHに調整する。このスラリーに所定の濃度の捕収剤を添加し、このスラリーを起泡させて金属微粒子を泡に付着させるとともに残りの金属微粒子を沈殿させ、この沈殿させた金属微粒子をろ過して沈殿物を得る。この沈殿物を硝酸で処理して所定の金属を浸出させ、この処理液から浮遊固形分を除去し、この浮遊固形分が除去された処理液を固液分離して所定の金属を含む浸出残渣を得る。この浸出残渣を洗浄し乾燥して所定の金属を主成分とする固形物を得た後に、この固形物を微粉末に粉砕する。 (もっと読む)


【課題】平均粒径で50nm以上となることを抑制することのできる金属粒子の製造方法を提供する。
【解決手段】金属イオンと、還元剤としての三塩化チタンと、錯化剤と、分散剤と、を含む酸性の反応溶液をアルカリ性に調整し、この反応溶液を撹拌して金属粒子を析出させる。上記錯化剤としては、リンゴ酸およびリンゴ酸塩およびグルコン酸およびグルコン酸塩の少なくとも一種を用いる。 (もっと読む)


【課題】高品質のナノ粒子を造粒でき、しかも安定した粒径制御を可能にしたナノ粒子生成方法、前記ナノ粒子生成方法に基づいて生成したナノ粒子及び前記ナノ粒子生成方法に基づくナノ粒子生成装置を提供することである。
【解決手段】金属含有物質を含む溶媒を収容した溶媒反応部1の液中に対向電極対(2、3等)を配置し、バースト化された高電圧高周波パルスV2を対向電極の電極間に印加して電極付近の溶媒を気化し、前記気化により発生させた気泡に液中プラズマPを発生させた後に高電圧高周波パルスV2の印加を停止して液中プラズマPを消滅させ液中プラズマPの発生領域の液温度を降下させる、前記印加及び前記停止の処理期間を1サイクルとして、高電圧高周波パルスV2の前記印加と前記停止を繰り返し行って間欠的に発生させた液中間欠プラズマにより前記金属含有物質の含有金属のナノ粒子を生成することができる。 (もっと読む)


【課題】粒径が小さく、粒径分布が均一で、かつ、凝集の少ない金属ナノ粒子を、高価な装置や複雑な操作を必要とすることなく製造し得る方法を提供すること。
【解決手段】本発明の金属ナノ粒子の製造方法は流通方式によるものである。この製造方法は、金属源化合物と親水性有機溶媒と該金属源化合物に対して配位可能な有機化合物とを含む第1原料液と、親水性有機溶媒を含む第2原料液とを混合し、最終原料液を調製すること;および、最終原料液を加熱および加圧して親水性有機溶媒を超臨界状態として、ソルボサーマル法に供すること;を含む。 (もっと読む)


【課題】水素粉砕粉の酸素含有量を調整することができ、また、酸素含有量が調整された低酸素水素粉砕粉と通常酸素水素粉砕粉の水素粉砕後の水素粉砕粉の回収、水素粉砕粉への潤滑剤の添加、水素粉砕粉と潤滑剤の混合を共通の容器で行うことができる希土類系磁石用原料合金の水素粉砕粉の製造方法及び製造装置の提供。
【解決手段】 回収室内を減圧した後に、処理容器内の水素粉砕粉を回収室内に排出し、水素粉砕粉を回収室内に排出した後に、回収室内に不活性ガス及び/又は酸素含有ガスを導入し、回収室内を所定圧力及び所定酸素濃度とした後に、水素粉砕粉を回収容器に回収する。回収容器内で水素粉砕粉に潤滑剤を添加した後、回収容器を冷却しながら水素粉砕粉と潤滑剤を混合する。 (もっと読む)


【課題】得られる希土類系磁石の酸素量を低減することにより、磁気特性の向上を図ることができ、また、水素粉砕粉の酸素含有量を調整することができることができる希土類系磁石用原料合金の水素粉砕粉の回収方法及び回収装置を提供すること。
【解決手段】 回収室内を減圧した後に、処理容器内の希土類系磁石用原料合金を回収室内に排出し、希土類系磁石用原料合金を回収室内に排出した後に、回収室内に酸素含有ガスあるいは酸素含有ガスと不活性ガスを同時に導入し、回収室内を所定圧力及び所定酸素濃度とした後に、希土類系磁石用原料合金を回収容器に回収することを特徴とする。 (もっと読む)


【課題】金属粒子の構造上の不均一性から生じる組成ズレを抑制することにより、リフロー時の溶融性を大幅に改善させたハンダ粉末及びその製造方法を提供する。
【解決手段】中心核31と中心核31を被覆する中間層32と中間層32を被覆する最外層33で構成される金属粒子30からなる平均粒径5μm以下のハンダ粉末において、中心核21が銀、銅、ビスマス、ゲルマニウム、ニッケル、インジウム、金又はコバルトのいずれか1種の金属からなり、中間層32が中心核31の金属とは異なる銀、銅、ビスマス、ゲルマニウム、ニッケル、インジウム、金又はコバルトのいずれか一種の金属からなり、最外層33が錫からなり、金属粒子30の体積を100%とするときの中心核31、中間層32、最外層33の各体積割合をVc%、Vm%、Vo%とするとき、Vc<Vm<Voの関係を満たし、錫の含有割合が85〜99.8質量%であることを特徴とする。 (もっと読む)


【課題】エネルギー効率が高く、コスト的に有利である、製造される微粒子が高純度である所定の組成を有しかつ所望の大きさの合金微粒子を大量生産することが可能な方法を提供する。
【解決手段】各々所定の断面積を有する2本の金属細線を用いて、第1の金属細線の外周に第2の金属細線を6回/cm〜16回/cmの巻き数だけ巻きつけて金属撚り線を形成するステップと、所定の長さの該金属撚り線にパルス電流を流して、第1の金属細線及び第2の金属細線を同時に気化させて複数の金属蒸気又は金属ラジカルを形成するステップと、複数の金属蒸気又は金属ラジカルを互いに接触させつつ冷却ステップと、を有する、第1の金属細線及び第2の金属細線に含まれる金属を所定の組成比で含む合金微粒子の製造方法及びその製造装置。 (もっと読む)


【課題】 簡潔で製造時のコスト高騰も簡単に抑えることができる製法により得られるインジウム等のナノサイズの金属超微粉体を提供することである。
【解決手段】 高分子樹脂基材の表面に、水溶性樹脂よりなる第1層と、金属よりなる第2層と、をこの順に積層してなる積層体を得る積層工程と、前記積層体から少なくとも前記第2層を剥離し、かつこれを微粉化する剥離微粉化工程と、を経て得られてなる金属超微粉体であって、前記金属超微粉体が略コイン状(略円盤状)の形状を有してなり、前記金属超微粉体の最大直径部が10nm以上1μm以下であり、最大厚み部が10nm以上100nm以下であること、を特徴とする。 (もっと読む)


【課題】金属ナノ粒子分散液の塗布膜に50℃〜120℃の温度で低温焼結処理を施して、体積固有抵抗率が少なくとも3×10-5Ω・cm以下の金属ナノ粒子焼結体層の形成を可能とする、新規な金属ナノ粒子焼結体層の形成方法を提供する。
【解決手段】金属ナノ粒子分散液の塗布膜を50℃〜120℃の温度に加熱しつつ、酸素分子を10体積%〜25体積%の範囲で含有する混合気体を5秒間〜15秒間塗布膜表面に吹き付け、金属ナノ粒子表面に酸化被膜を形成する酸化処理と、アルコール性ヒドロキシル基を有する有機化合物の蒸気を10体積%〜30体積%の範囲で含有する混合気体を、120秒間〜300秒間塗布膜表面に吹き付け、金属ナノ粒子表面の酸化被膜を還元する還元処理とを組み合わせた酸化・還元処理サイクルを複数回繰り返すことで、金属ナノ粒子の低温焼結を段階的に進行させ、金属ナノ粒子焼結体層を形成する。 (もっと読む)


【課題】 金属物品を融解せずに製造する方法。
【解決手段】 金属成分元素からなる金属物品(20)を金属成分元素の非金属前駆体化合物の混合物から製造する。非金属前駆体化合物の混合物を化学的に還元して、初期金属材料を融解させずに、初期金属材料を生成させる。圧密化段階は実施可能な技術で実施すればよい。好ましい技術には、初期金属材料の熱間静水圧プレス、鍛造、加圧成形と焼結、及び容器押出がある。材料を圧密化して圧密化金属物品(20)を生じさせる。圧密化は、好ましくは、初期金属材料の熱間静水圧プレス、鍛造、加圧成形と焼結、及び容器押出などによって行われる。 (もっと読む)


【課題】分散性及び還元率に優れる水熱合成法を用いたニッケル粉末直接製造方法を提供する。
【解決手段】(a)NiO、pH調節剤、PdCl、アントラキノン(Anthraquinone)、PVP(Polyvinyl pyrrolidone)、及び水が混合された水熱合成混合物を用意するステップ、(b)上記水熱合成混合物を反応容器に投入した後、水の沸騰点以上に加熱するステップ、(c)上記(b)ステップの加熱した混合物に還元剤を加えて、上記NiOを溶解した後、Niに還元させるステップ、(d)上記(c)ステップの水熱反応の結果物を冷却するステップ、及び(e)上記(d)ステップの冷却された結果物を洗浄及び乾燥してNiパウダーを収得するステップを経てニッケル粉末を製造する。 (もっと読む)


【課題】 金属ナノ粒子の分散性に優れ、粒径の揃った金属ナノ粒子分散膜を簡便かつ容易に製造する方法を提供すること。
【解決手段】 金属ナノ粒子分散膜を製造するために用いられる光硬化性組成物であって、少なくとも以下の[A]〜[C]:
[A]還元により金属微粒子を生成可能な金属化合物
[B]金属化合物[A]を構成する金属イオン又は金属錯体と相互作用し、かつ、還元
により析出した金属微粒子の表面に吸着可能な官能基(Q)を有し、かつラジカル重
合性基を2以上有する多官能単量体
[C]光ラジカル重合開始剤
を含み、組成物中の多官能単量体[B]の配合量が、組成物の全量100質量%に対し50質量%を越え95質量%未満の範囲である光硬化性組成物並びにこの光硬化性組成物を用いる金属ナノ粒子分散膜の製造方法および導電性薄膜の製造方法。 (もっと読む)


【課題】ニッケル粒子の表面の全体に亘ってほぼ均等に硫黄が配置される硫黄含有ニッケル粒子を好適に製造する方法を提供すること。
【解決手段】本発明によって提供される硫黄含有ニッケル粒子の製造方法は、ニッケルイオンを含む原料水溶液を用意すること、前記原料水溶液に還元剤として機能する有機化合物を添加して該溶液中においてニッケルと該化合物との複合体を生成すること、前記複合体が生成した原料水溶液に多価カルボン酸のアルカリ金属塩を添加すること、前記多価カルボン酸アルカリ金属塩が添加された原料水溶液に、硫黄粉末が分散して成る硫黄供給材料を添加すること、前記硫黄供給材料が添加された該原料水溶液を塩基性に調整してニッケルの還元反応を誘起すること、および、前記還元反応により生じた硫黄含有ニッケル粒子を回収すること、を包含する。 (もっと読む)


【課題】収率が高く時間当たり処理量の大きい自然発火性ナノ粒子の製造方法およびナノ粒子を提供する。
【解決手段】少なくとも1つの金属塩および官能性ポリエーテルを含む第1の水溶液と水酸化ホウ素ナトリウムなどの金属水素化物還元剤を含む第2の溶液とを連続的に混合し、液相でナノ粒子を製造し、このナノ粒子を液相から分離、乾燥させ、自然発火性ナノ粒子を得る。自然発火性ナノ粒子は、約1nm〜約50nmの範囲の直径を有する。 (もっと読む)


61 - 80 / 669