説明

Fターム[4K017DA02]の内容

金属質粉又はその懸濁液の製造 (21,321) | 目的物の性質、用途 (2,747) | 電気的 (1,352) | 磁性 (493)

Fターム[4K017DA02]の下位に属するFターム

磁気記録用 (117)
磁石 (187)

Fターム[4K017DA02]に分類される特許

81 - 100 / 189


【課題】 特に、機械的特性を改善して扁平化しやすくしたFe基非晶質合金、及びこのFe基非晶質合金を用いて所望のシート特性を得られるようにした磁気シートを提供することを目的としている。
【解決手段】 磁気シート4は扁平化されたFe基非晶質合金とマトリクス材料を含む。Fe基非晶質合金は、少なくともFe、M(Sn,In,Znの少なくともいずれか1種)、P及びCを有し、ビッカース硬さ(Hv)が885以下で、引張強度が200〜360(MPa)で、ヤング率が35〜60(MPa)、伸び(歪み)が0.3%以上である特性を備えている。 (もっと読む)


【課題】高周波特性と量産性の両立を図るうえで好適な構成を有する圧粉磁心およびその製造方法を提供する。
【解決手段】磁性粉末と結着剤との混合物を加圧成形して成形体を得る工程を有する圧粉磁心の製造方法であって、前記磁性粉末は、酸化鉄粉末と炭素を含有する粉末との混合粉末を非酸化性雰囲気中で熱処理して得られたものであり、Feを主成分とする金属微粒子と、前記金属微粒子を被覆するグラファイトを備え、前記磁性粉末の平均粒径が2.0〜15.0μmであり、前記加圧成形後の圧粉磁心における前記磁性粉末の占積率を70〜98vol%の範囲とすることを特徴とする。 (もっと読む)


【課題】 高飽和磁化を有し、かつ耐食性に優れた金属磁性微粒子及びその製造方法を提供することである。
【解決手段】 Feの酸化物粉末と元素X(XはAl、Co、Ni及びSiから選ばれる少なくとも1種である。)を含む化合物粉末と炭素を含む化合物粉末とを混合し、得られた粉末を非酸化性雰囲気中800〜1600℃の範囲内で熱処理する(第1の熱処理)ことによって、核粒子(核粒子はFe及びXを含有する)及び炭素被膜を有する金属磁性微粒子を形成し、前記第1の熱処理の後、前記金属磁性微粒子を400℃〜750℃の範囲内で熱処理する(第2の熱処理)ことを特徴とする金属磁性微粒子の製造方法。 (もっと読む)


【課題】 Fe16またはRFe17を含有し、高保磁力、高飽和磁化を有する硬磁性合金を提供する。
【解決手段】 鉄および鉄以外の金属酸塩を目的の組成となるように秤量・溶解したものを出発原料とし、これを水素気流中にて還元処理を施したものについて、アンモニアもしくはアンモニア混合気流中にて窒化処理を施すことにより、低コストかつ容易に高保磁力、高飽和磁化を有する硬磁性合金を作製することができる。 (もっと読む)


【課題】 高い効率で、大きなエントロピー変化を持つ磁性合金粉末を提供する
【解決手段】 合金溶湯を回転する冷却ディスクに向けてガス噴霧することにより厚さが30μm以下の偏平状の磁性合金粉末作成し、水素を含む雰囲気中で熱処理することで、組成式でR(TM1-Xbc(但し、RはLaを必須として必要によりCe、Pr、Nd、Sm、Eu、Gd、Tb,Dy、Ho、Er、Tm、Y、Luからなる希土類元素の1種以上を含み、TMはFeを必須としてTi、V、Cr、Mn、Co、Ni、Cu、Znからなる遷移金属元素群より選択される1種以上を含む)の実質的にNaZn13型結晶構造を有する化合物相により構成される磁気冷凍用の磁性合金粉末を得る。 (もっと読む)


【課題】原料を溶融状態にした後導入放出や落下させることを必要とせずに、細線への加工が困難な物質であっても、高いエネルギー変換効率で経済的に粒径が1nm〜100μmの微粒子を作製することができるとともに、複数の原料物質を反応させて化合物や合金の微粒子を作製することのできる、微粒子の製造方法を提供する。
【解決手段】容器内に充填した固体物質粉末に通電して加熱することにより該固体物質粉末を溶解・気化し、気化した物質を冷却・凝固して粒径1nm〜100μmの微粒子を得ることを特徴とする微粒子の製造方法である。 (もっと読む)


【課題】脂肪族アミンで修飾された銅微粒子が特定の分散溶液に高濃度に分散可能で、長期間の分散安定性に優れる銅微粒子分散溶液の製造方法、及び銅微粒子分散溶液を提供する。
【解決手段】i)一次粒子の平均粒径1〜150nmの銅微粒子が少なくともその表面の一部が分散剤で覆われて水溶液中に分散している銅微粒子分散水溶液に、凝集剤を添加して銅微粒子を回収する工程、(ii)脂肪族アミン、又は該脂肪族アミンが有機溶媒に溶解している溶液からなる修飾剤溶液中に前記銅微粒子を添加して、撹拌下に銅微粒子表面が該脂肪族アミンで修飾された銅微粒子の分散溶液得る工程、(iii)前記分散溶液に凝集剤を添加して、修飾された銅微粒子を回収する工程(iv)前記修飾された銅微粒子を、クロロホルム、リモネン、及びジオールから選択された1又は2以上の分散溶液に再分散して銅微粒子分散溶液を得る工程を含む。 (もっと読む)


【課題】高周波域において電波吸収特性に優れた高周波磁性材料およびその製造方法を提供する。
【解決手段】少なくとも金属ナノ粒子12を有する磁性体14を備え、金属ナノ粒子12がFe、Co、Niのうち少なくとも1種を含む磁性金属であり、金属ナノ粒子12の平均粒径が200nm以下であり、金属ナノ粒子12が連続したネットワーク状の構造を有する平均径10μm以下の第1のクラスター16を形成し、第1のクラスター16が連続したネットワーク状の構造を有する平均径100μm以下の第2のクラスター18を形成し、第2のクラスター18が連続して磁性体14全領域でネットワーク状の構造を形成していることを特徴とする高周波磁性材料10。 (もっと読む)


【課題】アスペクト比が2〜25のロッド状の金属粒子を選択的に合成する方法を提供すること。
【解決手段】多価アルコール系化合物中で金属化合物を還元しロッド状の金属粒子を合成する方法において、ロッド状金属粒子の核生成剤として塩化白金を用い、ポリスチレン換算による重量平均分子量が1000〜15000の含窒素有機化合物を金属粒子の成長調整剤として用いることによりロッド状の金属粒子を選択的に合成することができる。 (もっと読む)


本発明は、金属ナノ粒子、及び金属塩溶液を誘導体化されたポリエチレンイミンもしくはポリビニルアミンの存在下で還元剤を用いて還元する該金属ナノ粒子の製造方法に関する。2種以上の異なる金属の金属塩溶液を同時に又は順次に還元することができ、その際、2種以上の異なる金属からの金属ナノ粒子が得られる。有利な金属は、銀、パラジウム及び白金である。適した還元剤は、例えばギ酸、ホルムアルデヒド、ジエタノールアミン、5−ペンテン酸及び水素化ホウ素ナトリウムである。銀は、酸化銀及び/又は硝酸銀の形で、パラジウムは、アルカリテトラクロロパラジウム酸塩又は硝酸パラジウム(II)の形で、及び白金は、アルカリテトラクロロ白金酸塩又は硝酸テトラアミン白金(II)の形で使用することができる。
(もっと読む)


本発明は、原子組成(La1−a−a’MmTRa’[(Fe1−b−b’Cob’1−x(Si1−c13(C1−d−e(R)(I)を有するFe−Si−La合金に関し、Mmは、ランタン、セリウム、ネオジムおよびプラセオジムの混合物であり、22〜26%のLa、48〜53%のCe、17〜20%のNdおよび5〜7%のPrの重量比であり、上記混合物は1重量%以下の不純物を含んでもよく、TRはランタン以外の希土類族の1つまたは複数の元素であり、Mは層3d、4dおよび5dの1つまたは複数のdタイプ遷移元素であり、XはGe、Al、B、GaおよびInから選択されるメタロイド元素であり、RはAl、Ca、Mg、KおよびNaから選択される1つまたは複数の元素であり、IはOおよびSから選択される1つまたは2つの元素であり、0≦a<0.5および0≦a’<0.2、0≦b≦0.2および0≦b’<0.4、0≦c≦0.5および0≦d≦1、0≦e≦1およびf≦0.1、0.09≦x≦0.13および0.002≦y≦4、0.0001≦z≦0.01であり、添字b、d、e、xおよびyは、合金が、さらに、6.143b(13(1−x))+4.437y[1−0.0614(d+e)]≧1(式1)、dy≧0.005(式2)の条件を満足するものである。本発明は、また、この合金の粉末またはこれらの合金の混合物、およびそれらの製造方法に関する。 (もっと読む)


【課題】 金属微粒子の粒径分布が狭く、且つ製造工程が簡単で環境衛生面でも優れた金属微粒子分散液の製造方法を提供する。
【解決手段】 第2撹拌工程において、4−デシルアニリンおよび塩化白金酸水溶液がヘキサン、ターピネオール等の有機溶媒に分散させられることにより、その有機溶媒中で塩化白金酸が還元されて、白金−アニリン化合物が生成され、次いで、第3撹拌工程において、その分散液にNaBH4等が滴下されることによって白金塩の還元が更に進行させられ、生成された白金ナノ微粒子が4−デシルアニリンで保護された状態で有機溶媒中に分散させられた白金ナノ微粒子分散液が得られる。すなわち、単一ステップの簡単な製造工程で白金ナノ微粒子分散液が得られる。 (もっと読む)


【課題】ナノ粒子合成過程における目的物質の出来具合を合成過程から把握できるようにすること。
【解決手段】有機金属および安定化剤をフラスコ1に入れて混合及び加熱し、有機金属を熱分解してナノ粒子を合成するナノ粒子合成過程において、フラスコ1の直上までアルゴンガスを導入してナノ粒子合成過程で発生する揮発有機物を系外へ取り出し、系外へ取り出した揮発有機物を時間応答性に優れた有機物センサー14で検出する。有機物センサー14の検出結果をコンピュータで構成されるモニター本体8に取り込んで揮発有機物の検出量を実時間でモニターする。 (もっと読む)


【課題】インダクタ、チョークコイル、トランス等のインダクタンス部品の小型化および高周波域で使用可能な優れた磁気特性を有する複合磁性体を提供する。
【解決手段】アトマイズ法により作製したFe、SiおよびAlを含む金属磁性粉末に、熱処理を施して、X線回折法による(111)からの回折強度をI(111)、(220)からの回折強度をI(220)としたとき、I(111)/I(220)≧0.025からなる金属磁性粉末となるように調整する。 (もっと読む)


【課題】1)無粉砕で球状及び鱗片状の超微粒子を得ることができ、2)篩別工程無しに、シャープな球形粒度分布を有する球状超微粒子を得ることができ、3)極めて真円に近似し、粒子径が目的用途により100nm〜50000nmの大きさの球状超微粒子を得ることができ、4)しかも低コストでの工業的生産を可能にする方法を提供する。
【解決手段】無粉砕で、真円度が0.9〜1.0で粒径が0.01μm〜10μmの形態を有することを特徴とする球状超微粒子を提供する。該球状超微粒子は、特殊な貫通孔と貫通孔密度を有する基盤をノズルに用いることにより製造できる。この基盤ノズルには、貫通孔の穴径が0.05μm〜50μmで、貫通孔のアスペクト比(穴径と貫通孔の長さの比)が、5〜200で有し、貫通孔の密度が100〜7000個/cm2の貫通孔密度を有する基盤をノズルに用いる。 (もっと読む)


【課題】単分散の磁性体微粒子が作成出来、自己排出性により生成物の詰まりも無く、大きな圧力を必要とせず、生産性も高い、磁性体微粒子の製造方法の提供。
【解決手段】少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体については、磁性体原料を少なくとも1種類含むものであり、上記以外の流体のうちで少なくとも1種類の流体については、磁性体微粒子析出剤を少なくとも1種類含むものであり、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体中で上記の各流体を合流させ、前記薄膜流体中で磁性体微粒子を析出させて磁性体微粒子を得る。 (もっと読む)


【課題】長期保存可能な金属微粒子の乾燥体を得る表面処理方法とその乾燥体、前記該金属微粒子の乾燥体に水を添加し金属微粒子を再分散した分散液を提供する。
【解決手段】界面活性剤と脂質が吸着した金属微粒子の水分散液に凝集剤を添加し、該金属微粒子を凝集・沈降させ、沈降した該金属微粒子の凝集体を真空乾燥させることによって、該金属微粒子が水に再分散可能な乾燥物を得ることを特徴とする金属微粒子の表面処理方法、金属微粒子の乾燥体、金属微粒子分散液、その用途。 (もっと読む)


【課題】 湿式微粉砕時にスラリーの温度上昇を抑制することにより、熱安定性に優れ、かつ高い磁気特性を有するボンド磁石用希土類−鉄−窒素系磁石粉末を効率的に製造しうる方法を提供。
【解決手段】 希土類−鉄−窒素系磁石粗粉末を燐酸が添加された有機溶剤中で微粉砕し、次いで固液分離した後、分離された微粉末を150℃以上の温度で加熱乾燥するボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法であって、前記希土類−鉄−窒素系合金粉末の微粉砕処理時に、前記希土類−鉄−窒素系合金粉末を含むスラリーを冷却して、スラリーの温度が50℃を超えないようにすることを特徴とするボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法によって提供。 (もっと読む)


【課題】長期間安定な逆ミセル液と、このような特徴を有する逆ミセル液を用いて製造される粒径変動および粒子間の組成変動の少ない単分散な無機ナノ粒子およびその製造法を提供する。
【解決手段】本発明の逆ミセル液は、水と、疎水性有機溶媒と、界面活性剤と、前記疎水性有機溶媒を基準にして溶解度パラメータの差が0〜5の親水性有機溶媒とを含むか、あるいは、水と、疎水性有機溶媒と、界面活性剤と、前記界面活性剤を基準にして無機性値/有機性値比の差が±1.5以内である親水性有機溶媒とを含み、親水性有機溶媒は、全容積1リットル当り2ミリモル〜300ミリモル含む。無機ナノ粒子は、これらの逆ミセル液を用いた製造方法によって得ることができる。 (もっと読む)


【課題】 膜厚の制御が容易で、均一な厚さでマグネタイトが被覆された鉄粉末を得ることができる方法を提案する。
【解決手段】 鉄粉末の表面にマグネタイトを被覆する方法において、鉄ペンタカルボニルを含む反応液中に鉄粉末を入れ、酸化雰囲気中で加熱する工程を有することを特徴とする。または鉄ペンタカルボニルを含む反応液を還元雰囲気中で加熱して、鉄粒子を析出させる工程と、鉄粒子を析出させた前記反応液を酸化雰囲気中で加熱して、析出させた前記鉄粒子にマグネタイトを被覆する工程と、を有することを特徴とする。 (もっと読む)


81 - 100 / 189