説明

Fターム[4K029BA44]の内容

物理蒸着 (93,067) | 被膜材質 (15,503) | 無機質材 (9,098) | 化合物 (8,330) | 酸化物 (4,989) | AlO系 (505)

Fターム[4K029BA44]に分類される特許

21 - 40 / 505


【課題】本件発明の課題は、プラスチック光学部品の表面に対する密着性に優れ、広い波長領域の光に対して優れた反射防止性能を有するプラスチック光学部品の反射防止膜及びプラスチック光学部品の反射防止膜の製造方法を提供することである。
【解決手段】上記課題を解決するため、反射防止膜を、プラスチック光学部品基材上に設けられ、有機系ケイ素化合物を用いて形成された応力緩和層と、当該応力緩和層上に、高屈折率層と、有機系ケイ素化合物を用いて形成される低屈折率層とを当該順序で積層した二層を一組の反射防止ペア層として、当該反射防止ペア層を少なくとも二組積層した構造を有する反射防止構造体とを備える構成とする。 (もっと読む)


【課題】ボイル殺菌、レトルト殺菌、加熱調理等による加熱処理がなされても当初のガスバリア性及びラミネート強度が劣化しにくく、落下による破袋がしにくく、突き刺し性に優れるようにした、加熱処理耐性を有する蒸着フィルムの提供を目的とする。
【解決手段】少なくともポリエステル樹脂とポリアミド樹脂からなる共押出し延伸フィルム基材の片面に、リアクティブイオンエッチング(RIE)法によるプラズマ処理を施し、該プラズマ処理面上に無機化合物の蒸着膜層を設けたことを特徴とする蒸着フィルムである。 (もっと読む)


【課題】高いガスバリア性を有し、かつ、ガスバリア層と積層する薄膜層との密着性に優れた透明ガスバリアフィルム、及びその製造方法を提供する。
【解決手段】高分子基材フィルム上に、少なくとも珪素酸化物からなる薄膜層が積層された透明ガスバリアフィルムであって、該珪素酸化物からなる薄膜層の表面がアルゴン(Ar)と窒素(N2)の混合ガスを原料とするイオン照射処理されてなるものであることを特徴とする透明ガスバリアフィルム。 (もっと読む)


【課題】酸化物半導体を用いた半導体装置に安定した電気的特性を付与し、信頼性の高い半導体装置を提供することを目的の一とする。
【解決手段】酸化物半導体層を含むトランジスタの作製工程において、ゲート電極を形成後、インライン装置にて、酸化アルミニウム膜と酸化シリコン膜と酸化物半導体膜を大気暴露することなく連続的に形成し、さらに同インライン装置にて加熱および酸素添加処理を行い、他の酸化アルミニウム膜でトランジスタを覆った後、熱処理を行うことで、水素原子を含む不純物が除去され、且つ、化学量論比を超える酸素を含む領域を有する酸化物半導体膜を形成する。該酸化物半導体膜を用いたトランジスタは、バイアス−熱ストレス試験(BT)試験前後においてもトランジスタのしきい値電圧の変化量が低減されており、信頼性の高いトランジスタとすることができる。 (もっと読む)


【課題】電子ペーパー、太陽電池、有機ELなどの電子材料の基板として用いた際に、優れた透明性および水蒸気バリア性を発揮し、長期使用時のデバイスの経時的信頼性を高めることができる積層体を提供する。
【解決手段】積層体10は、第1の透明プラスチックフィルム1の片面に、無機物からなる無機薄膜層3を積層した積層フィルムの無機薄膜層3側の面に、第2の透明プラスチックフィルム5を粘着剤層4を介して積層した積層体10であって、前記第1の透明プラスチックフィルム1の屈折率n、前記粘着剤層4の屈折率nおよび前記無機薄膜層3の屈折率nが下記(i)および(ii)の関係を満たすことを特徴とする。|n−n|≦0.2(i)|n−n|≦0.2(ii) (もっと読む)


【課題】本発明は、結晶配向性に優れたペロブスカイト構造の中間薄膜を備えた酸化物超電導導体の提供を目的とする。
【解決手段】本発明は、基材と、該基材上に直接あるいは下地層を介し積層された中間薄膜と酸化物超電導層とを具備する酸化物超電導導体であって、前記中間薄膜が、粒子堆積により基材上にあるいは基材上に下地層を介し中間薄膜を形成する際、基材上方の成膜面に対し斜め方向からアシストイオンビームを照射しつつ成膜するイオンビームアシスト成膜法により形成されたペロブスカイト型酸化物の中間薄膜であって、該中間薄膜を構成する複数の結晶の結晶軸のうち2軸が配向され、これら結晶の配向度を示す正極点図において4回対称性を示す中間薄膜であることを特徴とする。 (もっと読む)


【課題】 積層数が少なくてもガスバリア性に優れ、かつ、高い透明性を有する透明ガスバリアフィルムおよびその製造方法を提供する。
【解決手段】 樹脂基板上にガスバリア性を有する透明ガスバリア層が形成された透明ガスバリアフィルムであって、前記透明ガスバリア層が、亜酸化物無機層と炭素含有無機層とを含む積層体であり、前記樹脂基板上に、前記亜酸化物無機層と前記炭素含有無機層とがこの順に積層されており、前記炭素含有無機層が、炭化金属および炭化半金属から選択される少なくとも1種の炭化物を含むターゲットを用いたスパッタリング法により形成され、かつ、金属および半金属の少なくとも一方と、炭素と、窒素とを含む層であることを特徴とする。 (もっと読む)


【課題】 樹脂基板からの脱ガスによるガスバリア性の劣化を抑制し、高いガスバリア性を有する透明ガスバリアフィルムおよびその製造方法を提供する。
【解決手段】 樹脂基板上にガスバリア性を有する透明ガスバリア層が形成された透明ガスバリアフィルムであって、前記透明ガスバリア層が、亜酸化物無機層と無機層とを含む積層体であり、前記樹脂基板上に、前記亜酸化物無機層と前記無機層とがこの順に積層されており、前記亜酸化物無機層が、スパッタリング法により形成される層であり、前記無
機層が、蒸着法により形成され、かつ、金属および半金属の少なくとも一方と、酸素、窒素および炭素から選ばれる少なくとも1種とを含む層であることを特徴とする。 (もっと読む)


【課題】スパッタ粒子の無駄を抑え、有効に使用できるイオンビームスパッタ用ターゲット、該ターゲットを用いた酸化物超電導導体用基材の製造方法および酸化物超電導線材の製造方法の提供。
【解決手段】本発明のイオンビームスパッタ用ターゲットは、イオンビームをターゲットに照射し、該ターゲットから叩き出されたスパッタ粒子を基材上に堆積させて、該基材上に成膜するイオンビームスパッタ法に用いられるターゲットであって、中央板部3と、この中央板部3に隣接して配置された側板部1、2を備え、側板部1、2は、中央板部3のイオンビームが照射される面3Aの内側向きに傾斜されてなることを特徴とする。 (もっと読む)


【課題】デジタルカメラ、デジタルビデオカメラのレンズシャッターなどに用いられるシャッター羽根または絞り羽根や、カメラ付き携帯電話や車載モニターのレンズユニット内の固定絞りや、液晶プロジェクタの光量調整モジュールの絞り羽根などの光学機器部品として用いられ、耐熱性、高遮光性、低反射性に優れた耐熱遮光フィルムを提供する。
【解決手段】200℃以上の耐熱性を有する樹脂フィルム基材(A)の片面もしくは両面に、スパッタリング法で形成された50nm以上の膜厚を有する金属遮光膜(B)と、5nm以上の低反射性の金属酸化物膜(D)が積層された耐熱遮光フィルムにおいて、金属遮光膜(B)と金属酸化物膜(D)の間に1〜50nmの膜厚を有する酸化防止膜(C)がスパッタリング法で形成されている耐熱遮光フィルムにより提供する。 (もっと読む)


【課題】表示装置用酸化物半導体膜の製造に好適に用いられる酸化物焼結体およびスパッタリングターゲットであって、高い導電性と相対密度を兼ね備えており、高いキャリア移動度を有する酸化物半導体膜を成膜可能であり、特に、直流スパッタリング法で製造しても長時間安定して放電することが可能な直流放電安定性に優れた酸化物焼結体およびスパッタリングターゲットを提供する。
【解決手段】本発明の酸化物焼結体は、酸化亜鉛と;酸化スズと;Al、Hf、Ni、Si、Ga、In、およびTaよりなる群から選択される少なくとも1種の金属(M金属)の酸化物と、を混合および焼結して得られる酸化物焼結体であって、面内方向および深さ方向の比抵抗をガウス分布で近似したとき、上記比抵抗の分散係数σが0.02以下である。 (もっと読む)


【課題】スパッタリングによる複数材料の薄膜形成における装置機構の複雑化を抑えて簡素化し、装置コストの上昇を抑制することが可能な成膜装置及び成膜方法を提供する。
【解決手段】スパッタリング装置1は、真空チャンバ2と、基板31を保持する基板ホルダ32と、真空チャンバ2内で基板31に対向可能な状態にターゲット11,12をそれぞれ支持するカソード機構21,22と、互いに材質の異なるターゲット11,12と基板31との間に個別に進退してターゲット11,12で発生した成膜粒子を遮蔽又は開放するシャッタ41,42とを備えている。これらシャッタ41,42の少なくとも1つ、例えばシャッタ42を、ターゲット11,12の材料とは異なるターゲット材料で形成してターゲット兼用シャッタとして構成した。 (もっと読む)


【課題】本発明の課題は、反射防止効果に優れ、且つ膜強度、耐環境信頼性に優れた反射防止膜を提供することである。
【解決手段】複数の層からなる反射防止膜であって、該複数層のうち少なくとも一層が、複数の微細な管状空間を有する構造体からなる光学薄膜であって、前記光学薄膜が有する全ての管状空間が基板の接平面垂直方向において平行に配列されていることを特徴とする構成とした。 (もっと読む)


【課題】高温領域での酸化劣化を抑えながらも高耐衝撃性を発現できる表面被覆材料及びこれを利用する切削工具並びに工作機械を提供する。
【解決手段】高速度工具鋼や超硬合金からなる基材11と、基材11の表面に設けられてアルミニウム(Al),ジルコニウム(Zr),クロム(Cr),珪素(Si),チタン(Ti)のうちの少なくとも一種の窒化物(N)からなる金属窒化物層12と、金属窒化物層12の表面に設けられてスズ(Sn)及びジルコニウム(Zr)の少なくとも一方とリチウム(Li),マグネシウム(Mg),珪素(Si)のうちの少なくとも一種とアルミニウム(Al)との酸化物(O)からなる金属酸化物層13とを備えてなる表面被覆材料10とした。 (もっと読む)


【課題】 温度が60℃で湿度が90%(RH)という様な過酷な湿熱環境下でもバリア性が劣化せずに表示デバイス内部に水が浸入しないという良好なバリア性を有すると共に、端面からの酸素及び水蒸気の浸入をも防ぐことができるガスバリア性フィルム積層体を提供することを目的とする。
【解決手段】 プラスチック材料からなる基材フィルムの一方の面に、第1の耐候性コート層、蒸着層、及び、第2の耐候性コート層を、この順に設けたことを特徴とするガスバリア性フィルム積層体を提供することにより上記目的を達成する。 (もっと読む)


【課題】 温度が60℃で湿度が90%(RH)という様な過酷な湿熱環境下でもバリア性が劣化せずに表示デバイス内部に水が浸入しないという良好なバリア性を有すると共に、端面からの酸素及び水蒸気の浸入をも防ぐことができるガスバリア性フィルム積層体を提供することを目的とする。
【解決手段】 プラスチック材料からなる基材フィルムの一方の面に、第1の耐候性コート層、蒸着層、及び、第2の耐候性コート層を、この順に設けたガスバリア性フィルム積層体において、該第1の耐候性コート層、及び又は、第2の耐候性コート層が、架橋性基を有するフッ素含有共重合体と該架橋性基と反応する硬化剤とにより形成されたフッ素系樹脂からなることを特徴とするガスバリア性フィルム積層体を提供することにより上記目的を達成する。 (もっと読む)


【課題】材料の蒸発速度とプラズマ密度を自由に設定し、成膜速度に対するガスバリア性を自由に設定出来、酸素バリア性および水蒸気バリア性に優れた、透明、もしくは半透明なガスバリア性フィルムを作成し、それを用いた加熱殺菌用包装材料を提供する。
【解決手段】ガスバリアフィルム(10,11)、接着層(13)、ナイロンフィルム(14)、接着層(15)およびヒートシール性樹脂(16)がこの順で積層された加圧加熱殺菌用包装材料であって、前記ガスバリアフィルムが、プラスチックフィルム(10)上に蒸着手段を用いた蒸着法によりセラミック層(11)を形成させてなり、その際、前記蒸着手段とは別に高密度プラズマを発生させる手段を併せて用いることを特徴とする加圧加熱殺菌用包装材料。 (もっと読む)


【課題】真空中において長尺な基材フィルムを長手方向に搬送しつつ、基材フィルムへの無機膜の成膜、無機膜を保護するための保護フィルムの積層、積層体の巻取りを行う機能性フィルムの製造において、無機膜と保護フィルムとの間に存在する気泡に起因する無機膜の損傷を防止することを目的とする。
【解決手段】保護フィルムの積層に先立ち、無機膜の加熱処理を行うことにより、前記課題を解決する。 (もっと読む)


【課題】優れたガスバリア性を発現できると共に、優れた光の透過率を発現でき、膜の割れ等が発生することを防止できる機能性フィルム、および、この機能性フィルムの製造方法を提供する。
【解決手段】有機層のうち、基板上に直接形成される第1の有機層の厚さが他の有機層以上の厚さであり、最上層の有機層の厚さが他の有機層以下の厚さであり、かつ、全ての有機層が全ての無機層よりも厚いことで上記課題を解決する。 (もっと読む)


【課題】 低抵抗で高透過性の透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法を提供する。
【解決手段】 透明導電膜(I)上に、透明導電膜(II)が積層された透明導電膜積層体において、透明導電膜(I)は、アルミニウム及びガリウムから選ばれる1種以上の添加元素を含み、添加元素の含有量が、−2.18×[Al]+1.74≦[Ga]≦−1.92×[Al]+6.10で示される範囲内である。透明導電膜(II)は、アルミニウム及びガリウムから選ばれる1種以上の添加元素を含み、添加元素の含有量が、−[Al]+0.30≦[Ga]≦−2.68×[Al]+1.74で示される範囲内である。但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、一方、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。 (もっと読む)


21 - 40 / 505