説明

Fターム[4M104DD34]の内容

半導体の電極 (138,591) | 製造方法(特徴のあるもの) (30,582) | 電極材料の析出 (10,624) | PVD (4,537) | 蒸着 (925)

Fターム[4M104DD34]に分類される特許

81 - 100 / 925


【課題】電極に対して有機分子結晶層を配向制御して接合することができる有機分子結晶層の接合方法およびこの接合方法を利用した有機素子の製造方法を提供する。
【解決手段】絶縁性基体11上に電極12およびこの電極12と接合する芳香族化合物からなる有機分子結晶層13を形成する場合に、電極12の側面12aの絶縁性基体11の主面に対する傾斜角度を制御することにより、有機分子結晶層13の電極12に対する配向を制御する。電極12の側面を傾斜角度が互いに異なる複数の面により形成するようにしてもよい。 (もっと読む)


【課題】樹脂基板上に設けたボトムゲート型薄膜トランジスタにおいて、製造プロセスを簡略化することにより、高品質で低コストの薄膜トランジスタとその製造方法及び画像表示装置を提供することを目的とする。
【解決手段】ボトムゲート型の薄膜トランジスタは、樹脂基板と、樹脂基板の同一面上に設けられたゲート電極と絶縁性密着層と、ゲート電極と絶縁性密着層との上に設けられたゲート絶縁層とを、少なくとも備える。また、ゲート電極は、金属を含む。また、絶縁性密着層は、ゲート電極に含まれる金属のオキシ水酸化物を含むことを特徴とする。また、金属は、Alを含む金属であり、ゲート電極の膜厚は、10nm以上100nm以下である。 (もっと読む)


【課題】隔壁形成プロセスを省き、かつ、塗布法により半導体溶液を所望の場所に形成し、トランジスタ素子分離を行うことのできる薄膜トランジスタを提供する。
【解決手段】基板上に形成された梯子状の凸部を有するゲートバス電極と、ゲートバス電極の表面形状に沿うように当該ゲートバス電極上および基板上に形成されたゲート電極と、ゲート電極の凹凸に沿うようにゲート電極上および基板上に形成されたゲート絶縁体層と、ゲート絶縁体層の凹部内に形成された半導体層と、半導体層の中央に形成された保護膜と、半導体層の両端部で接続されたソース電極とドレイン電極とを備える。 (もっと読む)


【課題】微細化が容易で、短チャネル効果が生じにくい半導体装置を提供する。
【解決手段】トランジスタのチャネル長方向の断面形状において、アスペクト比の大きいゲート電極上に半導体層を形成することで、トランジスタを微細化しても短チャネル効果が生じにくいチャネル長を確保できる。また、半導体層と重畳し、ゲート電極より下層に絶縁層を介して下部電極を設ける。下部電極と重畳する半導体層は、下部電極の電位(電界)により導電型が付与され、ソース領域及びドレイン領域が形成される。半導体層の、ゲート絶縁層を介してゲート電極と対向する領域は、ゲート電極がシールドとして機能し、下部電極の電界の影響を受けない。すなわち、不純物導入工程を用いることなく、自己整合によりチャネル形成領域、ソース領域及びドレイン領域を形成することができる。これにより、微細化が容易で、短チャネル効果が生じにくい半導体装置が実現できる。 (もっと読む)


【課題】材料ワイヤが空中で溶解して発生する飛沫を排除でき、しかも材料蒸発領域が縮小しない蒸着用ボートを提供することを目的とする。
【解決手段】プール2の一端3aの近傍の材料供給部9aがこの材料供給部の他端3bの側に接続された材料蒸発部10よりも低温になるように、プール2の材料蒸発部10の裏面に、断面積が均一な平坦部14と、平坦部14と材料供給部9aとを接続する勾配部15aを設け、勾配部15aを、一端3aから他端3bに向かう方向に断面積が大きくなるよう形成して温度分布を形成している。 (もっと読む)


【課題】ウエットエッチングによる加工性に優れた特性を有する新規な配線用膜を提供する。
【解決手段】表示装置またはタッチパネルセンサーの配線用膜であって、合金成分としてX群元素(Xは、希土類元素、Ge、Si、Sn、Hf、Zr、Mg、Ca、Sr、Al、Zn、Mn、Co、Fe、及びNiよりなる群から選択される少なくとも一種の元素)を3〜50原子%、および/または酸素を0.2〜3.0質量%含有し、残部Tiおよび不可避不純物からなるTi合金層と、純CuまたはCu合金からなる層とを含む2層以上の積層構造を有することに要旨を有する配線用膜。 (もっと読む)


【課題】本発明は、製造コストの増大を抑制しつつ、簡易な構成で、絶縁膜とさらに上部に形成された絶縁膜との界面の電荷を低減することができる半導体装置の製造方法の提供を目的とする。
【解決手段】本発明にかかる半導体装置の製造方法は、(a)SiC半導体を用いた基板を用意する工程と、(b)前記基板の表層部において、前記基板の素子領域を囲むように、リセス構造と前記リセス構造の下部にガードリング層とを形成する工程と、(c)前記ガードリング層を覆って、第1絶縁膜を形成する工程と、(d)前記第1絶縁膜を覆って、前記第1絶縁膜とは異なる材質の第2絶縁膜を形成する工程と、(e)前記第1絶縁膜上に蓄積する電荷とは逆電荷のイオンを、前記工程(d)の前、又は、前記工程(d)中、又は前記工程(d)の後に照射する工程とを備える。 (もっと読む)


【課題】イオン注入を用いることなく2次元正孔ガスの所期の濃度分布を容易且つ確実に得て、電界集中のなだらかな緩和を実現する高信頼性の窒化物半導体装置を得る。
【解決手段】n−GaN基板1のN面上に形成されたn−GaN層2と、n−GaN層上に形成されたAlGaNからなるJTE構造10と、n−GaN層2上に形成されたアノード電極4とを有しており、n−GaN層2のJTE構造10との界面に、アノード電極4から離間するほど正孔濃度が低くなるように、2次元正孔ガスが生成される。 (もっと読む)


【課題】良好なノーマリ・オフ動作を可能とすることに加え、アバランシェ耐量が大きく、外部のダイオードを接続することを要せず、確実に安定動作を得ることができる信頼性の高い高耐圧のHEMTを得る。
【解決手段】化合物半導体積層構造2に形成された電極用リセス2Cを、ゲート絶縁膜6を介して電極材料で埋め込むようにゲート電極7を形成すると共に、化合物半導体積層構造2に形成された電極用リセス2Dを、少なくとも電極用リセス2Dの底面で化合物半導体積層構造2と直接的に接するように電極材料で埋め込み、化合物半導体積層構造2とショットキー接触するフィールドプレート電極8を形成する。 (もっと読む)


【課題】高耐圧特性と低オン抵抗特性とを両立した化合物半導体装置を実現する。
【解決手段】化合物半導体装置を、キャリア走行層2及びキャリア供給層3を含む窒化物半導体積層構造4と、窒化物半導体積層構造の上方に設けられたソース電極5及びドレイン電極6と、窒化物半導体積層構造の上方のソース電極とドレイン電極との間に設けられたゲート電極7と、ゲート電極とドレイン電極との間に少なくとも一部が設けられたフィールドプレート8と、窒化物半導体積層構造の上方に形成された複数の絶縁膜9、10とを備えるものとし、フィールドプレートとドレイン電極との間でゲート電極の近傍よりも複数の絶縁膜の界面の数を少なくする。 (もっと読む)


【課題】単膜でCu拡散のバリア膜及びめっきシード層として機能するとともに、Cuとの密着性にも優れた金属薄膜の成膜方法を提供する。
【解決手段】金属薄膜の成膜方法は、Ti膜を成膜する工程(STEP1)、Ti膜上にCo膜を形成する工程(STEP2)、Ti膜及びCo膜を熱処理してCoTi合金を含む金属薄膜を形成する工程(STEP3)を備えている。CoTi合金を含む金属薄膜は、優れた導電性とCu拡散バリア性を有し、Cuとの格子不整合が0.15%と非常に小さいため、Cu配線と優れた密着性が得られる。 (もっと読む)


【課題】絶縁膜を有する窒化物半導体を低コストで製造する。
【解決手段】基板10の上方に形成された半導体層22,23,24と、前記半導体層の一部を酸化することにより形成された絶縁膜30と、前記絶縁膜上に形成された電極41と、を有し、前記絶縁膜は、酸化ガリウムを含むもの、または、酸化ガリウム及び酸化インジウムを含むものにより形成されているものであることを特徴とする半導体装置。 (もっと読む)


【課題】貫通電極の形成に時間を要さず、貫通電極内でのボイドの発生を抑制できる半導体装置、およびこの半導体装置の製造方法を提供すること。
【解決手段】半導体装置1は、孔111が形成された絶縁性あるいは半導体の層11と、層11の孔111内に設けられた貫通電極12と、を備える。貫通電極12は、シード層121と、めっき層122と、を備える。シード層121は、孔111の底面111Aを覆う。また、シード層121は、孔111の側面111Bのうち、孔111の開口から、孔111の開口と孔111の底面111Aとの間の所定の位置までの第1の領域を未被覆とし、この第1の領域(未被覆領域)111B1を除いた第二の領域を被覆している。めっき層122は、シード層121と、未被覆領域111B1の少なくとも一部を覆う。 (もっと読む)


【課題】半導体層に対するn側電極の密着性を向上させることが可能な窒化物系半導体発光素子を提供する。
【解決手段】この青紫色半導体レーザ素子100(窒化物系半導体発光素子)は、n型GaN基板1と、オーミック電極層30を含むn側電極22とを備える。そして、n側電極22のオーミック電極層30は、n型GaN基板1の下面1aを部分的に覆うように形成された非晶質SiからなるSi層31と、Si層31のn型GaN基板1とは反対側の表面と、Si層31により覆われていないn型GaN基板1の下面1aとに接触するように形成されたTi層32とを有する。 (もっと読む)


【課題】占有面積が小さく、高集積化、大記憶容量化が可能な半導体装置を提供する。
【解決手段】第1の制御ゲート、第2の制御ゲート及び記憶ゲートを有するトランジスタを用いる。記憶ゲートを導電体化させ、該記憶ゲートに特定の電位を供給した後、少なくとも該記憶ゲートの一部を絶縁体化させて電位を保持させる。情報の書き込みは、第1及び第2の制御ゲートの電位を記憶ゲートを導電体化させる電位とし、記憶ゲートに記憶させる情報の電位を供給し、第1または第2の制御ゲートのうち少なくとも一方の電位を記憶ゲートを絶縁体化させる電位とすることで行う。情報の読み出しは、第2の制御ゲートの電位を記憶ゲートを絶縁体化させる電位とし、トランジスタのソースまたはドレインの一方と接続された配線に電位を供給し、その後、第1の制御ゲートに読み出し用の電位を供給し、ソースまたはドレインの他方と接続されたビット線の電位を検出することで行う。 (もっと読む)


【課題】 基板上に、高い精度で、形成不良なく電極を形成し得る電子部品の製造方法を提供する。
【解決手段】 本発明の電子部品の製造方法は、平板状の基板1を準備する基板準備工程と、基板1の主面上にレジストパターン2aを形成するレジストパターン形成工程と、基板1の主面上のレジストパターン2aが形成されていない部分にIDT電極4を薄膜技術により形成する電極形成工程と、レジストパターン2aを除去するレジストパターン除去工程とを含み、電極形成工程は、基板1を、電極が形成される側の主面が凹むように反らせておこなうようにした。 (もっと読む)


【課題】窒化物化合物半導体を用いたパワーダイオード、パワーMOSFET等のパワー
半導体素子について、クラックフリーで形成されて従来よりも厚い窒化物化合物半導体層
を使用して耐圧を向上することである。
【解決手段】シリコン基板1上に厚さ10μm以上の凸状に選択成長された窒化物化合物
半導体からなるキャリア移動層3と、キャリア移動層3上に形成された電極4とを有し、
1つのパワー半導体素子は1つのキャリア移動層3から構成されている。 (もっと読む)


【課題】配線加工時のエッチングレートの極端な上昇を抑え、プロセスを安定化させる。
【解決手段】炭化珪素基板1上に形成された炭化珪素層20の上に、ソース電極8、ゲート電極9、層間絶縁膜10、層間絶縁膜10上に形成されたソース電極上部配線11およびゲート電極上部配線12とが形成され、ソース電極上部配線11とゲート電極上部配線12の下には、これらの上部配線を構成する金属が炭化珪素層20に拡散することを抑制するためのバリアメタル16が形成されている。層間絶縁膜10には、炭化珪素層20上に形成されたソース電極8およびゲート電極9に到達するようにコンタクトホール13、15が形成されており、バリアメタル16はコンタクトホール内の電極と上部配線との界面、層間絶縁膜10の側壁と上部配線との界面、および側壁の上端部近傍と上部配線との界面にのみ形成されている。 (もっと読む)


【課題】電気特性の変動が生じにくく、且つ電気特性の良好な半導体装置の作製方法を提供することである。
【解決手段】基板上にゲート電極を形成し、ゲート電極上にゲート絶縁膜を形成し、酸化物半導体膜を形成し、第1の酸化物半導体膜を形成した後、加熱処理をして第2の酸化物半導体膜を形成し、第1の導電膜を形成し、厚さの異なる領域を有する第1のレジストマスクを形成し、第1のレジストマスクを用いて第2の酸化物半導体膜および第1の導電膜をエッチングして第3の酸化物半導体膜および第2の導電膜を形成し、第1のレジストマスクを縮小させて、第2のレジストマスクを形成し、第2のレジストマスクを用いて第2の導電膜の一部を選択的に除去することでソース電極およびドレイン電極を形成する半導体装置の作製方法である。 (もっと読む)


【課題】半導体の表面の酸化物を含む不純物を、エッチングあるいは、他の層を積層する前に除去する。
【解決手段】第1の半導体層110の少なくとも一部に接し、第1の半導体層110に含まれる不純物の固溶度が、第1の半導体層110より高い第1の犠牲層を形成する第1犠牲層形成工程と、第1の犠牲層および第1の半導体層をアニールするアニール工程と、第1の犠牲層をウェットプロセスで除去する除去工程と、第1の半導体層の少なくとも一部を覆う絶縁層120を形成する工程および第1の半導体層の一部をエッチングする工程の少なくとも一の工程と、第1の半導体層に電気的に接続された電極層126を形成する電極形成工程とを備える。 (もっと読む)


81 - 100 / 925