説明

Fターム[4M104DD63]の内容

半導体の電極 (138,591) | 製造方法(特徴のあるもの) (30,582) | 電極膜のパターニング (4,427) | エッチング (3,048)

Fターム[4M104DD63]の下位に属するFターム

Fターム[4M104DD63]に分類される特許

181 - 200 / 588


【課題】ゲート−ドレイン間寄生容量を低減できる半導体装置の面積を低減し、工程数を削減する。
【解決手段】トランジスタ領域では、ソース配線層とゲート電極がトレンチ内に埋め込まれている。ソース引き出し領域は、トランジスタ領域の隣またはトランジスタ領域内に設けられ、ソース配線層がトレンチの上端よりも上に突出するように形成される。このソース配線層は、トレンチの直上で、トランジスタ領域に形成されたソース電極と接続される。ゲート引き出し領域は、ソース引き出し領域の外側に設けられ、ゲート電極とゲート配線層とが接続される。ゲート電極は、ポリシリコン膜を成膜した後、レジストパターンを形成することなくエッチバックすることにより形成される。このとき、ソース配線層のトレンチの上端よりも上に突出した部分の側壁には、ポリシリコン膜がサイドウォール状に残る。 (もっと読む)


【課題】低温で簡便なプロセスにより形成可能で、移動度、on/off比に優れ、立ち上がり電圧のマイナス側へのシフト、S値劣化、素子間の性能バラツキを改良した、安定性の高い薄膜トランジスタ、および該薄膜トランジスタの製造方法を提供する。
【解決手段】基板106上にゲート電極104、ゲート絶縁層105、ソース電極102、ドレイン電極103、及び半導体層101を有する薄膜トランジスタにおいて、半導体層101が塗布によって形成された酸化物半導体からなり、フッ素化合物含有層107がゲート電極104と半導体層101との間に設けられる。 (もっと読む)


【課題】ソース、ドレインの低抵抗化及び寄生容量の低減化のための構造、所望のゲート長、ソース、ドレイン形状、柱状半導体の直径が得られるSGTの製造方法を提供する。
【解決手段】第1の平面状半導体層上に第1の柱状半導体層を形成する工程と、第1の柱状半導体層の下部と第1の平面状半導体層に第1の第2導電型半導体層を形成する工程と、第1の柱状半導体層の底部及び第1の平面状半導体層上に第1の絶縁膜を形成する工程と、第1の柱状半導体層の周囲にゲート絶縁膜およびゲート電極を形成する工程と、ゲート電極の上部且つ第1の柱状半導体層の上部側壁と、ゲート電極の側壁に第2の絶縁膜をサイドウォール状に形成する工程と、第1の第2導電型半導体層と第2の第2導電型半導体層との間に第1導電型半導体層を形成する工程と、第1の第2導電型半導体層の上部表面と、第2の第2導電型半導体層の上部表面に金属と半導体の化合物を形成する工程とを含む。 (もっと読む)


【課題】 金属酸化膜半導体電界効果トランジスタ内にデバイス性能を改善するゲート構造体を提供する。
【解決手段】 基板のp型デバイス領域の上にGe含有層を形成することを含む、半導体デバイスを形成する方法が提供される。その後、基板の第2の部分内に第1の誘電体層が形成され、基板の第2の部分内の第1の誘電層及び基板の第1の部分の上を覆うように、第2の誘電体層が形成される。次に、基板のp型デバイス領域及びn型デバイス領域の上にゲート構造体を形成することができ、n型デバイス領域へのゲート構造体は希土類金属を含む。 (もっと読む)


【課題】蒸着の回数などの工程数増加によるコストも抑えることができ、また電極のめくれ、ハガレの不良の発生を防ぐことを考慮しつつ、LEDランプ組立工程でのワイヤーボンド部のワイヤーと電極と間の圧着部分の密着強度の強い電極の形成方法を提供する。
【解決手段】少なくとも、n型半導体結晶と発光層とp型半導体結晶とがこの順で形成された半導体結晶にオーミック電極を形成する方法であって、半導体結晶のp型半導体結晶の表面上に、少なくとも、第一金属層としてAuを蒸着させ、第一金属層上に第二金属層としてAuBe合金材料とAuの混合物を蒸着させてAuBe合金を形成し、第二金属層上に第三金属層としてAuを蒸着させ、その後熱処理を行ってオーミック電極を形成することを特徴とする電極の形成方法。 (もっと読む)


【課題】ゲート配線として耐熱性の導電性材料であるタングステン層を用いた場合に、タングステン層の比抵抗を低くすることによって、配線抵抗を十分に低減することを目的とする。
【解決手段】半導体層と、ゲート配線と、前記半導体層と前記ゲート配線との間に挟まれたゲート絶縁層とを有し、前記ゲート配線はタングステン層を有し、前記タングステン層中の酸素濃度を30ppm以下とすることによって、配線抵抗を十分に低減することができる。 (もっと読む)


【課題】生産性に優れたフレキシブル半導体装置を提供する。
【解決手段】可撓性を有するフレキシブル半導体装置100であり、樹脂フィルム30と、樹脂フィルム30の上に形成された金属層10とを備え、金属層10は、絶縁壁51によって分断され、且つ、絶縁壁51の一端53は樹脂フィルム30に接しており、絶縁壁51によって金属層10から、ゲート電極10g、ソース電極10sおよびドレイン電極10dが形成されている。ゲート電極10gの上には、絶縁壁51に接するゲート絶縁膜22が形成されており、ゲート絶縁膜22の上には半導体層20が形成されている。 (もっと読む)


【課題】開口率の高い半導体装置又はその作製方法を提供することを目的の一とする。また、消費電力の低い半導体装置又はその作製方法を提供することを目的の一とする。
【解決手段】絶縁表面を有する基板上に設けられた半導体層と、半導体層を覆うゲート絶縁膜と、ゲート絶縁膜上に設けられた第1の導電層と第2の導電層とで積層されたゲート電極を含むゲート配線と、半導体層と前記ゲート電極を含む前記ゲート配線を覆う絶縁膜と、絶縁膜上に設けられ、半導体層と電気的に接続され、第3の導電層と第4の導電層とで積層されたソース電極を含むソース配線と、を有し、ゲート電極は、第1の導電層で形成され、ゲート配線は、第1の導電層と第2の導電層で形成され、ソース電極は、第3の導電層で形成され、ソース配線は、第3の導電層と第4の導電層で形成されている。 (もっと読む)


低いゲートリークを有する例えばGaNトランジスタなどのMISFETが提供される。一実施形態において、ゲートコンタクトの下且つバリア層の上に、補償型のGaN層を有することで、ゲートリークが低減される。他の一実施形態において、ゲートコンタクトの下且つバリア層の上に半絶縁性の層を用いることによって、ゲートリークが低減される。
(もっと読む)


【課題】表示装置の薄膜トランジスタ基板において、窒化ケイ素膜上への銅の微細配線を、より簡易に行う。
【解決手段】微細配線がされたTFT基板は、無アルカリガラスからなるガラス基板101と、インジウム錫酸化物からなる透明導電膜102と、アルミニウムを4原子%含有し銅を主成分とする合金からなる第一の導電層103及び109と、99.99%純度の純銅からなる銅配線である第二の導電層104及び110と、窒化ケイ素からなるゲート絶縁膜106と、非晶質ケイ素からなる半導体層107と、n+型非晶質ケイ素からなるコンタクト層108と、透明導電膜102と第一の導電層103との界面の金属酸化物層105と、を備える。 (もっと読む)


【課題】フォトリソグラフィー法及びエッチング法を用いることなく導電層間を接続することができる半導体装置の製造方法を提供する。
【解決手段】本発明の半導体装置の製造方法は、基板上に第1導電層と層間絶縁膜と第2導電層とを順に積層形成する導電層工程と、前記第2導電層の表面から物理的加工を施すことで、前記第2導電層と前記層間絶縁膜とを貫通して前記第1導電層に達する凹部を形成するコンタクトホール形成工程と、を有することを特徴とする。 (もっと読む)


【課題】熱処理による電気特性の劣化の少ない有機FETを提供することを目的とする。
【解決手段】ゲート絶縁層4の上に、ソース電極5とドレイン電極6とが配置され、ソース電極5とドレイン電極6との上に、有機半導体層8を有する有機トランジスタであって、ソース電極5と有機半導体層8との間、およびドレイン電極6と有機半導体層8との間には、単分子膜7を備えることを特徴とする。また、単分子膜7は、チオール類の単分子を含む膜であることを特徴とする。 (もっと読む)


【課題】高集積であり且つビット線を埋め込む必要のない3次元トランジスタを有する半導体記憶装置を提供する。
【解決手段】ゲートトレンチを介して両側に位置する第1及び第2の拡散層とゲートトレンチの底面に形成された第3の拡散層とを有する活性領域と、第1及び第2の拡散層にそれぞれ接続された第1及び第2の記憶素子と、第3の拡散層に接続されたビット線と、ゲート絶縁膜を介してゲートトレンチの第1の側面を覆い、第1の拡散層と第3の拡散層との間にチャネルを形成する第1のゲート電極と、ゲート絶縁膜を介してゲートトレンチの第2の側面を覆い、第2の拡散層と第3の拡散層との間にチャネルを形成する第2のゲート電極とを備える。本発明によれば、ゲートトレンチの両側面にそれぞれ別のトランジスタが形成されることから、従来の2倍の集積度が得られる。 (もっと読む)


【課題】動作信頼性を向上させる半導体装置を提供すること。
【解決手段】基板10内に、互いに離隔して形成された第1乃至第3拡散層13と、前記第1拡散層13と前記第2拡散層13との間の前記基板10上に第1絶縁膜14を介在して形成された第1電極15を備え、前記第1拡散層13をソースとし、前記第2拡散層13をドレインとする、第1トランジスタ20と、前記第2拡散層13と前記第3拡散層13との間の前記基板10上に第2絶縁膜14を介在して形成された第2電極15を備え、前記第2拡散層13をドレインとし、前記第3拡散層13をソースとする第2トランジスタ21とを具備し、前記第2トランジスタ21は、前記第2電極15及び前記第3拡散層13に固定電圧が与えられることにより、常時オフ状態とされ、前記第1トランジスタ20の閾値は、前記第2トランジスタ21の閾値よりも小さい。 (もっと読む)


【課題】シェアードコンタクト形成時に、ゲート電極が溶解されて形状異常となるのを防止する。
【解決手段】半導体装置は、基板1上にゲート絶縁膜2を介して形成されたゲート電極31と、基板1のゲート電極31の両側方に形成された不純物領域32及び33とを有するトランジスタと、トランジスタ上を覆うように基板1上に形成された層間絶縁膜11及び12と、不純物領域32及び33及びゲート電極31に電気的に接続するシェアードコンタクト14とを備える。ゲート電極31の側面下部を覆うように第1のサイドウォール5、第1のサイドウォール5におけるゲート電極31とは反対側に第2のサイドウォール6、第1のサイドウォール5上に、ゲート電極31の側面上部と第2のサイドウォール6とに挟まれるように第3のサイドウォール9bが形成されている。第2及び第3のサイドウォール6及び9bは、第1のサイドウォール5とは異なる材料からなる。 (もっと読む)


【課題】半導体装置内の局所配線を簡単な工程で形成するための半導体装置の製造方法を提供する。
【解決手段】シリコン基板101上に1又は複数の半導体素子が作り込まれてなる半導体装置に局所配線構造を形成する際に、半導体素子の2つの導電領域を絶縁している絶縁領域に、この2つの導電領域を接続するようにシリコン膜104又は第1金属膜109を形成し(第1工程)、形成されたシリコン膜又は第1金属膜上に無電解めっき法により選択的に第2金属膜110を形成する(第2工程)。 (もっと読む)


【課題】オン電流を増加させて駆動能力を大きくした半導体装置(ダブルゲート型薄膜トランジスタ)、この半導体装置を製造する半導体装置製造方法、この半導体装置を搭載したTFT基板、およびこのTFT基板を適用した表示装置を提供する。
【解決手段】半導体装置1は、絶縁性基板10(絶縁性基板110)の上に形成された第1ゲート電極11と、第1ゲート電極11の上に形成された第1絶縁層12と、第1絶縁層12の上に形成された半導体層13と、半導体層13の一端に接続されたソース電極15と、ソース電極15に対向して半導体層13の他端に接続されたドレイン電極16と、半導体層13の上に形成された第2絶縁層17と、第2絶縁層17の上に形成された第2ゲート電極19とを備え、第1ゲート電極11および第2ゲート電極19の少なくとも一方は、透明導電性材料で形成され、透明電極を構成している。 (もっと読む)


【課題】強度を保持しつつ、導通時の抵抗を低減可能な電力用の半導体装置を提供する。
【解決手段】半導体装置10は、基板領域1と、基板領域1上に設けられ、炭化珪素を含む半導体材料からなり、複数の凹部が形成されたドリフト領域2と、側壁に配設されたアノード電極3と、凹部の側壁を挟んでアノード電極3と互いに対面するように側壁に配設され、かつ、アノード電極3と絶縁されたカソード電極4とを有する。 (もっと読む)


【課題】半導体膜の厚みを適当な範囲に制御することによって、大きいドレイン電流を有するとともに、所望の電気的特性を備える半導体装置を提供する。
【解決手段】半導体装置は、主表面1aを有するガラス基板1と、主表面1a上に設けられ、チャネル領域11と、チャネル領域11の両側に位置するソース領域9およびドレイン領域13とが形成されたポリシリコン膜7と、ポリシリコン膜7に接触するように設けられたゲート絶縁膜17と、ゲート絶縁膜17を介してチャネル領域11に向い合う位置に設けられたゲート電極21とを備える。ポリシリコン膜7は、50nmを超え150nm以下の厚みを有する。ソース領域9およびドレイン領域13は、ポリシリコン膜7の頂面7aからポリシリコン膜7の底面7cにまで達して形成されている。 (もっと読む)


【課題】WSi膜上にSiO2膜を形成し、SiO2膜を緻密化するため成膜温度より高い温度でアニールを行った場合、SiO2膜中にクラックが入る欠陥が生じる場合がある。このクラックの発生を抑えるために、アニール時の温度変化速度を抑え、急激な熱膨張/熱収縮を避けているが、クラック欠陥を十分抑えられないという課題がある。
【解決手段】WSi膜を用いた、走査線前駆体11cをスパッタリングにより200nmの膜厚に堆積させる。そして、パターニング後、無機絶縁膜100としてSiO2膜を堆積する。そして、約700℃で熱処理を行う。そして、無機絶縁膜100を除去する。走査線前駆体11cの改質に伴い、無機絶縁膜100との間には応力が掛かっている。ここで、無機絶縁膜100を除去することで、走査線前駆体11cの改質に伴う応力をパターン側面を含めて開放することが可能となり、クラック欠陥の発生を抑えることが可能となる。 (もっと読む)


181 - 200 / 588