説明

Fターム[5E049AA01]の内容

磁性薄膜 (4,742) | 磁性材料(金属・合金) (1,294) | Feを主とする金属・合金 (395)

Fターム[5E049AA01]に分類される特許

101 - 120 / 395


【課題】加熱処理温度をできるだけ抑えてL10型の規則相を有するFePtからなる磁性膜を製造する方法、及びこの磁性膜を用いた磁気デバイスを提供する。
【解決手段】Feを主成分とする層3aと、Ptを主成分とする層3bとを交互に積層し、(110)配向させて成膜する成膜工程と、前記Feを主成分とする層3aと前記Ptを主成分とする層3bを加熱し、前記Feを主成分とする層と前記Ptを主成分とする層との界面においてFeとPtとを拡散させ、L10型に規則化させる加熱工程と、を有する。 (もっと読む)


【課題】 特に、基板上に高抵抗軟磁性膜(Fe−M−O)をスパッタ成膜して成るRFID用あるいは電磁波抑制用としての磁性シート及びその製造方法を提供することを目的としている。
【解決手段】 RFIDタグ2と、金属部材3との間に磁性シート4が挿入されている。前記磁性シート4には、樹脂シートに、A−M−O(ただし元素AはFeまたはCoまたはその混合物を表し、元素Mは、Hf、Ti、Zr、V、Nb、Ta、Mo、W、Al、Mg、Zn、Caのうち少なくともいずれか一種を表す)から成り、元素MとOの化合物を含むアモルファス相と、前記アモルファス相中に点在するFeまたはCoから選ばれる一種または二種を主体とした平均結晶粒径30nm以下の微結晶相との膜構造で形成された高抵抗軟磁性膜がスパッタ成膜されている。これにより効果的にRFID特性の向上を図ることができるともに薄型化に貢献できる。またFe−M−O膜に対して熱処理を施す必要がない。 (もっと読む)


【課題】 特に、高抵抗軟磁性膜(A−M−O)を用いた磁性シートにおいて、従来に比べて適切に軟磁気特性の向上を図ることが可能な磁性シートを提供することを目的としている。
【解決手段】 樹脂シート5上に、Cr膜9と、A−M−O(ただし元素AはFeまたはCoまたはその混合物を表し、元素Mは、Hf、Ti、Zr、V、Nb、Ta、Mo、W、Al、Mg、Zn、Ca、Ce、Y、Siのうち少なくともいずれか一種を表す)から成る磁性膜6とが順に積層されている。磁性膜6は、元素MとOの化合物を含むアモルファス相と、前記アモルファス相中に点在するFeまたはCoから選ばれる一種または二種を主体とした平均結晶粒径30nm以下の微結晶相との膜構造で形成されている。 (もっと読む)


【課題】高い磁気抵抗効果(MR効果)を維持しつつ、より低抵抗であるグラニュラ膜を提供すること。
【解決手段】MgOターゲット3及び強磁性体ターゲット4を備え、基板8に対してMgO及び強磁性体をスパッタリングするスパッタリング装置において、プラズマ干渉状態を最適化した状態で、前記基板8上に(111)配向を有するMgOバリア層と、前記MgOバリア層中に分散された強磁性体微粒子と、を含む低抵抗グラニュラ膜を形成する。 (もっと読む)


【課題】角型性にすぐれ、ノイズの改善が図られ、安定した磁気特性を有する磁気抵抗効果素子を提供する。
【解決手段】少なくとも1対の強磁性層の間にトンネルバリア層を挟んだ強磁性トンネル接合を用いた磁気抵抗効果素子であって、強磁性層の一方により構成される磁化自由層が、非晶質もしくは微結晶構造を有する材料の単層、あるいは主な部分が非晶質もしくは微結晶構造を有する材料層からなり、磁化自由層がFe,Co,Niの強磁性元素のうち少なくとも1種もしく2種以上の成分と、含有量が10原子%〜30原子%のB,C,Al,Si,P,Ga,Ge,As,In,Sn,Sb,Tl,Pb,Biのいずれか1種もしくは2種以上とを含む構成とする。 (もっと読む)


【課題】電子機器への搭載が可能な薄型で、高周波帯での透磁率実部が大きい高周波磁性体を提供する。
【解決手段】絶縁層10と、この絶縁層10上に設けられる磁性層20を備える高周波磁性体であって、磁性層20は、長さhの短辺、長さwの長辺、厚さtの厚みを有する棒状の磁性部材22を、長辺方向を揃えて複数個配列させることにより形成され、5≦w/h≦30であることを特徴とする高周波磁性体。さらに、この高周波磁性体において、磁性部材22の磁化困難軸と、磁性部材22の長辺方向が略一致することが望ましい。 (もっと読む)


【課題】高分解能および高信号対雑音比を実現可能な磁気再生ヘッドを提供する
【解決手段】再生ヘッド1は、下部シールド層2と上部シールド層18の間にMTJ素子16を配置したTMRセンサである。MTJ素子16は、下部シールド層2の上に複合シード層15を介して設けられている。複合シード層15は、軟磁性層3と、アモルファス層4と、軟磁性層5と、バッファ層6とが下部シールド層2の側から順に積層されたものである。これにより、MTJ素子16の結晶構造が、平滑性や均質性に優れたものとなる。複合シード層15のうち、軟磁性層3、アモルファス層4および軟磁性層5は、下部シールド層2と共に実効シールド構造14を形成している。これにより、実効シールド間距離がより低減される。 (もっと読む)


【課題】磁性層等で発生する腐食を防ぎ、耐環境性の向上を可能とした磁気記録媒体及びその製造方法、並びに、そのような磁気記録媒体を用いた磁気記録再生装置を提供する。
【解決手段】基板1の上に、少なくとも磁性層2と、磁性層2を覆うカーボン保護層9とを備え、磁性層2の表面には、磁気記録領域である凸部7と、磁気記録領域を分離する境界領域である凹部6とが設けられ、磁性層2の凹部6とカーボン保護層9との間には、Cr又はTiを主として含むバリア層8が設けられている。 (もっと読む)


【課題】より良い特性を与える配向制御層を提供し、長手磁気記録媒体の信号雑音比を向上させる。
【解決手段】基板上に、非晶質合金からなる下地層と、体心立方構造を有するCr−Mn−Fe合金からなる配向制御層と、体心立方構造を有する合金層と、六方最密構造を有する合金層と、磁性層とをこの順に有し、前記Cr−Mn−Fe合金配向制御層の(110)面が基板に垂直方向に配向しており、かつ、前記Cr−Mn−Fe合金配向制御層のMn濃度が5at%以上10at%以下であることを特徴とする長手磁気記録媒体。 (もっと読む)


【課題】 本発明は、静磁気特性(特に保磁力Hc)を高めつつ、電磁変換特性(特にOW特性およびSNR)を高めることにより、さらなる高記録密度化を図ることのできる垂直磁気記録媒体を提供することを目的としている。
【解決手段】 本発明にかかる垂直磁気記録媒体の代表的な構成は、基板上に少なくとも第1磁気記録層122a、第2磁気記録層122bをこの順に備える垂直磁気記録方式の磁気記録媒体100において、第1磁気記録層および第2磁気記録層は柱状に連続して成長した磁性粒子の間に非磁性の粒界部を形成したグラニュラー構造の強磁性層であって、第1磁気記録層および第2磁気記録層の粒界部は、それぞれ複数の種類の酸化物を含有し、第1磁気記録層の膜厚をAnm、第2磁気記録層の膜厚をBnmとすると、A/(A+B)が0.12<A/(A+B)<0.64の範囲内であることを特徴とする。 (もっと読む)


【課題】結晶配向を劣化させず、かつ結晶粒の密度を下げずに、下地層及び磁性層の結晶粒を微細化した垂直磁気記録媒体を提供すること。
【解決手段】ディスク基体11上に軟磁性層13、配向制御層14、下地層15及び主記録層17を備える垂直磁気記録媒体10であって、前記配向制御層14は、NiW、NiPd、NiCr、NiMo、NiTa、NiV、NiNb、NiZr、NiHf、NiCuから選択される少なくとも一つに酸化物を添加してなる合金を主材料とし、配向制御層14上に成長する下地層15、主記録層17の結晶粒を微細化する。 (もっと読む)


【課題】良好な界面特性をもつ強磁性薄膜、絶縁性薄膜、及び化合物半導体からなる強磁性積層構造を得る。
【解決手段】この磁性体積層構造10においては、化合物半導体1上に絶縁性薄膜2及び強磁性薄膜3が順次形成されている。絶縁性薄膜2は、蛍石型構造をもつフッ化化合物からなる。強磁性薄膜3は、Fe又はFeCo合金からなる強磁性体である。この強磁性積層構造10は、強磁性薄膜3から絶縁性薄膜2を通して化合物半導体1にスピン偏極電子が注入されて使用される。例えば、この強磁性積層構造10をスピンLEDに用い、化合物半導体1を発光層としても用いることができる。この場合には、この構造における各界面の結晶欠陥が少ないために、スピン偏極電子の発光層への高い注入効率が得られるため、高効率のスピンLEDを得ることができる。 (もっと読む)


【課題】 磁化反転の際の反転電流密度のばらつきを低減する。
【解決手段】 磁気抵抗素子10は、(001)面に配向した立方晶構造又は正方晶構造を有する下地層12と、下地層12上に設けられ、かつ膜面に垂直方向の磁気異方性を有し、かつ(001)面に配向するfct(face-centered tetragonal)構造を有する記録層13と、記録層13上に設けられた非磁性層14と、非磁性層14上に設けられ、かつ膜面に垂直方向の磁気異方性を有する参照層15とを含む。下地層12の膜面内方向の格子定数a1及び記録層13の膜面内方向の格子定数a2は、記録層13のバーガースベクトルの大きさb、記録層13の弾性定数ν、記録層13の膜厚hcとすると、
│√2×a1/2−a2│/a2<b×{ln(hc/b)+1}/{2π×hc×(1+ν)}
の関係を満たす。 (もっと読む)


【課題】本発明は垂直磁気記録に適した磁気記録媒体及び磁気記録装置に関し、交換結合力制御層を厚くしても垂直磁気記録特性を維持し、量産性の向上を図ることを課題とする。
【解決手段】基板1と、その上部に形成された軟磁性裏打ち層2と、その上部に形成された非磁性中間層3と、その上部形成された垂直磁気異方性を有する第1記録磁性層4と、その上部に形成された交換結合力制御層5と、その上部に形成された垂直磁気異方性を有する第2記録磁性層6とを有し、前記第1記録磁性層4と第2記録磁性層6が交換結合力制御層5を介して強磁性結合してなる磁気記録媒体であって、前記交換結合力制御層5としてルテニウムに酸化物を添加したグラニュラ材料を用いる。 (もっと読む)


【課題】高周波域において、透磁率実部μ’と透磁率虚部μ”の比(μ”/μ’)が小さな、優れた高周波用磁性材料、高周波用磁性材料の製造方法、アンテナ、および携帯電話を提供する。
【解決手段】基板12と、この基板12上の複数の平板体を形成する磁性相14と、磁性相の間隙を充填する絶縁体相16とから成る複合磁性膜18とを備え、磁性相14が非晶質であり、基板12の表面に平行な面内における、絶縁体相16の伸長方向の平均をX軸方向、同面内においてX軸と直交する方向をY軸方向、基板12の法線方向をZ軸方向とする直交座標系の、Y−Z平面において、平板体の長手方向がZ軸方向から傾斜し、X−Y平面において、面内一軸異方性を有することを特徴とする高周波用磁性材料10、この高周波用磁性材料10の製造方法、この高周波用磁性材料10を用いたアンテナ装置および携帯電話。 (もっと読む)


【課題】特にGHz帯域においても優れた特性を備える高周波磁性材料、これを用いたアンテナ装置およびこの高周波磁性材料の製造方法を提供する。
【解決手段】マトリックス絶縁性酸化物相14中に、板状磁性体16が配向分散する磁性膜12を有する高周波磁性材料10であって、板状磁性体16が、磁性膜12面に対して略垂直に形成され、板状磁性体16がFe、Co、Niのうち少なくとも1種の金属を含有し、マトリックス絶縁性酸化物相14がシリコン酸化物またはアルミニウム酸化物を主成分酸化物とすることを特徴とする高周波磁性材料、これを用いたアンテナ装置およびこの高周波磁性材料の製造方法。 (もっと読む)


【課題】短波長記録特性に優れた磁気記録媒体を提供することを目的とする。
【解決手段】非磁性支持体の一方の主面に磁性粉末と結合剤とを含む磁性塗料を塗布することにより磁性層形成してなる磁気記録媒体の製造方法において、前記磁性塗料が、バッチ式混練装置にて第1の固形分濃度にて前記磁性粉末と前記結合剤とを混練し、磁性混練物を得る混練工程と、前記バッチ式混練装置内で、第2の固形分濃度にまで希釈を行い第1希釈物を得る第1希釈工程と、前記第1希釈物を前記バッチ式混練装置の排出部から排出手段により排出する排出工程を経て製造され、前記排出部にはドロップドアが配設され、前記排出手段がモーノポンプであることを特徴とする。 (もっと読む)


【課題】化学的に安定で、然も安定な磁気構造を有するハーフメタリック反強磁性体を提供する。
【解決手段】本発明に係るハーフメタリック反強磁性体は、ニッケルヒ素型、閃亜鉛鉱型、ウルツ鉱型、カルコパイライト型或いは岩塩型の結晶構造を有する化合物であって、2種類以上の磁性元素とカルコゲン或いはプニクトゲンとから構成されている。前記2種類以上の磁性元素には、有効d電子数が5より少ない磁性元素と有効d電子数が5より多い磁性元素とが含まれ、前記2種類以上の磁性元素の有効d電子数の総和は10或いは10に近い値である。 (もっと読む)


【課題】磁化又は磁化反転できるレベルまで記録層の被加熱部の保磁力を容易に低減できる垂直記録型の磁気記録媒体及びこのような磁気記録媒体を備える磁気記録再生装置を提供する。
【解決手段】磁気記録媒体16は、基板24と、軟磁性層26と、断熱層28と、配向層30と、記録層12と、を有し、これらの層がこの順で基板24の上に形成され、断熱層28の熱伝導率が配向層30の熱伝導率よりも低く、且つ、軟磁性層26の熱伝導率よりも低い。 (もっと読む)


【課題】高周波をかけた場合でも高い透磁率を有し、比較的厚膜な軟磁性膜を提供すること。そのような軟磁性膜の製造方法を提供すること。
【解決手段】基材の少なくとも一方面に、絶縁層により表面被覆された多数の軟磁性粒子が付着・堆積されて形成されている軟磁性膜とする。当該軟磁性膜は、絶縁層により表面被覆された軟磁性粉末を、圧縮気体により加速させて噴射し、基材上に多数の軟磁性粒子を衝突させて付着・堆積させる工程を経れば得ることができる。上記軟磁性粉末の噴射方式は、コールドスプレー法、HVAF法、および、HVOF法から選択される1種または2種以上のメカニカルデポジション方式を好適に採用することができる。 (もっと読む)


101 - 120 / 395