説明

Fターム[5F038EZ14]の内容

半導体集積回路 (75,215) | その他の技術 (17,984) | 製法 (5,137) | エピタキシャル、堆積 (1,200)

Fターム[5F038EZ14]に分類される特許

41 - 60 / 1,200


【課題】 相互接続ラインを形成するための新規な方法を提供する。
【解決手段】 細線相互接続部(60)は基体(10)の表面内又はその上に形成された半導体回路(42)の上に位置する第1の誘電体層(12)内に設けられる。パシベーション層(18)は誘電体層の上に付着され、第2の厚い誘電体層(20)はパシベーション層の表面上に形成される。厚くて幅広い相互接続ラインは第2の厚い誘電体層内に形成される。第1の誘電体層はまた、基体の表面上に付着されたパシベーション層の表面上に幅広くて厚い相互接続ネットワークを形成するように、省略することができる。 (もっと読む)


【課題】ドライエッチングにより微細加工を行った場合に、エッチング残渣が少なく、後工程における信頼性が高い非鉛の圧電体膜素子の製造方法、圧電体膜素子及び圧電体デバイスを提供する。
【解決手段】圧電体膜素子1の製造方法は、基板2上に、組成式(K1−xNa)NbOで表されるペロブスカイト構造を有する非鉛のアルカリニオブ酸化物系化合物からなる圧電体膜5を形成する工程と、圧電体膜5を、フッ素系反応ガスを含む雰囲気中で低圧プラズマを用いてエッチングを行う工程とを含む。 (もっと読む)


【課題】回路誤動作を防止できる半導体装置を提供する。
【解決手段】低電位基準回路部LVおよび高電位基準回路部HVを構成する絶縁分離された半導体素子の外周に、n型ガードリング42c等を形成する。また、活性層2cにて構成されるn-型層42a等の中にp型ウェル42d等を形成し、このp型ウェル42d内に半導体素子を形成する。また、外部電源61に接続されるラインを電源供給ラインとガードリング端子固定ラインとを分岐し、電源供給ラインの電流が流れないガードリング端子固定ラインに抵抗63を備えることで、バイパスコンデンサ64をディスクリート部品としなくても良い回路構成とする。 (もっと読む)


【課題】積重ねダイ式の集積回路で使用するのに適した基板導通技術を提供すること。
【解決手段】集積回路が、積み重ねて配置された複数の集積回路のダイを備え、積重ねの頂部のダイを除く任意のダイが、それ自身および追加のダイ少なくとも1つのための電流を基板導通により担持する。1つの形態では、積重ねの底部のダイを除く各ダイが、下側のダイのバスまたはその他の電源導体を介して基板導通によりその電源電流を担持する。 (もっと読む)


【課題】シリコン内にダイオード構造を位置させた半導体製造方法を提供する。
【解決手段】トレンチポリシリコンダイオードを製造する方法は、N+(P+)型基板上にN−(P−)型エピタキシャル領域を形成すること、エピタキシャル領域内にトレンチを形成すること、さらに、前記トレンチ内に絶縁層を形成し、前記トレンチをポリシリコンで充填する。さらに、P+(N+)型ドーパントをインプラントして、前記トレンチ内に前記ポリシリコンのP+(N+)型領域を、N+(P+)型ドーパントをインプラントして、前記トレンチ内に前記ポリシリコンのN+(P+)型領域を形成しトレンチ内にポリシリコンダイオードを形成することを含み、ダイオードの一部は、トレンチの上面より低い。 (もっと読む)


【課題】素子特性を悪化させず、アクティブ領域を終端領域に対して、簡単な方法により電気的に独立させることができ、さらには素子サイズの小型化を図ることができる半導体装置およびその製造方法を提供すること。
【解決手段】エピタキシャル層23のアクティブ領域12と終端領域11との間に、エピタキシャル層23の表面24を形成するように、当該表面24に沿って全体にわたって形成されたチャネル層26を、ゲートトレンチ28の深さDと同じ深さDを有するアイソレーショントレンチ39で分断する。互いに同じ深さのゲートトレンチ28およびアイソレーショントレンチ39は、同一のエッチング工程で形成される。 (もっと読む)


【課題】消費電力の増加を招くことなくオフの状態を実現することのできる半導体装置を
提供する。
【解決手段】ゲートに電圧が印加されていない状態でオン状態であるパワー素子と、パワ
ー素子のゲートに第1の電圧を印加するためのスイッチング用の電界効果トランジスタと
、パワー素子のゲートに第1の電圧より低い電圧を印加するためのスイッチング用の電界
効果トランジスタと、を有し、上記スイッチング用の電界効果トランジスタはオフ電流が
小さい半導体装置である。 (もっと読む)


【課題】改良されたESD保護デバイスおよび該動作方法が、必要とされる。
【解決手段】集積回路ESD保護回路270は、ゲートダイオード271および出力バッファMOSFET272を含有する組合せデバイスとともに形成される。第1導電性タイプのボディタイフィンガ307は、基板301、302に形成され、複数のダイオードポリフィンガ231、232を用いて第2導電性タイプ310のドレイン領域から分離される。複数のダイオードポリフィンガ231、232は、出力バッファMOSFET272を形成する複数のポリゲートフィンガ204、205と交互配置される。 (もっと読む)


【課題】本発明の目的は、特定の構造を有するポリシロキサン化合物を含有する高誘電率でありかつ絶縁性に優れた薄膜となる硬化性組成物に関するものである。本発明の硬化性組成物を硬化して得られる薄膜は、特に薄膜トランジスタのゲート絶縁膜やコンデンサ用材料として有用である。
【解決手段】アルケニル基を有する化合物(A)および特定の構造を有するポリシロキサン化合物(B)からなるヒドロシリル化反応性を有する硬化性組成物であり、得られる硬化物における1kHzでの比誘電率が3.5以上であることを特徴とする硬化性組成物により達成できる。 (もっと読む)


【課題】高周波回路に於いては、トランジスタ等の能動素子間および能動素子と外部端子の間を直流的に遮断する必要がありため、MIMキャパシタ等が多用される。これらのMIMキャパシタのうち、外部端子に接続されたものは、外部からの静電気の影響を受けやすく、静電破壊等の問題を発生しやすい。
【解決手段】本願発明は、半絶縁性化合物半導体基板上に形成された半導体集積回路装置であって、外部パッドに電気的に接続されたMIMキャパシタの第1の電極は前記半絶縁性化合物半導体基板に電気的に接続されており、一方、前記MIMキャパシタの第2の電極は前記半絶縁性化合物半導体基板に電気的に接続されている。 (もっと読む)


【課題】実際の強誘電体メモリセルについて疲労特性を直接に測定する試験方法を含む半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法は、基板上に形成された強誘電体キャパシタの疲労特性の面内分布を取得する第1の工程と、前記面内分布に基づいて、半導体装置を製造する第2の工程と、を含み、前記第2の工程は、前記半導体装置が形成される基板上に複数の強誘電体キャパシタを形成し、前記第1の工程で取得された疲労特性の面内分布から、前記半導体装置が形成される基板上の特定領域を指定し、前記特定領域に形成された前記強誘電体キャパシタについて疲労特性を測定し、前記特定領域の強誘電体キャパシタについて測定した前記疲労特性に基づき、前記特定領域の強誘電体キャパシタについて良否判定を行い、前記良否判定の結果が良であれば、前記複数の強誘電体キャパシタの全てについて良と判定する。 (もっと読む)


【課題】堆積界面のない誘電体膜を有するMIMキャパシタとその製造方法、並びにそのようなMIMキャパシタを備えた半導体装置を提供する。
【解決手段】MIMキャパシタは、半導体基板と、該半導体基板の上方に形成された下部電極16と、該下部電極の上に形成された誘電体膜18と、該誘電体膜の上に該下部電極と重なるように形成された上部電極20と、を備える。そして、該下部電極の上面と側面は、該下部電極の中央部分の厚さよりも大きい曲率半径を持つ第1曲面で、角部が形成されないように接続され、該下部電極は、該下部電極の側面に該下部電極の中央部分の厚さよりも大きい曲率半径を持つ第2曲面を形成することにより、該下部電極の外周に向かうほど薄く形成されている。 (もっと読む)


【課題】スループットを低下させずに異なるメモリセルの誘電体膜とキャパシタの誘電体膜を同時に形成するための半導体装置の製造方法を提供する。
【解決手段】第1酸化膜18、窒化膜19、第2酸化膜20を順に形成した第1の誘電体膜を第1の半導体膜16上に形成する工程と、第1領域I内の第1の誘電体膜21をエッチングする工程と、第1領域Iの半導体基板1の表面に第3酸化膜25を形成する工程と、第1領域VI及び第2領域IIIに開口部28a、28bを有し、さらに第3領域II内の第1の誘電体膜21を覆う形状を有するマスク28を半導体基板1の上方に形成する工程と、マスク28の開口部28a、28bを通して、第1領域VI内の前記第3酸化膜25と前記第2領域III内の第1の誘電体膜21の第2酸化膜20を同時にエッチングする工程を含む。 (もっと読む)


【課題】信頼性の高いトリミング回路を提供する。書き換え可能なトリミング回路を提供する。信頼性の高いトリミング回路の駆動方法を提供する。書き換え可能なトリミング回路の駆動方法を提供する。
【解決手段】オフリーク電流が極めて小さいトランジスタのソース電極またはドレイン電極に接続された記憶ノードと、該記憶ノードにゲート電極が接続されたトランジスタを用いてトリミング回路を構成する。また、該オフリーク電流が極めて小さいトランジスタを用いて、該記憶ノードにゲート電極が接続されたトランジスタのソース電極とドレイン電極に対して並列に接続された素子または回路のトリミング状態を制御する。 (もっと読む)


【課題】プログラマブルなアナログデバイスを提供する。また、電源電位の供給が遮断されたときでもデータの保持が可能で、且つ、低消費電力化が可能なアナログデバイスを提供する。
【解決手段】アナログ素子を含むユニットセルにおいて、ユニットセルのスイッチとして、第1乃至第4のトランジスタを用い、第1のトランジスタと第2のトランジスタとが接続された第1のノード、及び、第3のトランジスタと第4のトランジスタが接続された第2のノードの電位を制御することで、ユニットセルの出力を導通状態、非導通状態、又はアナログ素子を介した導通状態のいずれかに切り替える半導体装置を提供する。 (もっと読む)


【課題】導体半導体接合を用いて、優れた特性を示す、あるいは、作製の簡単な、あるいは、より集積度の高い電界効果トランジスタを提供する。
【解決手段】半導体層の電子親和力よりも仕事関数の小さな導体との接合においては、導体より半導体層にキャリアが注入された領域が生じる。そのような領域を電界効果トランジスタ(FET)のオフセット領域、あるいは、インバータ等の半導体回路の抵抗として用いる。また、ひとつの半導体層中にこれらを設けることにより集積化した半導体装置を作製できる。 (もっと読む)


【課題】複雑な作製工程を必要とせず、消費電力を抑えることができる信号処理回路の提供する。
【解決手段】入力された信号の位相を反転させて出力する論理素子を2つ(第1の位相反転素子及び第2の位相反転素子)と、第1の選択トランジスタと、第2の選択トランジスタと、を有する記憶素子であって、酸化物半導体層にチャネルが形成されるトランジスタと容量素子との組を2つ(第1のトランジスタと第1の容量素子との組、及び第2のトランジスタと第2の容量素子との組)有する。そして、信号処理回路が有する記憶装置に上記記憶素子を用いる。例えば、信号処理回路が有するレジスタ、キャッシュメモリ等の記憶装置に上記記憶素子を用いる。 (もっと読む)


【課題】メタルゲート電極とポリシリコン抵抗素子とを同じ半導体基板に混載するとともに、半導体装置の設計の自由度を向上し、また、半導体装置の小型化を図る。
【解決手段】半導体基板1の主面上にゲート絶縁膜を介してMISFET用のメタルゲート電極が形成され、また、半導体基板1の主面上に積層パターンLPを介してポリシリコン抵抗素子用のシリコン膜パターンSPが形成されている。メタルゲート電極は金属膜とその上のシリコン膜とを有し、積層パターンLPは絶縁膜3aとその上の金属膜4aとその上の絶縁膜5aとを有し、絶縁膜3aは、前記ゲート絶縁膜と同層の絶縁膜により形成され、金属膜4aはメタルゲート電極の金属膜と同層の金属膜により形成され、シリコン膜パターンSPは、メタルゲート電極のシリコン膜と同層のシリコン膜により形成されている。シリコン膜パターンSPは、平面視で絶縁膜5aに内包されている。 (もっと読む)


【課題】 従来のPD製造プロセスと同じ工程で大受光径PDの帯域を拡大して、光受信部の高速化を図る。
【解決手段】 受光デバイスは、半導体基板の上方に形成された第1導電型の第1半導体層、前記第1半導体層上の光吸収層、および前記光吸収層上の第2導電型の第2半導体層の積層構造を有する光検出素子と、前記半導体基板の上方で、前記光検出素子に接続されるインダクタと、前記光検出素子で生成された電流を前記インダクタを介して取り出す出力電極と、前記光検出素子にバイアス電極を印加するバイアス印加用電極と、前記インタダクタの金属配線と交差して、前記光検出素子と、前記出力電極又は前記バイアス印加用電極との間を電気的に接続する交差配線と、を含む。 (もっと読む)


【課題】装置面積を増大させることなく、保護素子を有する半導体装置を提供する。
【解決手段】P型のIII族窒化物半導体からなる第1P型層200と、第1P型層200の一部上には、ゲート絶縁膜420およびゲート電極440とが設けられている。第1P型層200内のうち、ゲート電極440の両脇には、N型のソース領域340およびドレイン領域320が設けられている。また、第1P型層200の下には、N型のIII族窒化物半導体からなる第1N型層100が設けられている。基板内には、N型のIII族窒化物半導体とオーミック接続する材料からなるオーミック接続部(たとえばN型GaN層520)が、ソース領域340および第1N型層100と接するように設けられている。また、ドレイン電極600は、ドレイン領域320および第1P型層200と接するように設けられている。 (もっと読む)


41 - 60 / 1,200