説明

Fターム[5F045AD16]の内容

気相成長(金属層を除く) (114,827) | 成膜条件−成膜温度 (8,040) | 1200≦T<1300℃ (307)

Fターム[5F045AD16]に分類される特許

21 - 40 / 307


【課題】格子欠陥が発生することを防止した発光ダイオードを提供する。
【解決手段】発光ダイオード10は、基板100と、第一半導体層120と、第二半導体層140と、活性層130と、第一電極150と、第二電極160と、を含む。第一半導体層、活性層、及び第二半導体層は、基板から離れる方向に沿って、基板に順次的に積層され、第一電極は、第一半導体層に電気的に接続され、第二電極は、第二半導体層に電気的に接続され、第一半導体層の基板と隣接する表面は、複数の空隙を含むパターン化されたカーボンナノチューブ層102である。第一半導体層のパターン化された表面が基板に接続することによって複数のキャビティが形成される。 (もっと読む)


【課題】Si元素を含む原料が目的とする結晶に取り込まれることなく副生物となるのを抑え、結晶中のSi濃度を安定に制御することができる、第13族窒化物結晶の製造方法を提供すること。
【解決手段】第13族元素、窒素元素およびSi元素を含む原料を用いて、Si取込効率10%以上で結晶成長を行うことにより、Si元素を含有する第13族窒化物結晶を製造する。 (もっと読む)


【課題】製造工程の煩雑化を伴うことなく製造中におけるウエハの割れを防止すること。
【解決手段】窒化物半導体素子形成用ウエハは、基板の上に、下地層、第1導電型窒化物半導体層、活性層、および第2導電型窒化物半導体層が順に積層されて構成されている。基板は、窒化物半導体素子材料とは異なる材料からなる。また、下地層および/または第1導電型窒化物半導体層の膜厚は、基板の中央側と基板の周縁側とで異なっており、基板の周縁側からその基板の中央側へ向かうにつれて大きくても良いし、基板の周縁側からその基板の中央側へ向かうにつれて小さくても良い。窒化物半導体素子は、窒化物半導体素子形成用ウエハを用いて作製されたものである。 (もっと読む)


【課題】結晶欠陥の少ない高品質な単結晶炭化シリコン膜を形成することが可能な半導体基板及び半導体基板の製造方法を提供する。
【解決手段】単結晶シリコン11と、単結晶シリコン11の表面に形成された、開口部12hを有するマスク材12と、単結晶シリコン11の開口部12hから露出した部分に形成された炭化シリコン膜13と、炭化シリコン膜13及びマスク材12を覆って形成された単結晶炭化シリコン膜14と、を含み、マスク材12の粘度が950℃以上1400℃以下の温度範囲において10Pa・s以上1014.5Pa・s以下である。 (もっと読む)


【課題】シリコン基板上にIII族窒化物材料を成長させるための新規な方法を提供することを目的とする。
【解決手段】本発明は、ポーラス状の最上層を有するシリコン基板を含む基板と、
上記最上層上の、Ge材料からなる第2層と、
上記第2層上の、III族窒化物材料からなる別の層とを有する装置に関する。
さらに、本発明は、高品質のIII族窒化物層のエピタキシャル成長に非常に適した方法、中間層若しくはテンプレートデバイスに関する。 (もっと読む)


【課題】誘導加熱を用いて分解温度の高い成膜ガスを安定に分解し、成膜を行うことが可能な成膜装置を提供する。
【解決手段】内部が減圧空間とされる処理容器と、前記減圧空間に成膜ガスを供給するガス供給手段と、カーボンを主成分とする材料により構成さるとともに、前記減圧空間に設置されて被処理基板を保持する基板保持部と、前記処理容器の外側に設置される、前記基板保持部を誘導加熱するコイルと、前記基板保持部を覆うと共に、前記処理容器から離間させて設置される断熱材と、を有し、前記減圧空間は、前記成膜ガスが供給される成膜ガス供給空間と、前記基板保持部と前記処理容器との間に画成される断熱空間とに分離され、前記断熱空間に冷却媒体が介在されるように構成されていることを特徴とする成膜装置。 (もっと読む)


【課題】結晶欠陥の少ない高品質な3C−SiC層を形成することが可能な立方晶炭化珪素半導体基板の製造方法を提供する。
【解決手段】シリコン基板11の上面11aに炭化層12を形成する第1の工程と、シリコン基板11の温度を第2の温度範囲の温度まで下降させる第2の工程と、シリコン基板11の温度が第2の温度範囲の温度となったところで、シリコン原料ガスを導入し、シリコン基板11と炭化層12の間の界面に形成された空孔11hにシリコンをエピタキシャル成長させて空孔11hを埋める第3の工程と、シリコン原料ガスの導入を止め、炭素原料ガスを導入しつつシリコン基板11の温度を第3の温度範囲の温度まで上昇させる第4の工程と、シリコン基板11の温度が第3の温度範囲の温度となったところで、シリコン原料ガス及び炭素原料ガスを導入し、炭化層12上に立方晶炭化珪素をエピタキシャル成長させる第5の工程と、を有する。 (もっと読む)


【課題】本発明は、MOCVD法により化合物半導体膜が形成された基板に残存する反りを十分に低減することの可能な気相成長方法、及び気相成長方法により形成された化合物半導体膜を提供することを課題とする。
【解決手段】化合物半導体膜12を成膜後に、基板11の温度を下げる降温工程、及び/又は化合物半導体膜12を気相成長後に基板11の温度を上げる昇温工程と、を有し、降温工程及び/又は昇温工程では、反応炉16内への気相成長原料(原料ガス)の導入を停止すると共に、反応炉16内への不活性ガスの導入を段階的に減少させる。 (もっと読む)


【課題】半導体積層内の電流経路からゲート電極を隔てる半導体層を厚くできるIII族窒化物半導体電子デバイスを提供する。
【解決手段】第2の半導体層15は第1の半導体層13上に設けられる。ゲート電極17は第2の半導体層15の上に設けられる。第1の半導体層13は、AlGa1−XN(0<X≦1)からなる半導体表面21aの上に設けられる。第2のIII族窒化物半導体材料のバンドギャップE15は第1のIII族窒化物半導体材料のバンドギャップE13より大きい。第1の半導体層13の第1のIII族窒化物半導体材料はAlGa1−XNと異なり、第1の半導体層13は歪みを内包する。また、第2の半導体層15の厚さT15は、無歪みの第1のIII族窒化物半導体材料の組成と、第2のIII族窒化物半導体の組成により規定される臨界膜厚より大きい。また、第1の半導体層13は、歪みを内包すると共に、半導体表面21aのAlGa1−XNの上において格子緩和している。 (もっと読む)


【課題】一度に処理する基板の枚数を増大させ、GaNのエピタキシャル膜の生産性を向上させることができる膜の形成方法及び基板処理装置を提供する。
【解決手段】基板を処理室内に搬入する搬入工程と、前記処理室内にガリウム塩化物ガスを供給する第1ステップと、前記処理室から前記ガリウム塩化物ガスをパージする第1パージステップと、前記第1パージステップの後に前記処理室内にアンモニアガスを供給する第2ステップと、前記処理室から前記アンモニアガスをパージする第2パージステップとを有する初期膜形成工程と、前記初期膜形成工程の後に、前記処理室内に前記ガリウム塩化物ガスと前記アンモニアガスを同時に供給し、エピタキシャル膜を形成するエピ膜形成工程とによりGaN膜を形成する。 (もっと読む)


【課題】反り量を低減できる窒化物半導体の積層体及びその製造方法を提供すること。
【解決手段】実施形態によれば、窒化物半導体の積層体は、主面に凸部を有する基板と、前記基板の前記主面上に直接設けられて前記凸部を覆う単結晶層と、前記単結晶層上に設けられた窒化物半導体層と、を備えている。前記基板は窒化物半導体を含まない。前記単結晶層はクラックを内在している。 (もっと読む)


【課題】 高品質なシリコン膜を高速で結晶成長させる技術を提供する。
【解決手段】 1200℃〜1400℃に加熱されているとともに1500rpm〜3500rpmで回転している基板6に向けて、基板の表面に直交する方向から、塩化シランガス18を供給する。このときの塩化シランガス18の供給量を、基板6の表面1cm当たり200μmol/分以上とする。 (もっと読む)


【課題】凹部のない大面積で高品質なCVDダイヤモンド単結晶及びこれを実現する製造方法の提供。
【解決手段】主面が{100}であるダイヤモンド単結晶基板の{100}側面同士を近接させて4枚以上配置し、該配置した単結晶基板の主面にダイヤモンドを気相合成により成長させた後、該単結晶基板を除去して1枚の大面積CVDダイヤモンド単結晶を製造する方法であって、前記ダイヤモンド単結晶基板の配置が、近接する任意の4枚の単結晶基板の、隣接する2枚の単結晶基板A1とA2とからなる単位Aと、他の2枚の単結晶基板B1とB2とからなる単位Bとにおいて、A及びBが対向する側の面がそれぞれ同一平面上にあり、かつA1とA2が対向する側面間の間隔の真中の面と、B1とB2が対向する側面間の間隔の真中の面とが、単位Aと単位Bが対向する面の方向にずれている配置であることを特徴とする大面積CVDダイヤモンド単結晶を製造する方法。 (もっと読む)


【課題】本発明は、トランジスタ特性の再現性が高く、高速でパワーの大きい電界効果トランジスタ及びその製造方法を提供することを課題とする。
【解決手段】ダイヤモンド基板11と、前記ダイヤモンド基板11の一面11a側に離間して形成された第2の電極13及び第3の電極14と、2つの電極13、14の間に離間して形成された第1の電極15と、を有する電界効果トランジスタであって、第1の電極15とダイヤモンド基板11との間にIII族窒化物半導体層12が設けられ、ダイヤモンド基板11とIII族窒化物半導体層12との界面17の近傍領域に正孔伝導チャネル領域16が形成されている電界効果トランジスタ10を用いることによって前記課題を解決できる。 (もっと読む)


【課題】基板の温度分布を任意に調整することのできる成膜装置を提供する。また、基板を均一に加熱して、所望の厚さの膜を形成することのできる成膜方法を提供する。
【解決手段】成膜装置100は、チャンバ103と、チャンバ103内に設けられてシリコンウェハ101が載置されるサセプタ102と、サセプタ102を回転させる回転部104と、サセプタ102の下方に位置するインヒータ120およびアウトヒータ121と、これらのヒータの下方に位置するリフレクタ集合部105とを有する。リフレクタ集合部105は、環状のリフレクタと円盤状のリフレクタとが組み合わされてなる。 (もっと読む)


【課題】反応容器を大型化すること無く、ノズルでのガスの加熱効率を向上させる。
【解決手段】ガス供給ノズル300は、ウェハ200の周方向に延在する第一延在部321,第三延在部323および第五延在部325と、ウェハ200の積載方向に延在する第一延在部321,第二延在部322,第四延在部324および第六延在部326とを備える。従前のように処理炉を大型化すること無く、アウターチューブとインナーチューブとの間の間隙に、ガス供給ノズル300を省スペースで配置できる。ガス供給ノズル300のガスが流通する経路を長くして、各サセプタ218の輻射熱によりガス供給ノズル300内のガスを充分に加熱できるので、ガスの加熱効率を向上させて各ウェハ200上でのスリップの発生やヘイズの発生等を抑制できる。 (もっと読む)


【課題】トレンチをエピタキシャル膜にて埋め込んで半導体基板を製造する上においてトレンチ開口部の塞がりの抑制と成長速度の向上の両立を図ることができる半導体基板の製造方法を提供する。
【解決手段】nシリコン基板1の上に形成したn型エピタキシャル膜2に、複数のトレンチ4を、トレンチ幅Wtよりも、隣接するトレンチ4間の間隔Ltを大きく形成する。トレンチ4内を含めたエピタキシャル膜2上に、エピタキシャル膜2の不純物濃度よりも高濃度なp型エピタキシャル膜23を、少なくともトレンチ4の埋め込みの最終工程において、p型エピタキシャル膜23の成膜のために供給するガスとして、シリコンソースガスとハロゲン化物ガスとの混合ガスを用いて成膜し、トレンチ4の内部をp型エピタキシャル膜23で埋め込む。 (もっと読む)


【課題】ゲッタリング能力が高く、かつシリコンエピタキシャル層の最表面部の酸素濃度が極めて低いシリコンエピタキシャルウェーハを提供する。
【解決手段】酸素濃度が7ppma(JEIDA)以上のシリコン単結晶基板の主表面上にエピタキシャル層が形成されたシリコンエピタキシャルウェーハであって、該シリコンエピタキシャルウェーハは2層以上の炭素イオン注入層を有し、かつ前記シリコンエピタキシャル層の最表面部は酸素濃度が5ppma(JEIDA)以下であることを特徴とするシリコンエピタキシャルウェーハ。 (もっと読む)


【課題】大面積化が容易で且つ廉価なシリコンからなる基板に、残留応力が少なく且つ高品質の化合物半導体を形成する製造方法を提供する。
【解決手段】シリコン基板101の表面にシリコン酸化膜を形成し、その後、前記シリコン酸化膜よりも下層側の領域にイオン注入を行い、次いで熱処理して、イオン注入された単結晶のシリコンからなる下地層102を形成する。続いて、前記シリコン酸化膜を除去することにより下地層102を露出させる。その後、下地層102の上にAlNバッファ層103,AlGaNバッファ層104,およびGaN層105を形成する。 (もっと読む)


【課題】大面積化が可能な非極性基板およびその製造方法を提供する。
【解決手段】この半導体基板の製造方法は、サファイア基板10上に、GaN層11と、AlGa(1−X)N(0<X≦1)層12とが交互に積層された半導体成長層20を形成する工程と、半導体成長層20を、半導体成長層20の成長面と交差する方向に沿って分割することにより、GaN層11からなる第1領域11aとAlGa(1−X)N(0<X≦1)層12からなる第2領域12aとが縞状に配置された非極性面からなる主表面(切り出し面100a)を有する半導体基板100を形成する工程とを備える。 (もっと読む)


21 - 40 / 307