説明

成膜装置および成膜方法

【課題】誘導加熱を用いて分解温度の高い成膜ガスを安定に分解し、成膜を行うことが可能な成膜装置を提供する。
【解決手段】内部が減圧空間とされる処理容器と、前記減圧空間に成膜ガスを供給するガス供給手段と、カーボンを主成分とする材料により構成さるとともに、前記減圧空間に設置されて被処理基板を保持する基板保持部と、前記処理容器の外側に設置される、前記基板保持部を誘導加熱するコイルと、前記基板保持部を覆うと共に、前記処理容器から離間させて設置される断熱材と、を有し、前記減圧空間は、前記成膜ガスが供給される成膜ガス供給空間と、前記基板保持部と前記処理容器との間に画成される断熱空間とに分離され、前記断熱空間に冷却媒体が介在されるように構成されていることを特徴とする成膜装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、誘導加熱を用いて被処理基板上に成膜を行う成膜装置、および誘導加熱を用いて被処理基板上に成膜を行う成膜方法に関する。
【背景技術】
【0002】
エピタキシャル成長は、基板結晶上に基板結晶と同じ方位関係を有する単結晶を成長させることが可能であるため、様々な場面で用いられてきた。
【0003】
例えば、Siのエピタキシャル成長を用いてシリコンウェハを製造する方法(例えば特許文献1、特許文献2参照)が開示されている。
【0004】
上記のエピタキシャル成長においては、成膜の原料となる成膜ガスを熱により分解するため、成膜の対象となる被処理基板良好は、良好な均一性で、かつ高温に加熱されることが好ましい。このため、例えば被処理基板の加熱には、コイルによる誘導加熱を用いる場
合がある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平9−232275号公報
【特許文献2】特開2004−323900号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、成膜ガスの種類によっては、熱分解温度が高いものがあり、上記の成膜にかかる成膜装置を構成する上で問題になる場合があった。例えば、一般的な成膜装置では、成膜の対象となる被処理基板は、内部が減圧状態となる処理容器内に保持され、成膜が行われる構造になっている。
【0007】
ここで、分解温度が高い成膜ガスが分解される程度に被処理基板を加熱しようとすると、被処理基板を内部に保持する処理容器の壁の温度もこれに伴って増大してしまい、処理容器が損傷してしまう場合があった。また、処理容器の材料によっては、加熱によって成膜の汚染源となる汚染物質が放出されてしまう場合があった。
【0008】
また、処理容器の外側に設置したコイルによる誘導加熱を用いる場合、処理容器を構成する材料は誘電損失(誘電率)が小さな材料であることが好ましい。
【0009】
以上の問題を解決するためには、高温に加熱されても成膜の汚染源となる物質を放出せず、また、誘導加熱における誘電損失が問題にならず、さらに加熱により損傷しないような処理容器を用いて成膜装置を構成することが必要となってしまい、実現が困難となっていた。
【0010】
そこで、本発明では、上記の問題を解決した、新規で有用な成膜装置および成膜方法を提供することを統括的課題としている。
【0011】
本発明の具体的な課題は、誘導加熱を用いて分解温度の高い成膜ガスを安定に分解し、成膜を行うことが可能な成膜装置と、誘導加熱を用いて分解温度の高い成膜ガスを安定に分解し、成膜を行うことが可能な成膜方法を提供することである。
【課題を解決するための手段】
【0012】
本発明は、上記の課題を、
内部が減圧空間とされる処理容器と、
前記減圧空間に成膜ガスを供給するガス供給手段と、
カーボンを主成分とする材料により構成されるとともに、前記減圧空間に設置されて被処理基板を保持する基板保持部と、
前記処理容器の外側に設置される、前記基板保持部を誘導加熱するコイルと、
前記基板保持部を覆うと共に、前記処理容器から離間されて設置される断熱材と、
前記減圧空間を、前記基板保持部と前記断熱材が設けられる成膜ガス供給空間と、前記処理容器と前記断熱材との間に画成される断熱空間と、に分離する断熱材保持構造体と、を有し、
前記断熱空間に冷却媒体が介在されるように構成され、
前記基板保持部は、複数の前記被処理基板を保持可能な被加熱載置台と、該被加熱載置台の周囲に該載置台を囲むように形成される被加熱構造体とを含むことを特徴とする成膜装置により、解決する。
【発明の効果】
【0013】
本発明によれば、誘導加熱を用いて分解温度の高い成膜ガスを安定に分解し、成膜を行うことが可能な成膜装置と、誘導加熱を用いて分解温度の高い成膜ガスを安定に分解し、成膜を行うことが可能な成膜方法を提供することが可能となる。
【発明を実施するための形態】
【0014】
図1は、エピタキシャル成長による成膜を用いて形成された半導体装置(MOSトランジスタ)の構成の一例を示す図である。
【0015】
図1を参照するに、本図に示す半導体装置10は、n型半導体であるSiCよりなる基板1上(基板1の表面上)に、エピタキシャル成長による成膜を用いて形成されたn型半導体であるSiC層2が形成された構成となっている。エピタキシャル成長では、基板結晶上に基板結晶と同じ方位関係を有する単結晶を成長させることが可能であるため、前記SiC層2は単結晶構造を有している。
【0016】
前記SiC層2には、p型不純物拡散領域3A,3Bがそれぞれ形成され、該P型不純物拡散領域3A,3B内には、それぞれn型不純物拡散領域4A,4Bが形成されている。また、対向するように形成される前記n型不純物拡散領域4A,4Bの間の前記SiC層2上には、ゲート絶縁膜6が形成され、当該ゲート絶縁膜6上には、電極7が形成されている。
【0017】
また、前記p型不純物拡散層3A、前記n型不純物拡散領域4A上には、電極5Aが、同様に、前記p型不純物拡散層3B、前記n型不純物拡散領域4B上には、電極5Bが形成されている。また、前記基板1の裏面側には、電極8が形成されている。
【0018】
上記の半導体装置(MOSトランジスタ)においては、それぞれ前記電極7、前記電極5A,5B、および前記電極8が、例えば、それぞれ、ゲート電極、ソース電極、およびドレイン電極として機能する。
【0019】
上記の半導体装置10は、従来の、例えばSiを用いた半導体装置と比べた場合、いわゆるオン抵抗(ドリフト層の抵抗)を大幅に抑制することが可能になる特徴を有している。このため、電力の利用効率が良好となる効果を奏する。
【0020】
図2は、半導体材料として用いられる、Si、GaAs、およびSiCのそれぞれの特性を比較した図である。
【0021】
図2を参照するに、SiCは、従来最も一般的に用いられてきたSiと比較した場合、絶縁破壊電界強度Ecが1桁以上大きい特徴を有していることがわかる。上記のオン抵抗は、絶縁破壊電界強度の3乗に比例するため、絶縁破壊電界強度Ecの大きいSiCを用いた半導体装置では、オン抵抗を低減して電力の利用効率を良好とすることができる。
【0022】
また、SiCは、SiおよびGaAsと比べた場合、バンドギャップが広い特徴を有している。このため、SiCを用いた半導体装置では、高温での動作が可能になる特徴を有している。例えば、従来のSiを用いた半導体装置では、動作の限界温度が150℃程度であるのに対し、SiCを用いた半導体装置では、400℃以上での高温での動作が可能となる。
【0023】
このため、SiCを用いた半導体装置では、例えば従来必要であった半導体装置の冷却手段が不要になったり、または、従来に比べて過酷な条件下において半導体装置を使用することが可能となるメリットがある。
【0024】
また、大電流を扱ういわゆるパワーデバイスにおいては、抵抗値の小さいSiCを用いることにより、デバイス面積を小さくして当該デバイスを用いた機器の小型化を実現することが可能になる。
【0025】
上記のSiCは、例えば、誘導加熱によるガス分解を用いたエピタキシャル成長により形成することができるが、SiCの成膜に用いるガスの組み合わせの一例としては、SiH、Hに加えて、分解の困難なCなどの炭化水素系のガス(CxHy(x、yは整数)により示されるガス)を添加する場合がある。例えばCの場合には、成膜にかかる分解のためには1200℃以上の高温に加熱する必要があり、このように、被処理基板を高温にしようとする場合には、上記の成膜にかかる成膜装置を構成する上で問題が生じる場合があった。
【0026】
例えば、一般的な成膜装置では、成膜の対象となる被処理基板は、内部が減圧状態となる処理容器内に保持され、成膜が行われる構造になっている。
【0027】
ここで、成膜ガス(炭化水素系のガス)が分解される1200℃以上程度に被処理基板を加熱しようとすると、被処理基板を内部に保持する処理容器の壁の温度もこれに伴って増大してしまい、処理容器の内壁の温度を低くする(いわゆるコールドウォール方式とする)ことが困難となってしまう。このように処理容器が内壁側から局所的に加熱されると、処理容器を構成する材料によっては、熱応力によって損傷(クラックなど)が生じてしてしまう場合があった。また、処理容器の材料によっては、加熱によって成膜の汚染源となる汚染物質が放出されてしまう場合があった。
【0028】
また、処理容器の外側に設置したコイルによる誘導加熱を用いる場合、処理容器を構成する材料は、例えば石英(石英ガラス)などの誘電損失(誘電率)が小さな材料であることが好ましい。
【0029】
以上の問題を解決するためには、高温に加熱されても成膜の汚染源となる物質を放出せず、また、誘導加熱における誘電損失が問題にならず、さらに加熱により損傷しないような処理容器を用いて成膜装置を構成することが必要となり、実現が困難となっていた。
【0030】
そこで、本発明では、上記の処理容器内の減圧空間に、誘導加熱される基板保持部と当該処理容器とを断熱する、断熱材を設けていることが特徴である。このため、被処理基板(基板保持部)を高温に加熱した場合であっても処理容器の壁面の温度を低く維持することが可能となる。このため、処理容器の破損や、処理容器からの汚染物質の放出のリスクを低減して、安定に被処理基板を加熱することが可能となる。
【0031】
また、処理容器の温度が低く維持されるため、処理容器を構成する材料の選択の自由度が向上する。このため、例えば石英など、誘電損失(誘電率)が小さく、汚染物質の放出のリスクの小さい清浄な材料を用いて処理容器を構成し、安定に成膜ガスを分解してエピタキシャル成長を行うことが可能になる。
【0032】
また、上記の断熱材は、成膜ガスが分解される減圧空間内に設置されるため、加熱された場合に分解・変質が生じにくく、また、加熱された場合に汚染物質の放出などが生じにくい、安定で清浄な(純度の高い)材料を用いることが好ましい。例えば、上記の断熱材としては、カーボンを用いることが好ましく、また、例えばカーボンを多孔状に(空隙率を大きく)することで、断熱性能を向上させることができる。
【0033】
次に、上記の成膜装置の構成の一例について、また、上記の成膜装置を用いた成膜方法の一例について、図面に基づき、以下に説明する。
【実施例1】
【0034】
図3は、本発明の実施例1による成膜装置100を模式的に示した図である。図3を参照するに、本実施例による成膜装置100は、内部に減圧空間101Aが画成される、略直方体状(略筐体状)の処理容器101を有する構造となっている。
【0035】
減圧空間101Aには、被処理基板を保持する基板保持部(被処理基板、基板保持部ともに本図では図示せず、図4で詳細を図示)が設置され、当該被処理基板に対して成膜(エピタキシャル成長)が行われる構造になっている。なお、減圧空間101A内の構造については本図では図示を省略するが、図4以下で後述する。
【0036】
また、処理容器101には、例えば真空ポンプなどの排気手段114と、例えばコンダクタンス可変バルブよりなる圧力調整手段113が設置された排気ライン112が接続され、減圧空間101Aを、所定の減圧状態(圧力)に調整することが可能になっている。また、処理容器101には、圧力計111が設置され、圧力調整手段113による処理容器内の圧力の調整は、圧力計111によって測定される圧力に対応して実施される。
【0037】
また、処理容器101の外側には、高周波電源107Aに接続されたコイル107が設置されている。上記のコイル107は、減圧空間101A内の基板保持部(図示せず)を誘導加熱する。
【0038】
また、処理容器101内(減圧空間101A)には、ガス供給手段100Gにより、成膜の原料となる成膜ガスが供給されるよう構成されている。上記のガス供給手段100Gは、処理容器101に接続されるガスライン130と、ガスライン130に接続される、ガスライン130A,130B,130C,130D,および130Eとを有するように構成されている。
【0039】
質量流量コントローラ(MFC)131Aとバルブ132Aが設置されたガスライン130Aは、SiHガスを供給するガス供給源133Aに接続されており、SiHガスを処理容器101内に供給可能に構成されている。
【0040】
同様に、質量流量コントローラ(MFC)131B〜131Eと、バルブ132B〜132Eがそれぞれ設置されたガスライン130B〜130Eは、それぞれガス供給源133B〜133Eに接続されている。ガス供給源133B〜133Eからは、それぞれ、Cガス、Hガス、TMA(トリメチルアルミニウム)ガス、Nガスが供給されるように構成されている。
【0041】
例えば、処理容器101内の被処理基板上に、エピタキシャル成長による成膜を行う場合には、成膜のための原料ガスとして、上記のSiHガス、Cガス、およびHガスを処理容器101内に供給すればよい。この場合、SiとCを主成分とする膜(SiC膜)を、被処理基板上にエピタキシャル成長させることができる。
【0042】
また、必要に応じて、TMAガスやNガスを添加して、形成されるSiC膜の電気的な特性を調整するようにしてもよい。また、上記のガスは成膜に用いるガスの一例であり、本発明ではこれらのガスに限定されず、他のガスを用いてSiC膜を形成するようにしてもよい。また、SiC膜に限定されず、他のガスを用いて他の膜を形成するようにしてもよい。
【0043】
また、処理容器101(減圧空間101A)には、ガスライン134により、処理容器101を冷却するための冷却媒体(例えば冷却ガス)が供給されるよう構成されている。MFC135とバルブ136が設置されたガスライン134は、冷却ガス(例えばArなどの不活性ガス)を供給するガス供給源137に接続されており、冷却ガスを処理容器101内に供給可能に構成されている。上記の成膜ガス、冷却ガスの処理容器101内での具体的な供給経路については、図4で後述する。
【0044】
また、上記の成膜装置100において、成膜に係る処理、例えば上記のバルブの開閉や、流量制御、高周波電力の印加などは、たとえばレシピと呼ばれるプログラムに基づき、動作される。この場合、これらの動作は、CPU121を有する、制御装置120よって制御される。これらの接続配線は図示を省略している。
【0045】
前記制御装置120は、CPU121と、上記のプログラムを記憶した記憶媒体122、キーボードなどの入力部123、表示部126、ネットワークなどに接続するための通信部125、およびメモリ124を有している。
【0046】
次に、上記の処理容器101内の構造について、図4に基づき説明する。図4は、図3で先に説明した処理容器101の内部の構造を模式的に示した断面図である。ただし、先に説明した部分には同一の符号を付している。図4を参照するに、処理容器101の内部の概略は、減圧空間101Aに被処理基板Wを保持する基板保持部102が設置された構造となっている。
【0047】
上記の基板保持部102は、処理容器101の外側に設置されたコイル107により、誘導加熱される。被処理基板Wは、被処理基板W自身のコイル107からの誘導加熱に加えて、誘導加熱された基板保持部102からの輻射や熱伝導により加熱される。被処理基板Wは、供給される成膜ガスが分解されて表面反応(エピタキシャル成長)が可能となる程度の温度に加熱される。
【0048】
例えば、先に説明した成膜ガスのうち、Cガスは、分解が始まる温度がおよそ1200℃以上であるため、被処理基板Wの温度は、少なくとも1200℃以上(例えば1550℃〜1650℃程度)に加熱される。この場合、基板保持部102も同程度の温度となる。
【0049】
本実施例による成膜装置では、上記の構造において、誘導加熱されて高温となる基板保持部102(被処理基板W)と処理容器101との間に、基板保持部102(被処理基板W)と、処理容器101とを断熱する断熱材105が設置されていることが特徴である。
【0050】
このため、基板保持部102(被処理基板W)が上記のように誘導加熱で高温とされた場合であっても、加熱された部分と処理容器101との温度差を大きく維持して処理容器101の破損や放出ガスの発生などを抑制することができる。
【0051】
また、上記のように処理容器101内で高温となる部分と処理容器101との断熱性能が優れているため、処理容器101を構成する材料の選択の自由度が向上する。上記の処理容器101は、例えば石英により構成される。石英は誘電損失が小さく、誘導加熱する場合に好適である。また、石英は純度が高く、減圧状態で加熱された場合であっても成膜の汚染源となる放出ガスの量が少ないため、高性能デバイスを構成する膜を形成する場合の減圧空間を画成する材料として好適である。
【0052】
また、減圧空間101Aに設置され、かつ、高温にされる基板保持部102と断熱材105については、ともに、加熱された場合に分解・変質が生じにくく、また、加熱された場合に汚染物質の放出などが生じにくい、安定で清浄な(純度の高い)材料により構成されていることが好ましい。例えば、上記の基板保持部102と、断熱材105は、ともにカーボン(グラファイト)を用いて形成されることが好ましい。
【0053】
また、基板保持部102は、誘導加熱による加熱が容易であること、また、輻射により被処理基板を加熱することが好ましいため、構成されるカーボン材料の密度が大きいことが好ましく、当該カーボン材料は、例えば、いわゆるバルク材料と呼ばれる程度に密度が大きいことが好ましい。
【0054】
一方で、断熱材105は、断熱性能を良好とするため、密度が小さくなるように形成されることが好ましく、空隙率が上記のバルク材料に比べて著しく大きくなるように形成されることが好ましい。また、このような断熱に好適な構造は、例えば目視においても空隙がある程度確認できる程度に構成されており、これらの材料を本文中では、空隙の形状にかかわらず、多孔状に形成されている材料であると定義する。
【0055】
また、必要に応じて、成膜の汚染源とならない程度に、カーボンに熱伝導率を制御するための材料を添加して用いてもよい。
【0056】
すなわち、上記の基板保持部102と断熱材105は、ともに減圧状態で加熱される場合に好適な材料である、同じ材料(カーボン)を主成分として構成されるが、おもにはその密度(材料のミクロな構造)の違いにより、熱伝導率が異なるようにして構成されている。
【0057】
また、基板保持部102や断熱材105の表面には、所定のコーティング膜が形成されていてもよい。本実施例の場合、例えば基板保持部102の表面はSiC膜でコーティングされており、一方で断熱材105の表面は、断熱材105よりも密度の高いカーボン膜でコーティングされている。このようなコーティング膜を施すことで、材料を保護するとともに、パーティクルの発生を抑制することができる。
【0058】
また、上記の断熱材105の外側には、断熱材105を覆うように、石英よりなる断熱材保持構造体106が形成されている。断熱保持構造体106は、断熱材105を保持して処理容器101から離間させるように構成されている。このため、処理容器101と断熱材105の間に断熱空間101bが画成され、処理容器101の温度上昇が効果的に抑制されている。断熱材保持構造体106は、柱状の支持部106Aによって処理容器101の底面に載置されている。
【0059】
さらに、上記の断熱空間101bには、図3で先に説明した冷却媒体(冷却ガス、例えばArガスなど)が供給されている。このようなガスによる冷却によっても処理容器101の温度上昇が抑制されている。
【0060】
また、上記の断熱材保持構造体106の内側に画成される、基板保持部102と断熱材105が設置された成膜ガス供給空間101aには、成膜ガスが供給される。したがって、断熱材保持構造体106によって、成膜ガスの減圧空間101A内での拡散が抑制され、成膜ガスが被処理基板Wに効率的に供給され、成膜ガスの利用効率が良好となっている。
【0061】
すなわち、断熱材保持構造体106は、減圧空間101Aを、実質的に2つの空間(成膜ガス供給空間101a、断熱空間101b)に分離している。このため、処理基板101の温度上昇が効果的に抑制されるとともに、成膜ガスの利用効率が良好となっている。この場合、高温に加熱される基板保持部102が断熱材105によって処理容器101から隔離されることに加えて、基板保持部102と処理容器101の間に画成される断熱空間101bに上記の冷却媒体が介在されることによって、効果的に処理容器101の温度上昇が抑制される。
【0062】
また、基板保持部102の構造についてみると、基板保持部102は、大別して被処理基板Wが載置される載置台(被加熱載置台)103と、載置台103の周囲に形成される被加熱構造体104とを有している。
【0063】
載置台103は、略円盤形状であり、円盤形状の表面に形成された凹部に、複数の被処理基板Wが載置された略円盤状の搬送板110が載置される構造になっている。複数の被処理基板Wは、搬送板110に載置された状態で搬送アームなどの搬送手段(後述)により搬送され、載置台103の凹部に載置される。
【0064】
また、載置台103の中心部に形成された中心穴には、軸部108が挿入される構造になっている。軸部108は、稼働手段109によって上下動、または回転がされるように構成されている。軸部108の先端側には、段差形状を有する略円盤状の先端部が形成されており、該先端部が搬送板110の中心に形成された中心穴に嵌合して搬送板110を持ち上げることが可能になっている。搬送板110の搬送時には、軸部108によって、搬送板108が持ち上げられる。
【0065】
また、成膜時には、軸部108を中心軸にして、載置台103(搬送板110)が回転される。このため、複数の被処理基板Wの間での成膜(成膜速度、膜質)のばらつきや、または、個々の被処理基板Wの面内での成膜のばらつきが抑制される効果を奏する。
【0066】
図5は、載置台103に載置された搬送板110と、搬送板110に載置された複数の被処理基板Wを平面視した図である。また、搬送板110の中心穴には、軸部108の先端部が嵌合している。なお、本図では、一例として被処理基板Wが中心から等配に8枚載置された状態を示しているが、被処理基板の載置方法、載置される枚数はこれに限定されるものではない。また、搬送板110も減圧空間110A内で誘導加熱されるために、載置台103と同じ材料(カーボン)により形成されていることが好ましい。
【0067】
また、図6には、上記の載置台103とともに基板保持部102を構成する被加熱構造体104の斜視図を示す。図6を参照するに、被加熱構造体104は、載置台103の周囲に載置台103を囲むように形成され、例えば略筐体状(直方体状)に形成されている。
【0068】
また、当該直方体の互いに対向する2つの面に対応する部分が開口されており、当該2つの開口のうちの一方の側から成膜ガスが供給され、他方の側から成膜ガスが排出される構造になっている。上記の構造において、被処理基板W上に供給される成膜ガスは、実質的に被処理基板Wに平行な方向に沿って供給され、排出される。
【0069】
上記の被加熱構造体104が設置されていることで、被処理基板Wをより効率的に、かつ、より良好な均一性で加熱することが可能になる。例えば、被処理基板Wは、被処理基板W自身の誘導加熱によっても加熱され、また、載置台103(搬送板110)からの輻射によっても加熱されるが、これらに比べて体積が大きい被加熱構造体104が設けられていることで、より効率的に加熱される。また、被処理基板Wは、被加熱構造体104の輻射によって、被処理基板Wの周囲(複数の方向)から加熱される。このため、被処理基板Wは、より均一に加熱される。
【0070】
また、コイルによる誘導加熱では、例えばヒータによる加熱に比べてより効率的に、かつ、良好な均一性で加熱することができるが、この場合、コイル107は、処理容器101に巻き付けられるように設置されていることが好ましい。この場合、より均一に被処理基板Wを加熱することが可能となり、また、上記の被加熱構造体105と組み合わせられることで、より効率的に、より良好な均一性で被処理基板Wを加熱することができる。
【0071】
次に、上記の成膜装置100を用いた成膜方法の一例について、図7に示したフローチャートに基づき、説明する。また、成膜にあたっては、複数の被処理基板Wが載置された搬送板110は、例えば図8以降で後述する搬送手段(例えば搬送アームなど)により、搬送される。
【0072】
まず、ステップ1(図中S1と表記、以下同じ)において、円盤状の搬送板110に、複数の被処理基板Wを載置する。
【0073】
次に、ステップ2において、複数の被処理基板Wが搬送板110に載置された状態で、搬送手段(後述)により搬送板110を載置台(被加熱載置台)103上に搬送する。
【0074】
次に、ステップ3において、被加熱載置台103(被加熱載置台103に保持された搬送板110)を所定速度で回転させる。
【0075】
次に、ステップ4において、成膜ガス供給空間101aに成膜ガスを供給する。
【0076】
次に、ステップ5において、コイル107により、基板保持部102を加熱する。
【0077】
次に、ステップ6において、搬送手段により、被処理基板Wが載置された搬送板110を処理容器101から搬出する。
【0078】
このようにして、被処理基板W上にエピタキシャル成長により、SiとCを主成分とする膜(SiC膜)を形成することができる。また、ステップ4において成膜ガスを供給する場合、図3で先に説明したように、成膜ガスとして、SiHガス、Cガス、およびHガスを処理容器101内(成膜ガス供給空間101a)に供給する。また、必要に応じてTMAガスやNガスを添加してもよい。
【0079】
例えば、それぞれの成膜ガスの流量は、一例として、SiHガスが10sccm乃至30sccm、Cガスが10sccm乃至20sccm、Hガスが50slm乃至200slmとされるが、上記の数値に限定されるものではない。
【0080】
また、ステップ5において、処理容器101の外側に設置されるコイル107により、基板保持部102(被処理基板W)を誘導加熱する場合、例えば、被処理基板を1550℃乃至1650℃程度に加熱する。
【0081】
また、ステップ3〜ステップ5の順序は入れ替えても良く、また、ステップ3〜ステップ5を実質的に同時に開始するようにしてもよい。また、それぞれのステップの時間は、適宜変更することで、所望の厚さのSiC膜を形成することができる。
【0082】
次に、上記に説明した処理容器101に、搬送室を接続して成膜装置を構成する例について説明する。例えば、被処理基板を用いた半導体装置の製造においては、被処理基板(被処理基板が載置された搬送板)を搬送する搬送室が用いられることが一般的である。このため、成膜装置は、以下に説明するように、上記の搬送室を有する構造とされることが一般的である。
【0083】
図8は、先に説明した処理容器101と、搬送手段(例えば搬送アーム)201Aを有する搬送室201とを接続して成膜装置を構成した例を模式的に示した斜視図である。ただし、先に説明した部分には同一の符号を付し、詳細な説明を省略する。また、処理容器101内の構造、また、処理容器101に接続される排気ラインなどは図示を省略している。
【0084】
図8を参照するに、図4,図5で先に示した処理容器101は、搬送アームを内部に有する搬送室201と、処理容器101Bを介して接続されている。また、処理容器101Bの底面側には、先に説明した成膜ガスを供給するためのガスノズル(成膜ガス供給手段)101Cが設置されている。成膜ガスは、上記のガスノズル101Cから成膜ガス供給空間101aに供給される構造になっている。
【0085】
上記の構造において、図5に示した、被処理基板Wが載置された搬送板110は、上記の搬送アーム201により、搬送室201の側から処理容器101内に搬入される。搬送アーム201は、被加熱構造体104の開口部から差し入れられ、搬送板110が載置台103上に載置される。また、被処理基板Wに成膜が終了した後は、同様にして搬送アーム201により、搬送板110が処理容器101から搬送室201の側に搬出される。
【0086】
また、図9は、上記の搬送室201に、複数の処理容器101(成膜装置100)を接続して、成膜装置1000を構成した例を模式的に示した平面図である。ただし、先に説明した部分には同一の符号を付し、説明を省略する。
【0087】
図9を参照するに、本図に示す成膜装置1000は、搬送板110が搭載されたホルダー(図示せず)が載置されるポート205A〜205Cと、当該ホルダーの搬送エリアであるローダ203を有している。
【0088】
また、ローダ203は、搬送板110が投入されるロードロック202A,202Bに接続されており、さらにロードロック202A,202Bは、先に図8で説明した搬送室201と接続されている。
【0089】
上記の搬送室201には、先に示した処理容器101が2つ接続されている。なお、成膜装置100の、処理容器101以外の構造(コイル、高周波電源、排気ライン、ガスラインなど)は図示を省略している。
【0090】
ポート205A〜205Cのいずれかに載置された搬送板110(被処理基板W)は、ローダ203を介してロードロック202A,またはロードロック202Bに投入される。さらに、搬送板110は、ロードロック室202A,202Bのいずれかから、搬送室201を経て、成膜装置100(処理容器101)に搬送される構造になっている。また、必要に応じて、ローダ203に設置された位置合わせ機構204を用いて、搬送板の位置合わせを行うことも可能である。
【0091】
成膜装置100で成膜が完了した後、搬送板110(被処理基板W)は、再び搬送室201を介してロードロック202A,またはロードロック202Bのいずれかに搬送され、さらにローダ203を介してポート205A〜205Cのいずれかに戻される。
【0092】
このように、成膜装置100(処理容器101)に、搬送室201などの搬送板(被処理基板)の搬送のための構造を接続して用いることで、被処理基板の成膜を連続的に、効率よく実施することが可能となる。
【0093】
また、例えば、基板処理装置1000は上記の構成に限定されず、様々に変形・変更することが可能である。例えば、前記真空搬送室201に接続される成膜装置100(処理容器101)は、2つの場合に限定されず、例えば、3つまたは4つ接続されるようにしてもよい。さらに、搬送室201に、成膜装置100以外の基板処理に係る装置を接続するようにしてもよい。このようにして、必要に応じて基板処理装置の構成を変更し、基板処理(成膜)の効率が良好となるようにすることが可能である。
【0094】
以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施例に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。
【産業上の利用可能性】
【0095】
本発明によれば、誘導加熱を用いて分解温度の高い成膜ガスを安定に分解し、成膜を行うことが可能な成膜装置と、誘導加熱を用いて分解温度の高い成膜ガスを安定に分解し、成膜を行うことが可能な成膜方法を提供することが可能となる。
【図面の簡単な説明】
【0096】
【図1】エピタキシャル成長による成膜を用いて形成された半導体装置の一例である。
【図2】半導体材料の特性を比較した図である。
【図3】実施例1による成膜装置の概要を模式的に示した図である。
【図4】図3の成膜装置の処理容器内部の構造を模式的に示した断面図である。
【図5】図4の処理容器内部に設置される基板保持部を示す図(その1)である。
【図6】図4の処理容器内部に設置される基板保持部を示す図(その2)である。
【図7】実施例1による成膜方法を示すフローチャートである。
【図8】処理容器に搬送室を接続する例を示す図である。
【図9】搬送室に複数の処理容器を接続した例を示す図である。
【符号の説明】
【0097】
101 処理容器
101A 減圧空間
101B 処理容器
101C ガス供給手段
101a 成膜ガス供給空間
101b 断熱空間
102 基板保持部
103 載置台
104 被加熱構造体
105 断熱材
106 断熱材保持構造体
107 コイル
108 軸部
109 稼働手段
110 搬送板
111 圧力計
112 排気ライン
113 圧力調整手段
114 排気手段
120 制御手段
121 CPU
122 記憶媒体
123 入力部
124 メモリ
125 通信部
126 表示部
130,130A,130B,130C,130D,130E,130F,130G,134 ガスライン
131A,131B,131C,131D,131E,131F,131G,135 MFC
132A,132B,132C,132D,132E,132F,132G,136 バルブ
133A,133B,133C,133D,133F,133F,133G,137 ガス供給源

【特許請求の範囲】
【請求項1】
内部が減圧空間とされる処理容器と、
前記減圧空間に成膜ガスを供給するガス供給手段と、
カーボンを主成分とする材料により構成されるとともに、前記減圧空間に設置されて被処理基板を保持する基板保持部と、
前記処理容器の外側に設置される、前記基板保持部を誘導加熱するコイルと、
前記基板保持部を覆うと共に、前記処理容器から離間されて設置される断熱材と、
前記減圧空間を、前記基板保持部と前記断熱材が設けられる成膜ガス供給空間と、前記処理容器と前記断熱材との間に画成される断熱空間と、に分離する断熱材保持構造体と、を有し、
前記断熱空間に冷却媒体が介在されるように構成され、
前記基板保持部は、複数の前記被処理基板を保持可能な被加熱載置台と、該被加熱載置台の周囲に該載置台を囲むように形成される被加熱構造体とを含むことを特徴とする成膜装置。
【請求項2】
前記断熱材はカーボンを主成分として構成され、前記断熱材のカーボン密度が、前記基板保持部のカーボン密度より小さいことを特徴とする、請求項1記載の成膜装置。
【請求項3】
前記断熱材の表面には、カーボン系のコーティング膜が形成されていることを特徴とする請求項2記載の成膜装置。
【請求項4】
前記処理容器は、石英により構成されていることを特徴とする請求項1乃至3のいずれか1項記載の成膜装置。
【請求項5】
前記被加熱構造体には、対向する2つの開口部が形成され、一方の開口部から前記成膜ガスが供給され、他方の開口部から当該成膜ガスが排出されることを特徴とする請求項1乃至4のいずれか1項記載の成膜装置。
【請求項6】
前記被加熱載置台は、複数の前記被処理基板が載置された搬送板を保持すると共に、該搬送板を所定の回転軸を中心として回転するように構成されていることを特徴とする請求項5記載の成膜装置。
【請求項7】
前記処理容器は、搬送手段を内部に有する搬送室に接続され、当該搬送手段により、前記搬送板が前記被加熱載置台上に搬出入されることを特徴とする請求項6記載の成膜装置。
【請求項8】
前記被処理基板上には、前記成膜ガスを用いたエピタキシャル成長が行われることを特徴とする請求項1乃至7のいずれか1項記載の成膜装置。
【請求項9】
請求項1乃至7のいずれか1項記載の成膜装置を用い、エピタキシャル成長を行うことにより前記被処理基板上に成膜を行う成膜方法であって、
円盤状の搬送板に、複数の前記被処理基板を載置する工程と、
複数の前記被処理基板が前記搬送板に載置された状態で、搬送手段により前記搬送板を被加熱載置台上に搬送する工程と、
前記被加熱載置台を所定速度で回転させる工程と、
前記成膜ガス供給空間に前記成膜ガスを供給する工程と、
前記コイルにより前記基板保持部を加熱する工程と、
前記搬送手段により複数の前記被処理基板が載置された前記搬送板を前記処理容器から搬出する工程と、を有することを特徴とする成膜方法。
【請求項10】
前記断熱空間に前記処理容器を冷却する冷却媒体を供給する工程をさらに有することを特徴とする請求項9記載の成膜方法。
【請求項11】
前記エピタキシャル成長を行う工程では、前記被処理基板上にSiとCを主成分とする膜が形成されることを特徴とする請求項9または10記載の成膜方法。
【請求項12】
前記成膜ガスは、CxHy(x、yは整数)により示されるガスを含むことを特徴とする請求項9乃至11のいずれか1項記載の成膜方法。
【請求項13】
前記エピタキシャル成長を行う工程では、前記被処理基板が1200℃以上となるように前記基板保持部が誘導加熱されることを特徴とする請求項9乃至12のいずれか1項記載の成膜方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−178613(P2012−178613A)
【公開日】平成24年9月13日(2012.9.13)
【国際特許分類】
【出願番号】特願2012−130511(P2012−130511)
【出願日】平成24年6月8日(2012.6.8)
【分割の表示】特願2006−348502(P2006−348502)の分割
【原出願日】平成18年12月25日(2006.12.25)
【出願人】(000219967)東京エレクトロン株式会社 (5,184)
【出願人】(000116024)ローム株式会社 (3,539)
【出願人】(504132272)国立大学法人京都大学 (1,269)
【Fターム(参考)】