説明

エッチング装置及び方法

【課題】シリコン等をエッチングするための反応ガスの利用効率を高め、エッチングレートを高くする。
【解決手段】被処理物9を搬入側排気チャンバー20、処理チャンバー10、搬出側排気チャンバー30の順に搬送する。処理チャンバー10内に反応ガスを導入する。排気手段5によって、排気チャンバー20,30の内圧が外部の圧力及び処理チャンバー10の内圧より低圧になるよう、排気チャンバー20,30内のガスを吸引して排気する。好ましくは、連通口13,14におけるガス流の流速を0.3m/sec〜0.7m/secとする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被処理物を大気圧近傍下において反応ガスにてドライエッチング(ライトエッチング等の表面粗化の他、洗浄・除去等をも含む)する装置及び方法に関する。
【背景技術】
【0002】
例えば、特許文献1〜3等では、ガラス基板等の被処理物を常開の搬入開口から処理チャンバー内に搬入し、処理チャンバー内にて反応ガスを上記被処理物に接触させてエッチング等の大気圧プラズマ処理を行った後、上記被処理物を常開の搬出開口から搬出している。搬入開口及び搬出開口を常開にすることで、複数の被処理物を連続的に処理チャンバーに搬入して処理でき、処理時間を短縮できる。処理チャンバーの上部に反応ガスを吹き出すノズルが設けられている。処理チャンバーの底部に排気手段が接続されている。排気手段にて処理チャンバーの内部のガスを吸引することによって、搬入開口及び搬出開口でのガスの流れが外部から処理チャンバーに向かう方向になるようにする。これによって、反応ガスが搬入開口及び搬出開口から外部に漏洩するのを防止している。
【0003】
上掲特許文献1〜3には、処理チャンバーの両側に搬入側のチャンバー及び搬出側のチャンバーを設けた態様が開示されている。中央の処理チャンバーに排気手段が接続されている。排気手段の吸引排気によって、外部の雰囲気ガスが、搬入側チャンバー及び搬出側チャンバーに流入し、これら搬入側チャンバー及び搬出側チャンバーを経て処理チャンバーに流入する。この流入外気が反応ガスと一緒に処理チャンバーから排気される。
【0004】
更に、上掲特許文献1には、中央の処理チャンバーに排気手段が接続されるとともに、搬入側チャンバー及び搬出側チャンバーにもそれぞれ排気手段が接続された態様も開示されている。この態様では、各排気手段によって、処理チャンバーが搬入側チャンバー及び搬出側チャンバーよりも少し低圧になるよう調節する。したがって、搬入側チャンバーと処理チャンバーの連通口では、搬入側チャンバーから処理チャンバーに向かうガス流が形成される。搬出側チャンバーと処理チャンバーの連通口では、搬出側チャンバーから処理チャンバーに向かうガス流が形成される。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2010−087077号公報(図2、図5)
【特許文献2】特開2001−102197号公報(図6(a))
【特許文献3】特開2001−102198号公報(図8(a))
【発明の概要】
【発明が解決しようとする課題】
【0006】
シリコン膜のエッチング等の大気圧プラズマ処理では、反応ガス成分やエッチング等の処理によって副次的に生じたガス成分を閉じ込め、回収して、適切に排気処理する必要がある。そこで、搬入開口及び搬出開口が常開の場合、これらのガス成分がチャンバーの搬入口及び搬出口から外部へ漏洩するのを防止するために、排気手段によってチャンバーの内部のガスを大量に吸引して排気していた。そのため、外部の雰囲気ガスが搬入口及び搬出口からチャンバーの内部に流入し、チャンバー内の反応ガスが希釈されていた。また、反応ガスの多くが未使用のまま排気手段にて排気されてしまい、反応ガスの利用効率が低く、処理レートの低下を招いていた。
【課題を解決するための手段】
【0007】
本発明装置は、上記事情に鑑みてなされたものであり、被処理物に大気圧近傍下において反応ガスを接触させるエッチング装置において、
前記被処理物を搬送経路に沿って搬送する搬送手段と、
前記搬送経路上に配置された処理チャンバーと、
前記処理チャンバー内に前記反応ガスを導入する反応ガスノズルと、
前記処理チャンバーより前記搬送経路の上流側に設けられた搬入側排気チャンバーと、
前記処理チャンバーより前記搬送経路の下流側に設けられた搬出側排気チャンバーと、
前記搬入側排気チャンバー及び前記搬出側排気チャンバーに接続された排気手段と、
を備え、前記搬入側排気チャンバーの前記搬送経路の上流側の壁に搬入開口が設けられ、前記搬入側排気チャンバーと前記処理チャンバーとが搬入側連通口を介して連通し、前記処理チャンバーと前記搬出側排気チャンバーとが搬出側連通口を介して連通し、前記搬出側排気チャンバーの前記搬送経路の下流側の壁に搬出開口が設けられており、
前記搬入側排気チャンバー及び前記搬出側排気チャンバーの内圧が前記処理チャンバーの内圧より低圧になるよう、前記排気手段が、前記搬入側排気チャンバー内及び前記搬出側排気チャンバー内のガスを吸引して排気することを特徴とする。
【0008】
搬送手段によって被処理物が搬送経路に沿って搬入側排気チャンバー、処理チャンバー、搬出側排気チャンバーの順に搬送される。被処理物は、搬入開口を通って搬入側排気チャンバーに搬入され、そこから搬入側連通口を通って処理チャンバーに搬入される。反応ガスノズルから反応ガスを処理チャンバーに導入することで、処理チャンバー内において被処理物がエッチング処理される。排気手段によって搬入側排気チャンバーの内圧を処理チャンバーの内圧より低圧にすることで、処理チャンバーから搬入側連通口を通って搬入側排気チャンバーに向かうガスの流れを形成できる。また、排気手段によって搬出側排気チャンバーの内圧を処理チャンバーの内圧より低圧にすることで、処理チャンバーから搬出側連通口を通って搬出側排気チャンバーに向かうガスの流れを形成できる。これによって、処理チャンバー内の反応ガス濃度が外気流入によって希釈されるのを防止できる。また、処理チャンバーからは直接排気しないことで、処理チャンバー内を反応ガスの滞留空間にでき、反応ガスの利用効率を高めることができる。この結果、エッチングレートを高くできる。その後、被処理物は、搬出側連通口を通って搬出側排気チャンバーへ送られ、そこから搬出開口を通って搬出される。
【0009】
本発明方法は、被処理物に大気圧近傍下において反応ガスを接触させるエッチング方法において、
前記被処理物を搬送経路に沿って搬入側排気チャンバー、処理チャンバー、搬出側排気チャンバーの順に搬送し、
前記処理チャンバー内に前記反応ガスを導入し、
前記搬入側排気チャンバー及び前記搬出側排気チャンバーの内圧が前記処理チャンバーの内圧より低圧になるよう、前記搬入側排気チャンバー内及び前記搬出側排気チャンバー内のガスを排気手段にて吸引して排気することを特徴とする。
これによって、処理チャンバー内の反応ガス濃度が外気流入によって希釈されるのを防止できる。また、処理チャンバー内を反応ガスの滞留空間にでき、反応ガスの利用効率を高めることができる。この結果、エッチングレートを高くできる。その後、被処理物は、搬出側連通口を通って搬出側排気チャンバーへ送られ、そこから搬出開口を通って搬出される。
【0010】
前記搬入側連通口及び前記搬出側連通口に形成されるガス流の平均流速が、0.3m/sec〜0.7m/secであることが好ましい。
更に前記搬入開口及び前記搬出開口に形成されるガス流の平均流速が、0.3m/sec〜0.7m/secであることが好ましい。
上記流速を0.3m/sec以上にすることによって、搬入側連通口では処理チャンバーから搬入側排気チャンバーに向かうガス流を確実に形成できる。搬出側連通口では処理チャンバーから搬出側排気チャンバーに向かうガス流を確実に形成できる。搬入開口では外部から搬入側排気チャンバーに向かうガス流を確実に形成できる。搬出開口では外部から搬出側排気チャンバーに向かうガス流を確実に形成できる。
上記流速を0.7m/sec以下にすることによって、処理チャンバー内のガス分布を確実に均一にでき、エッチング処理の均一性を確保できる。更には反応ガスの利用効率を確実に高めることができる。上記流速が大きいと(0.7m/sec超であると)、例えば処理チャンバーの中央部ではガスが流動して反応成分の濃度が低下し、処理チャンバーの隅部ではガスが滞留して反応成分の濃度が上昇し、その結果、処理が不均一になる。また、上記流速が大きいと(0.7m/sec超であると)、反応ガスが、ノズルから搬入側連通口及び搬出側連通口を経て排気手段を結ぶ経路に沿って短絡的に流れてしまい、反応ガスの利用効率が低下する。
ここで、平均流速とは、各開口におけるガス流の流量を当該開口の開口面積で除した値(線流速)である。
【0011】
ここで、大気圧近傍とは、1.013×10〜50.663×10Paの範囲を言い、圧力調整の容易化や装置構成の簡便化を考慮すると、1.333×10〜10.664×10Paが好ましく、9.331×10〜10.397×10Paがより好ましい。
【発明の効果】
【0012】
本発明によれば、以下の作用を奏する。
(1)処理チャンバー内の反応ガスが外気流入によって希釈されるのを抑制できる。したがって、反応ガスを高濃度に保ちながらエッチングを行うことができ、エッチングレートを高くできる。
(2)処理チャンバーの内部を全体的に反応ガスの溜まり場にできる。したがって、被処理物がノズルと直接対向するときだけでなく、被処理物が処理チャンバーに搬入されてから搬出されるまでの期間中、継続してエッチング処理を行なうことができ、エッチングレートを一層高めることができる。
(3)反応ガスが未使用のまま排気されるのを抑制できる。したがって、反応ガスの利用効率を高めることができ、反応ガスの供給流量を低減できる。反応ガスの供給流量は、エッチングによる消費流量を少し上回る程度で充分である。
(4)排気流量を低減できるから、排気ポンプなどの排気手段を小型化できる。
(5)処理チャンバーを直接排気しないため、排気流量が変動した際の処理チャンバー内のガス状態の変動が鈍い。したがって、エッチング処理の安定性を確保できる。
(6)反応ガスが搬入開口及び搬出開口から外部に漏れるのを防止できる。
【図面の簡単な説明】
【0013】
【図1】本発明の第1実施形態に係るエッチング装置を解説的に示す側面図である。
【図2】本発明の第2実施形態に係るエッチング装置を解説的に示す側面図である。
【図3】本発明の第3実施形態に係るエッチング装置を解説的に示す側面図である。
【図4】本発明の第4実施形態に係るエッチング装置を解説的に示す側面図である。
【図5】実施例1及び比較例1の結果を示すグラフである。
【図6】比較例1のエッチング装置を解説的に示す側面図である。
【発明を実施するための形態】
【0014】
以下、本発明の実施形態を図面にしたがって説明する。
図1は、本発明の第1実施形態を示したものである。被処理物9は、例えばフラットパネルディスプレイ用のガラス基板である。ガラス基板9の表面にエッチング対象のアモルファスシリコン(図示省略)が被膜されている。ガラス基板9の厚みは、例えば0.3mm〜5mm程度であるが、本発明はこれに限定されるものではない。ガラス基板9の大きさは、例えば300×400mm〜2800×3200mmであるが、本発明はこれに限定されるものではない。ガラス基板9の長辺が搬送方向(図1の左右)に向けられ、短辺が処理幅方向(図1の紙面と直交する方向)に向けられているが、短辺が搬送方向に向けられ、長辺が処理幅方向に向けられていてもよい。
【0015】
図1に示すように、エッチング装置1は、搬送手段2と、処理槽3と、反応ガス供給系4を備えている。搬送手段2は、ローラーコンベアで構成されている。ローラーコンベア2によって図において左から右方向へ延びる搬送経路が画成されている。この搬送経路に沿って被処理物9がローラーコンベア2上を矢印aの方向に搬送される。搬送速度は、好ましくは1m/min〜10m/min程度である。搬送手段2は、ローラーコンベアに限られず、移動式ステージ、浮上ステージ、ロボットアーム等で構成されていてもよい。
【0016】
上記搬送経路上に処理槽3が設けられている。処理槽3は、処理チャンバー10と、搬入側排気チャンバー20と、搬出側排気チャンバー30を有している。処理チャンバー10は、少なくとも1つのガラス基板9の全体を水平に収容可能な大きさを有している。処理チャンバー10の搬送経路の上流側(図1において左側)に搬入側排気チャンバー20が設けられている。処理チャンバー10の搬送経路の下流側(図1において右側)に搬出側排気チャンバー30が設けられている。各チャンバー10,20,30の内部は略大気圧環境になっている。
【0017】
これらチャンバー10,20,30の内部にローラーコンベア2の中間部分が設置されている。このローラーコンベア2によって、ガラス基板9を搬入側排気チャンバー20、処理チャンバー10、搬出側排気チャンバー30の順に搬送できる。
【0018】
搬入側排気チャンバー20の搬送経路の上流側の壁21に搬入開口23が形成されている。搬入側排気チャンバー20の内部が搬入開口23を介して搬送経路の上流側の槽外空間と連通している。
【0019】
搬入側排気チャンバー20と処理チャンバー10とが搬入側仕切壁11にて仕切られている。搬入側仕切壁11に搬入側連通口13が形成されている。搬入側連通口13を介して搬入側排気チャンバー20の内部と処理チャンバー10の内部が連通している。
【0020】
処理チャンバー10と搬出側排気チャンバー30とが搬出側仕切壁12にて仕切られている。搬出側仕切壁12に搬出側連通口14が形成されている。搬出側連通口14を介して処理チャンバー10の内部と搬出側排気チャンバー30の内部が連通している。
【0021】
搬出側排気チャンバー30の搬送経路の下流側の壁32に搬出開口34が形成されている。搬出側排気チャンバー30の内部が搬出開口34を介して搬送経路の下流側の槽外空間と連通している。
【0022】
各開口23,13,14,34は、図1の紙面と直交する処理幅方向に延びるスリット状になっている。開口23,13,14,34の幅(図1の紙面直交方向の寸法)は、被処理物9の同方向の寸法より少し大きい。開口23,13,14,34の厚さ(上下方向の寸法)は、被処理物9の厚さの2〜10倍であることが好ましい。これら開口23,13,14,34の高さ位置(上下方向の位置)は、コンベア2の上面の搬送経路の高さに合わせてある。
【0023】
各開口23,13,14,34の上下の縁部には、一対の整流板15,15が設けられている。各整流板15は、処理幅方向(図1の紙面直交方向)に延びる細い板状になっている。一対の整流板15,15が互いに平行をなして上下に対峙している。
【0024】
各開口23,13,14,34は、常時開いており、開閉するようにはなっていない。各開口23,13,14,34には、これを開閉する扉は設けられていない。
【0025】
反応ガス供給系4は、反応ガス生成部40と、反応ガスノズル41を有している。反応ガス生成部40は、処理内容に応じた反応ガスを生成して、ノズル41へ送る。アモルファスシリコンのエッチングに係る本実施形態の反応ガスは、フッ素系反応成分と酸化性反応成分を含む。フッ素系反応成分として、HF、COF、OF、O等が挙げられる。フッ素系反応成分は、フッ素系原料ガスをプラズマ化(分解、励起、活性化、イオン化等を含む)することにより生成できる。フッ素系原料ガスは、フッ素系原料成分と希釈成分と水素含有添加成分を含む。この実施形態では、フッ素系原料として、CFが用いられている。希釈成分としてArが用いられている。水素含有添加成分として水(HO)が用いられている。
【0026】
フッ素系原料としてCFに代えて、C、C、C等の他のPFC(パーフルオロカーボン)を用いてもよく、CHF、CH、CHF等のHFC(ハイドロフルオロカーボン)を用いてもよく、SF、NF、XeF等のPFC及びHFC以外のフッ素含有化合物を用いてもよい。
【0027】
フッ素系原料が希釈ガスにて希釈されることで、加湿前のフッ素系原料ガス(CF+Ar)が生成される。加湿前フッ素系原料ガスの構成成分の体積流量比は、好ましくはCF:Ar=4:96〜90:10であり、より好ましくはCF:Ar=5:95〜90:10であり、さらに好ましくはCF:Ar=10:90〜90:10である。希釈ガスは、フッ素系原料を希釈する機能だけでなく、安定的な放電を生成する放電生成ガスとしての機能や、原料成分等を搬送するキャリガスとして機能をも有している。希釈ガスとして、Arに代えて、Ne、He等の他の希ガスを用いてもよく、Nを用いてもよい。
【0028】
反応ガス生成部40は、上記フッ素系原料ガスに水(HO)を添加する水添加部(図示省略)を含んでいる。水添加部は例えば気化器にて構成されている。気化器内に水が液体の状態で蓄えられている。添加方法は、上記フッ素系原料ガスを液中にバブリングするバブリング方式でもよく、液面より上側の飽和蒸気を上記フッ素系原料ガスで押し出す押し出し方式でもよい。水を温度調節することで水の蒸気圧ひいては添加量を調節してもよい。或いは、フッ素系原料ガスの一部を気化器内に導入し、フッ素系原料ガスの残部は気化器に通さずに気化器より下流側で上記一部のフッ素系原料ガスと合流させ、上記一部と残部の流量比を調節することによって、水の添加量を調節してもよい。水の添加量は、添加後のフッ素系原料の露点温度が15℃〜20℃程度になる量であることが好ましい。水素含有添加剤として水(HO)に代えて、アルコール等のOH基含有化合物を用いてもよい。
【0029】
詳細な図示は省略するが、更に反応ガス生成部40は、一対の電極を含むプラズマ生成部を備えている。これら一対の電極のうち一方は、電源に接続され、他方は、電気的に接地されている。少なくとも1つの電極の対向面には固体誘電体層が設けられている。電源からの供給電圧は、パルス等の間欠波状でもよく、交流正弦波等の連続波でもよい。電源からの電圧供給によって一対の電極間に電界が印加されて放電が生成され、電極間空間が大気圧近傍のプラズマ空間になる。このプラズマ空間に上記水添加後のフッ素系原料ガスを導入する。これによって、フッ素系原料ガスがプラズマ化され、HF等のフッ素系反応成分が生成される。
【0030】
上記酸化性反応成分としては、O、Oラジカル等が挙げられる。この実施形態では、酸化性反応成分としてOが用いられている。Oは、酸素(O)を原料としオゾナイザーで生成できる。O等の酸素系原料をプラズマ化することによって酸化性反応成分を生成することにしてもよい。
【0031】
プラズマ生成部からのフッ素系反応成分含有ガスと、オゾナイザーからのオゾン含有ガスとが混合されて、反応ガスが生成される。フッ素系反応成分含有ガスとオゾン含有ガスの体積流量比は、(フッ素系反応ガス):(オゾン含有ガス)=1:5〜5:1が好ましく、(フッ素系反応ガス):(オゾン含有ガス)=1:1〜3:1がより好ましい。
【0032】
上記の反応ガスが、反応ガス生成部40から反応ガスノズル41に導入される。反応ガスノズル41は、処理チャンバー10の上部に設置されている。反応ガスノズル41の底面(ノズル面)が、処理チャンバー10の内部に臨み、ローラーコンベア2に面している。反応ガスノズル41の底面には吹出口41aが形成されている。吹出口41aは、図1の紙面と直交する処理幅方向に延びるスリット状になっている。ノズル41の内部には、反応ガスを処理幅方向に均一化する整流部が設けられている。整流部は、処理幅方向に延びるチャンバー、処理幅方向に延びるスリット、処理幅方向に分散して配置された多数の小孔等を含む。均一化後の反応ガスが、吹出口41aから処理チャンバー10の内部に導入される。
【0033】
排気手段5について説明する。
搬入側排気チャンバー20の底部に搬入側排気口51が設けられている。搬入側排気口51から搬入側排気路53が延びている。排気路53には排気流量又は圧力を調節する調節弁63が設けられている。
【0034】
搬出側排気チャンバー30の底部に搬出側排気口52が設けられている。搬出側排気口52から搬出側排気路54が延びている。排気路54には排気流量又は圧力を調節する調節弁64が設けられている。
【0035】
排気路53,54に排気ポンプ55が接続されている。処理チャンバー10には排気口が設けられておらず排気手段が接続されていない。排気ポンプ55に除害装置やフッ素系原料の回収・再利用装置を接続してもよい。
【0036】
排気手段5は、排気チャンバー20,30の内圧を、槽3の外部の圧力より低圧にし、かつ処理チャンバー10の内圧より低圧にする。排気ポンプ55の排気流量は、連通口13,14におけるガス流g13,g14の平均流速が好ましくは0.3m/sec〜0.7m/secになるよう設定されている。更に好ましくは、各開口23,13,14,34におけるガス流g23,g13,g1,g34の平均流速が好ましくは0.3m/sec〜0.7m/secになるよう設定されている。
【0037】
上記の平均流速は、排気ポンプ55の出力や弁53,64の開度の他、各チャンバー10,20,30の寸法構成等によって調節できる。チャンバー10,20,30の寸法構成のうち、上記平均流速に大きく関係するものは、開口23,13,14,34の厚さ(上下寸法)である上記の平均流速は、開口23,13,14,34の内部及び近傍に被処理物9が配置されていない状態での値であることが好ましい。
【0038】
上記構成のエッチング装置1によって基板9のアモルファスシリコン膜をエッチングする方法を、排気手段5の作用を中心に説明する。
ガラス基板9をローラーコンベア2上に載せ、ローラーコンベア2の搬送経路に沿って搬送する。基板9は、搬入開口23を通って搬入側排気チャンバー20の内部に搬入され、更に搬入側連通口13を通って処理チャンバー10の内部に搬入される。基板9の温度は、10℃〜50℃程度が好ましい。
【0039】
反応ガス供給系4の反応ガス生成部40においてフッ素系原料ガス(CF+Ar+HO)をプラズマ化するとともに、オゾナイザーからのオゾン含有ガス(O+O)を混合してエッチング用の反応ガスを生成する。この反応ガスを反応ガスノズル41から処理チャンバー10内に吹き出し、基板9に接触させる。これによって、基板9のシリコン膜が反応ガス中のオゾンと反応して酸化される。この酸化物がHF等のフッ素系反応成分と反応してエッチングされる。エッチング処理後の被処理物9を、処理チャンバー10から搬出側連通口14に通して搬出側排気チャンバー30に搬出し、更に搬出開口34に通して外部に搬出する。複数(図では1つのみ図示)の被処理物9をローラーコンベア2上に間隔を置いて一列に並べ、順次、搬入側排気チャンバー20を経て処理チャンバー10に搬入して表面処理した後、搬出側排気チャンバー30を経て搬出する。開口23,13,14,34を常開にすることで、複数の被処理物9を連続的に処理槽3に搬入して処理でき、処理時間を短縮できる。
【0040】
上記のエッチング反応に消費されるHF、O等の反応成分は、反応ガス中の反応成分全体のうち一部分である。未消費の反応成分を含む反応ガスは、処理チャンバー10から直接排気されることなく、処理チャンバー10内に広く拡散して充満する。したがって、処理チャンバー10全体のガスを反応ガスに置換でき、処理チャンバー10の内部を全体的に反応ガスの溜まり場にできる。よって、基板9が反応ガスノズル41の直下に位置しているときだけでなく、基板9が処理チャンバー10に搬入されてから搬出されるまでの期間中、継続してエッチング処理を行なうことができ、エッチングレートを高めることができる。
【0041】
上記の反応ガス供給と併行して、排気手段5の排気ポンプ55によって搬入側排気チャンバー20内のガスを搬入側排気口51から吸引して排気するとともに、搬出側排気チャンバー30内のガスを搬出側排気口52から吸引して排気する。これによって、排気チャンバー20,30の内圧が、処理槽3の外部雰囲気の圧力より低圧になり、かつ処理チャンバー10の内圧より低圧になる。
【0042】
搬入側排気口51からの吸引排気に伴ない、処理槽3より搬送経路の上流側の外気(空気)が、搬入開口23を通り、搬入側排気チャンバー20の内部に流入する。搬入開口23においては、外部から搬入側排気チャンバー20に向かうガス流g23が形成される。また、搬出側排気口52からの吸引排気に伴ない、処理槽3より搬送経路の下流側の外気(空気)が、搬出開口34を通り、搬出側排気チャンバー30の内部に流入する。搬出開口34においては、外部から搬出側排気チャンバー30に向かうガス流g34が形成される。これらの外気流入によって、排気チャンバー20,30の内部のガスひいては反応ガスが搬入開口23から外部に漏洩するのを防止できる。
【0043】
搬入出開口23,34における流入ガスg23,g34の平均流速は、0.3m/sec〜0.7m/secになるように調節される。流入ガスg23,g34の平均流速を0.3m/sec以上にすることにより、排気チャンバー20,30内のガスひいては反応ガスの漏洩をより確実に防止できる。流入ガスg23,g34の流入ガスの平均流速を0.7m/sec以下にすることにより外気吸引量が過剰になるのを回避できる。
【0044】
更に、上記搬入側排気口51からの吸引排気によって、処理チャンバー10内の反応ガスの一部が搬入側連通口13を通って搬入側排気チャンバー20の内部に流入する。搬入側連通口13においては、処理チャンバー10から搬入側排気チャンバー20に向かうガス流g13が形成される。また、上記搬出側排気口52からの吸引排気によって、処理チャンバー10内の反応ガスの他の一部が搬出側連通口14を通って搬入側排気チャンバー20の内部に流入する。搬出側連通口14においては、処理チャンバー10から搬出側排気チャンバー30に向かうガス流g14が形成される。これらガス流g13,g14によって、排気チャンバー20,30内のガスが処理チャンバー10内に流入するのを抑制又は防止できる。ひいては、外気が、排気チャンバー20,30を経て処理チャンバー10内に流入するのを抑制又は防止できる。したがって、処理チャンバー10内の反応ガスが外気によって希釈されるのを抑制又は防止でき、処理チャンバー10内の反応ガス濃度を高く維持できる。
【0045】
連通口13,14におけるガス流g13,g14の平均流速は、0.3m/sec〜0.7m/secになるように調節される。ガス流g13,g14の平均流速を0.3m/sec以上にすることにより、排気チャンバー20,30内のガスひいては外気の処理チャンバー10内への流入を一層確実に抑制又は防止でき、処理チャンバー10内の反応ガス濃度の希釈を一層確実に抑制又は防止できる。よって、エッチングレートを充分に高くできる。
【0046】
ガス流g13,g14の平均流速を0.7m/sec以下にすることにより、反応ガスがまったく未使用のまま反応ガスノズル41から排気口51,52へ直行して排気されるのを抑制でき、反応ガスの利用効率を高めることができる。また、処理チャンバー10全体を確実に反応ガスの溜まりにでき、更には処理チャンバー10内の反応ガス分布を確実に均一にできる。したがって、エッチングレートを一層確実に高くでき、更にはエッチング処理の均一性を充分に確保できる。
【0047】
反応ガスの利用効率が高まる分だけ反応ガス供給系4からの反応ガスの供給流量を低減できる。反応ガスの供給流量は、エッチングによる消費流量を少し上回る程度で充分である。よって、排気流量をも低減できる。したがって、排気ポンプ55を小型化できる。ひいては、設備をコンパクトにできる。
処理チャンバー10からは直接排気しないため、排気流量が変動した際の処理チャンバー10内のガス状態の変動が鈍い。したがって、エッチング処理の安定性を確保できる。
【0048】
次に、本発明の他の実施形態を説明する。以下の実施形態において、既述の形態と重複する構成に関しては、図面に同一符号を付して説明を省略する。 図2は、本発明の第2実施形態を示したものである。第2実施形態では、処理チャンバー10と排気チャンバー20,30が分離、離間している。搬入側排気チャンバー20と処理チャンバー10の互いに対面する壁どうしが搬入側連通部17にて連結されている。搬入側連通部17内に搬入側連通口13が形成されている。処理チャンバー10と搬出側排気チャンバー30の互いに対面する壁どうしが搬出側連通部18にて連結されている。搬出側連通部18内に搬出側連通口14が形成されている。
【0049】
図3は、本発明の第3実施形態を示したものである。第3実施形態では、1つの外チャンバー19の内部に処理チャンバー10が収容されている。外チャンバー19における処理チャンバー10より搬送経路の上流側の部分が搬入側排気チャンバー20を構成している。外チャンバー19における処理チャンバー10より搬送経路の下流側の部分が搬出側排気チャンバー30を構成している。外チャンバー19の底部(処理チャンバー10より下側の部分)を介して、搬入側排気チャンバー20と搬出側排気チャンバー30が一体に連なっている。外チャンバー19における搬入側排気チャンバー20を画成する部分の底部に搬入側排気口51が設けられている。外チャンバー19における搬出側排気チャンバー30を画成する部分の底部に搬出側排気口52が設けられている。第3実施形態では、搬入側排気チャンバー20と搬出側排気チャンバー30の内圧を互いにほぼ等しくできる。
【0050】
図4は、第3実施形態の変形態様(第4実施形態)を示したものである。この変形態様では、外チャンバー19の底部の中央部に共通排気口57が設けられている。共通排気口57から共通排気路58が延びている。排気路53には、排気流量又は圧力を調節する調節弁68が設けられている。排気路58が排気ポンプ55に連なっている。排気ポンプ55を駆動することによって、搬入側排気チャンバー20及び搬出側排気チャンバー30内のガスがそれぞれ外チャンバー19の底部へ流れて共通排気口57から吸引排気される。第4実施形態では、排気口及び排気路の数を減らすことができる。
【0051】
本発明は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において種々の改変をなすことができる。
例えば、被処理物は、ガラス基板に限られず、半導体ウェハ、連続シート状の樹脂フィルム等であってもよい。エッチング対象は、アモルファスシリコンに限られず、多結晶シリコンや単結晶シリコンでもよく、酸化シリコンや窒化シリコンでもよく、更にはシリコン含有物に限られず、有機溶剤や環境パーティクル等の有機汚染物であってもよい。
本発明のエッチングは、シリコン含有物のエッチング等の狭義のエッチングに限られず、ガラス基板等の被処理物の表面の粗化(ライトエッチングを含む)、アッシング、洗浄、有機汚染物の除去等を含む。
エッチングの内容及び対象に応じて反応ガスの反応成分を選択するとよい。例えば、有機汚染物の除去の場合、原料ガスがN、Oを含むことが好ましい。この原料ガスをプラズマ化することによって、NOx、酸素プラズマ、窒素プラズマ等を含む反応ガスを生成できる。
【実施例1】
【0052】
実施例を説明するが、本発明は以下の実施例に限定されるものではない。
図1に示す装置を用いて、ガラス基板9の表面のアモルファスシリコンをエッチング処理した。
基板9のサイズは、1100mm×1300mmであった。
基板9の厚みは、0.7mmであった。
基板9をコンベア2で搬送し、搬入側排気チャンバー20を経て、処理チャンバー10内に導入して、ノズル41の下側に通した。
基板9の搬送速度は6m/minとした。
【0053】
加湿前のフッ素系原料ガスの組成は以下の通りであった。
CF: 2SLM
Ar: 25SLM
気化器によって上記フッ素系原料ガスに水を添加した。水添加後のフッ素系原料ガスの露点温度は、16℃であった。
上記水添加後のフッ素系原料ガスをプラズマ生成部の大気圧プラズマ空間に導入してプラズマ化し、フッ素系反応成分を生成した。プラズマ放電条件は以下の通りであった。
電極間隔: 1mm
電極幅(ガス流方向と直交する方向の寸法): 200mm
電極間電圧: Vpp=13kV
供給周波数: 25kHz(パルス波)
上記プラズマ化後のガスにオゾナイザーからのオゾン含有ガスを混合し、反応ガスを得た。オゾナイザーからのオゾン含有ガスの混合流量は、12SLMであった。オゾン含有ガス中のオゾン濃度は、10vol%であった。
【0054】
上記の反応ガスをノズル41から処理チャンバー10内に導入して基板9に接触させ、アモルファスシリコンのエッチングを行なった。
ノズル41の吹き出し幅(図1の紙面と直交する方向の寸法)は、1100mmであった。
開口23,13,14,34の厚み(上下の寸法)は、それぞれ3mmであった。
開口23,13,14,34の幅(図1の紙面と直交する方向の寸法)は、それぞれ1140mmであった。
排気手段5によって排気チャンバー20,30のガスを吸引して排気した。各開口23,13,14,34での平均ガス流速は、0.5m/secであった。
【0055】
そして、1スキャン当たりのエッチング速度(基板9がノズル41の下部を1回通過するごとのエッチング量)を測定した。図5に示すように、エッチング速度は約100nm/scanであった。
【0056】
[比較例1]
図6に示すように、比較例1として、排気チャンバー20,30が無く、処理チャンバー10に排気構造5が接続された装置を用いて、アモルファスシリコン膜基板のエッチングを行なった。処理条件は、上記の装置構造を除き、実施例1と同じとした。排気ポンプ55の排気流量についても実施例1と同じとした。そして、1スキャン当たりのエッチング速度を測定したところ、エッチング速度は約17nm/secであった。
【0057】
本発明の実施例1によれば、比較例1よりエッチング速度を約6倍にすることができた。
【産業上の利用可能性】
【0058】
本発明は、例えばフラットパネルディスプレイや半導体基板等の製造に適用することができる。
【符号の説明】
【0059】
1 エッチング装置
2 搬送手段
3 処理槽
4 反応ガス供給系
5 排気手段
9 ガラス基板(被処理物)
10 処理チャンバー
11 搬入側仕切壁
12 搬出側仕切壁
13 搬入側連通口
14 搬出側連通口
15 整流板
17 搬入側連通部
18 搬出側連通部
19 外チャンバー
20 搬入側排気チャンバー
21 搬入側外壁
23 搬入開口
30 搬出側排気チャンバー
32 搬出側外壁
34 搬出開口
40 反応ガス生成部
41 反応ガスノズル
41a 吹出口
51 搬入側排気口
52 搬出側排気口
53 搬入側排気路
54 搬出側排気路
55 排気ポンプ
57 共通排気口
58 共通排気路
63,64,68 調節弁
13,g14,g23,g34 ガス流

【特許請求の範囲】
【請求項1】
被処理物に大気圧近傍下において反応ガスを接触させるエッチング装置において、
前記被処理物を搬送経路に沿って搬送する搬送手段と、
前記搬送経路上に配置された処理チャンバーと、
前記処理チャンバー内に前記反応ガスを導入する反応ガスノズルと、
前記処理チャンバーより前記搬送経路の上流側に設けられた搬入側排気チャンバーと、
前記処理チャンバーより前記搬送経路の下流側に設けられた搬出側排気チャンバーと、
前記搬入側排気チャンバー及び前記搬出側排気チャンバーに接続された排気手段と、
を備え、前記搬入側排気チャンバーの前記搬送経路の上流側の壁に搬入開口が設けられ、前記搬入側排気チャンバーと前記処理チャンバーとが搬入側連通口を介して連通し、前記処理チャンバーと前記搬出側排気チャンバーとが搬出側連通口を介して連通し、前記搬出側排気チャンバーの前記搬送経路の下流側の壁に搬出開口が設けられており、
前記搬入側排気チャンバー及び前記搬出側排気チャンバーの内圧が前記処理チャンバーの内圧より低圧になるよう、前記排気手段が、前記搬入側排気チャンバー内及び前記搬出側排気チャンバー内のガスを吸引して排気することを特徴とするエッチング装置。
【請求項2】
被処理物に大気圧近傍下において反応ガスを接触させるエッチング方法において、
前記被処理物を搬送経路に沿って搬入側排気チャンバー、処理チャンバー、搬出側排気チャンバーの順に搬送し、
前記処理チャンバー内に前記反応ガスを導入し、
前記搬入側排気チャンバー及び前記搬出側排気チャンバーの内圧が前記処理チャンバーの内圧より低圧になるよう、前記搬入側排気チャンバー内及び前記搬出側排気チャンバー内のガスを排気手段にて吸引して排気することを特徴とするエッチング方法。
【請求項3】
前記搬入側排気チャンバーと前記処理チャンバーを連通する搬入側連通口、及び前記処理チャンバーと前記搬入側排気チャンバーを連通する搬出側連通口におけるガス流の平均流速が、0.3m/sec〜0.7m/secであることを特徴とする請求項2に記載のエッチング方法。
【請求項4】
前搬入側排気チャンバーの前記搬送経路の上流側の壁に設けられた搬入開口、及び前搬出側排気チャンバーの前記搬送経路の下流側の壁に設けられた搬出開口におけるガス流の平均流速が、0.3m/sec〜0.7m/secであることを特徴とする請求項2又は3に記載のエッチング方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−216581(P2012−216581A)
【公開日】平成24年11月8日(2012.11.8)
【国際特許分類】
【出願番号】特願2011−79214(P2011−79214)
【出願日】平成23年3月31日(2011.3.31)
【出願人】(000002174)積水化学工業株式会社 (5,781)
【Fターム(参考)】