説明

カメラ

【課題】 高品質な写真撮影が容易に行うとともに、レリーズタイムラグを縮めることのできるカメラを提供することを目的とする。
【解決手段】 制御部19により算出された露出目標値に応じてF値とシャッタースピードとを可変にすることで露出制御を行うとともに、算出された露出目標値における所定範囲(2<EV値<8.5)においては、F値を一定にしてシャッタースピードのみを可変にすることで露出制御を行う。この所定範囲を超えた範囲(EV値≧8.5)においては、F値とシャッタースピードとをともに可変にすることで露出制御を行う。フィルム感度が所定感度(ISO1600)以上であった場合には、特定範囲(14≦EV値≦15.5)においては、特定範囲の下限で定められたF値より大きく定められたF値(例えば、F値=11)を用いて、特定範囲における露出制御を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、周囲の明るさに応じた高品質な撮影が行えるカメラに関する。
【背景技術】
【0002】
近年、ストロボ発光を行うことなく、高品質な写真撮影が容易に行えるカメラとして、「木村正博、カラーネガフィルムを活かす「富士フィルム『ナチュラルフォトシステム』NATURA」、写真工業、写真工業出版社、2004年11月1日、第62巻、第11号、P43−45」(特許文献1)に記載されているナチュラルフォトシステムが知られている。このナチュラルフォトシステムは、フィルム感度が所定感度以上である場合には、ストロボによる発光を行うことなく、自然光による撮影を行うことができ、高品質の写真を得ることができる。
【非特許文献1】木村正博、カラーネガフィルムを活かす「富士フィルム『ナチュラルフォトシステム』NATURA」、写真工業、写真工業出版社、2004年11月1日、第62巻、第11号、P43−45
【発明の開示】
【発明が解決しようとする課題】
【0003】
ここで、このナチュラルフォトシステムにおいては、被写体までの距離に応じた合焦動作を行うためにフォーカスレンズを移動させている。よって、レリーズボタンを押下してから実際にシャッター開閉による撮影を行うまでの、いわゆるレリーズタイムラグが生じる。
【0004】
そこで、本発明は、高品質な写真撮影が容易に行うとともに、レリーズタイムラグを縮めることのできるカメラを提供することを目的とする。
【課題を解決するための手段】
【0005】
上述の課題を解決するため、本発明のカメラは、撮像媒体の撮像感度を検出する感度検出手段と、外光輝度を検出する輝度検出手段と、前記感度検出手段により撮像媒体の感度が所定感度以上であると検出された場合であって、前記輝度検出手段により検出された外光輝度が所定の第1輝度領域にある場合には、検出された外光輝度に対応した露出基準値から第1の露出補正値を減じて露出目標値を算出し、前記感度検出手段により撮像媒体の感度が所定感度以上であると検出された場合であって、前記輝度検出手段により検出された外光輝度が前記第1輝度領域より大きい領域に設定されている第2輝度領域にある場合には、検出された外光輝度に対応した露出基準値から前記第1の露出補正値より小さい値に設定されている第2の露出補正値を減じて露出目標値を算出する露出値演算手段と、前記露出値演算手段により算出された露出目標値に応じてF値とシャッタースピードとを可変にすることで露出制御を行うとともに、前記露出値演算手段により算出された露出目標値における所定範囲においては、F値を一定にしてシャッタースピードのみを露出目標値の増加とともに増加するように露出制御を行い、前記所定範囲を超えた範囲においては、F値とシャッタースピードとを露出目標値の増加とともに増加するように露出制御を行い、前記感度検出手段により検出された撮像感度が所定感度以上であった場合には、前記所定範囲を超えた範囲における、特定範囲においては、当該特定範囲の下限で定められたF値より大きいF値を用いて、当該特定範囲における露出制御を行う露出制御手段と、を備えている。
【0006】
この発明によれば、露出値演算手段により、外光輝度に応じて適宜補正された露出目標値を算出して、この露出値演算手段により算出された露出目標値に応じてF値とシャッタースピードとを可変にすることで露出制御を行うとともに、露出値演算手段により算出された露出目標値における所定範囲においては、F値を一定にしてシャッタースピードのみを可変にすることで露出制御を行い、所定範囲を超えた範囲においては、F値とシャッタースピードとをともに可変にすることで露出制御を行い、感度検出手段により検出された撮像感度が所定感度以上であった場合には、所定範囲を超えた範囲における、特定範囲においては、当該特定範囲の下限で定められたF値より大きいF値を用いて、当該特定範囲における露出制御を行うものである。
【0007】
これにより、撮像感度が所定感度以上であって露出目標値が特定範囲にある場合は、特定範囲の下限で定められたF値より大きいF値を用いて、露出目標値が特定範囲にある場合おける露出制御を行うことができ、パンフォーカスを拡大することができる。すなわち、パンフォーカスを拡大することにより、フォーカスレンズを大きく移動させることなく、被写体に対して適切な合焦動作を行うことができる。よって、フォーカスレンズを移動させるための時間を節約することができ、レリーズタイムラグを縮め、軽快な撮影を行うことができる。
【0008】
また、本発明のカメラは、被写体までの距離を測定する測距手段と、撮影する際には前記測距手段により測定された被写体までの距離に応じてフォーカスレンズを移動させるとともに、無限遠にいる被写体を撮影するのに適した最遠セット位置に前記フォーカスレンズを待機させるレンズ駆動手段と、を備えている。
【0009】
この発明によれば、測距手段により被写体までの距離を測定し、測定した距離に応じてフォーカスレンズを移動させるレンズ駆動手段によりフォーカスレンズを無限遠にいる被写体を撮影するのに適した最遠セット位置に待機させることができる。これにより、被写体までの距離が無限遠である場合(例えば、1050mm以上である場合)、レンズ駆動手段は、合焦動作のためのフォーカスレンズの移動を行う必要がなく、レンズ移動のための時間を節約して、レリーズタイムラグを縮め、軽快な撮影を行うことができる。
【0010】
また、本発明のカメラは、被写体までの距離を測定する測距手段と、前記測距手段により測定された距離ごとに、撮影された撮影頻度を計測する頻度計測手段と、前記頻度計測手段により計測された距離ごとの撮影頻度を記憶する頻度記憶手段と、撮影する際には前記測距手段により測定された被写体までの距離に応じてフォーカスレンズを移動させるとともに、前記頻度記憶手段に記憶されている頻度の高い距離に対応したセット位置にフォーカスレンズを待機させるレンズ駆動手段と、を備えている。
【0011】
この発明によれば、測距手段により被写体までの距離を測定し、測定された距離ごとに測定した撮影頻度を対応付けて記憶し、記憶した頻度の高い距離に対応したセット位置にフォーカスレンズを待機させることができる。これにより、撮影頻度の高いセット位置にフォーカスレンズを待機させ、合焦制御のためのフォーカスレンズを移動させる可能性を低くすることができ、フォーカスレンズを移動させるための時間を節約して、レリーズタイムラグを縮め、軽快な撮影を行うことができる。
【発明の効果】
【0012】
本発明は、現実に近い光による撮影を容易に行うことができるとともに、レリーズタイムラグを縮めることのでき、軽快な撮影を行うことができるカメラを提供することができる。
【発明を実施するための最良の形態】
【0013】
本発明は、一実施形態のために示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解することができる。引き続いて、添付図面を参照しながら本発明の実施形態を説明する。可能な場合には、同一の部分には同一の符号を付して、重複する説明を省略する。
【0014】
まず、本実施形態の前提となる露出制御について説明する。図1は、本実施形態のカメラ10の斜視図である。図1に示すように、135フィルムフォーマットのパトローネを装填するレンズシャッターカメラである。このカメラ10は、その上端にレリーズボタン11が設けられている。カメラ10の前面の中央部には、撮影レンズ8を組み込んだ鏡胴20が取り付けられている。この鏡胴には、レンズ8およびシャッターからなるオートフォーカス動作が可能な撮影レンズ鏡胴が用いられる。カメラ10の上部にはファインダ5、ストロボ発光部15、AF投光窓17a及びAF受光窓18aが設けられている。これらAF投光窓17aおよびAF受光窓18aを通じて発光し受光できるように、後述する投光部(IRED(赤外線発光ダイオード))17および受光部(PSD(位置検出素子))18が配置され、これら投光部17及び受光部18は、例えば三角測量の原理に基づいて被写体までの距離を測定する測距部を構成している。
【0015】
また、カメラ10には、測光部13が設けられている。測光部13は、撮影視野内の外光輝度を測定する輝度検出手段として機能する。この測光部13は、例えば中央重点平均測光センサとして一つのSPDデバイス(赤外カットフィルタを光路上に内蔵したもの)を備えたものが用いられる。このSPDデバイスは近似的に撮影レンズ光学系の光軸上に向けられている。
次に、上述斜視図で現れたカメラについて詳細に説明する。図2は、本実施形態のカメラ10のブロック構成図である。カメラ10は、例えば、135フィルムフォーマットのパトローネを装填するレンズシャッターカメラに適用される。このカメラ10は、レリーズボタン11、フィルム感度検出部12、測光部13、メモリ部14、ストロボ発光部15、シャッター部16、投光部17、受光部18、制御部19を備えている。以下、各部について説明する。
【0016】
レリーズボタン11は、ユーザが被写体を撮影しようとするときに押下するボタンである。このレリーズボタン11が押下されるとシャッター部16がシャッターの開閉動作を行う。
【0017】
フィルム感度検出部12は、フィルム装填部(図示せず)に装填されたフィルムの感度を検出する感度検出手段である。フィルム感度検出部12は、フィルムパトローネに示されるCASコードのうち感度をあらわす部分を読取り、読取った情報を制御部19に出力する。制御部19では、出力された情報に基づいてフィルム感度を認識することができる。フィルム感度はISO(International Organization for Standardization)で定められている。なお、ユーザがマニュアル操作においてフィルム感度を設定するようにしてもよい。
【0018】
測光部13は、被写体の輝度を含む外光輝度を検出する輝度検出手段である。測光部13が測定した輝度を示す情報を制御部19に出力し、制御部19では、外光輝度をAPEX単位であるBV値(Brightness Value)に変換する。なお、LV値(LightValue)(LV値=BV値+SV値)を用いてもよい。
【0019】
メモリ部14は、補正制御テーブル、プログラム線図、および動作プログラムを記憶している。補正制御テーブルは、BV値とΔEV値とを対応付けて記憶する制御情報である。ΔEV値とは、露出基準値を補正するための露出補正値である。露出基準値は、例えばBV値にAPEX単位であるSV値(Film Speed Value)を加算することにより算出される。そして、露出目標値であるEV値(Exposure Value)は、BV値にSV値を加算したものから露出補正値ΔEVを減じることにより算出される。
【0020】
この補正制御テーブルの具体例を示す。図3は、補正制御テーブルの概念図である。図3に示すように、BV値とΔEV値とが対応付けて記憶されている。この補正制御テーブルに記憶されている情報に基づき、測光部13が検出したBV値に対応するΔEV値が設定される。そして、BV値+SV値により算出された露出基準値からΔEV値を減算することにより、補正された露出目標値EVが算出される。
【0021】
プログラム線図は、露出制御のためのAPEX単位で示されるEV値と、同じくAPEX単位であるTV値(Shutter Speed Value)およびAV値(Aperture Value)とを対応
付けた制御情報である。なお、TV値とは、シャッタースピードを示し、AV値とは、F値(レンズ絞り)を示す情報である(図8参照)。
【0022】
動作プログラムは、カメラ10における撮影動作に関する一連の制御処理を行うためのプログラムである。
【0023】
ストロボ発光部15は、測光部13が測定した外光輝度に基づき、自動的に又はユーザの操作により、被写体にストロボ光を発光するものである。なお、本実施形態におけるストロボ発光部15は、BV値があらかじめ定めた範囲(例えばBV値<3)では使用できないよう設定されることも可能である。
【0024】
シャッター部16は、制御部19による露出制御(シャッタースピードおよびF値(レンズ絞り))に基づいて、F値で示された径で開口し、シャッタースピードで示された時間経過すると閉口する動作を行うものであり、シャッター部16が開口している間レンズを通して得た画像はフィルムに転写される。このシャッター部16は、フォーカスレンズを含み、図示しないレンズ駆動機構により、後述する測距部で測距された被写体までの距離に基づいて合焦動作を行う。
【0025】
投光部17は、被写体までの距離を測定するためのものであり、被写体に対して光を照射するものである。
【0026】
受光部18は、投光部17が照射した光が被写体から反射した光に基づいて被写体までの距離を算出するものである。具体的には、受光部18は、受光した光に基づいた光量を示す情報を制御部19に出力し、この制御部19は、入力された光量を示す情報に基づいて被写体までの距離を算出する。これら投光部17、受光部18から測距部が構成されている。
【0027】
制御部19は、カメラ全体の制御を行う制御手段であり、例えばCPU、ROM、RAM、入力信号回路、出力信号回路などを備えて構成されている。この制御部19は、後述する動作フローチャートを実行する。例えば、レリーズボタン11の押下を検出すると、シャッター部16を動作させるよう指示を出力する。また、フィルム感度検出部12からの情報に基づいてフィルム感度を判断する。また、測光部13から出力された被写体の光量を示す情報に基づいてBV値を算出する。また、レリーズボタン11が半押しされた状態を検出すると、測距部を動作させる。さらに、露出基準値から露出補正値(ΔEV)を減算することにより補正された露出目標値を算出する。このように、制御部19は、露出制御を行う露出制御手段としても機能する。
【0028】
次に、このように構成されたカメラ10の露出制御における動作について説明する。
【0029】
まず、カメラ10における露出制御の概要について説明する。図4は、露出制御の概念図であり、補正制御テーブルに記憶されているBV値とΔEV値との対応を模式的に表したものである。
【0030】
図4に示すとおり、縦軸にΔEV値を、横軸にBV値をとっている。BV値が0〜3の範囲(第一輝度領域)にあるときは、ΔEV値を2としている。また、BV値が3.5〜9の範囲(第二輝度領域)にあるときは、ΔEV値を1としている。そして、ここで得たΔEV値を用いて、露出目標値を算出する。すなわち、BV値にSV値を加算して得られた露出基準値(Bv+Sv)からΔEV値を減じることにより、露出目標値を算出する。このようにして得られたEV値を用いて露出制御は行われる。なお、図4では、第一輝度領域のΔEV値を2、第二輝度領域におけるΔEV値を1として固定値で表しているが、固定値であることに限らない。つまり、図4のグラフにおいてBV値に応じてΔEV値を増減させるよう露出補正の特性に傾斜をもたせるようにしてもよい。
【0031】
ここで、第一輝度領域は、室内などの人工照明下を想定した明るさを示す部分である。近年は雰囲気を重視することからタングステンや電球色の蛍光灯など、色温度の低い光源(3000K程度)が多く使われているようになってきた。よって、カメラの測光は標準比視感度に準じた分光感度により行われるため、色温度の低い照明下では青色の露出が不足しがちとなる。そのため、第一輝度領域については、青色の露出を上げることができるように、EV値で2段階露出を上げるようにする。つまり、通常の露出基準値からΔEV値を2減算することにより、露出を上げるよう露出目標値を補正する。ここで、自然な光による撮影を確実に行うため、ストロボ発光部15による発光を行わないようにすることができる。具体的には、BV値が第一輝度領域にあるときは、ストロボ発光部15の発光を禁止するようなプログラムとすることができる。ただし、この場合でも、ユーザの操作によりストロボを強制発光させることは可能である。
【0032】
なお、第一輝度領域は、シャッター制御可能範囲の下限BV値からBV値を3とする値までとする。シャッター制御可能範囲の下限とは、手ぶれ規制などのシャッター速度に制限を設けている場合はその速度とする。規制がない場合は、BV値が−3から3までの範囲とする。
【0033】
また、第二輝度領域は、屋外における曇天または晴天時を想定した明るさを示す部分である。第二輝度領域における色温度は中庸(約5000K(ケルビン))であり、カメラが取得したBV値が第二輝度領域の範囲内にあるときに、適正露出を与えることで大部分の撮影環境で適切な撮影を行うことができる。そのため第二輝度領域については、撮影状態における光量のばらつきをも考慮する必要がある。そして、全体的に露出不足となることを防止するため、EV値で1段階露出を上げるようにする。つまり、BV値+SV値により算出された露出基準値からΔEV値を1減算することにより、露出を上げるよう露出目標値を補正する。
【0034】
なお、第二輝度領域は、BV値を3.5とする値からシャッター制御可能範囲の上限BV値までとする。シャッター制御可能範囲の上限とは、シャッター速度を限界まで速くした場合の速度であり、または、プログラムとして制御可能な範囲をいう。
【0035】
また、第一輝度領域におけるΔEV値の平均補正値をΔE1、第二輝度領域におけるΔEV値の平均補正値をΔE2とすると、ΔE1−ΔE2≧0.8を満たすΔEV値をとることができれば、上述図4に示すΔEV値以外の露出補正値を設定してもよい。以下、ΔE1−ΔE2≧0.8とすることが好ましい理由を説明する。
【0036】
カラーネガにおける赤感層、緑感層、および青感層における波長ごとの分光感度をSr、Sg、Sbとする。また、光源の相対エネルギー5000K(ケルビン)、3000K(ケルビン)における波長ごとの相対強度をI5000、I3000とすると、次の式(1)に示す結果が得られる。
【数1】

【0037】
一般的にカラーネガにおける色ごとの分光感度は、図5に示すグラフのとおりである。また、代表的な光源(屋内における光源、屋外における光源)の色温度における相対強度は図6に示すグラフのとおりである。以下の式1は、図5、および図6において示される緑感層および青感層の各波長における相対分光感度と相対強度とを乗算して累積的に加算したものの比を算出したものである。
【0038】
この式(1)から、3000Kの相対エネルギーを有する光源においては、5000Kの相対エネルギーを有する光源と比べて、緑感層に対して青感層は1/2.15の光しか感光できないことがわかる。ここで算出した値に基づいて、次の式(2)を用いて露出差に換算する。
【数2】

【0039】
この計算結果は、カラーネガにおいては緑感層に対して青感層はEV値で1.11だけ露出が少なくなることを意味している。
【0040】
カメラの測光は緑感層の分光感度に準じる標準比視感度で行われる。このため、カメラ測光値に対してEV値において+1.11の露出補正を行うと、青感層に対しても適正露出を与えることができる。一方、緑感層に対してもEV値において+1.11の露出補正がされることになる。しかし、カラーネガは露出オーバに対して大きなラチチュードを持つため、露出オーバしても問題はない。
【0041】
そして、現実的な光源のばらつきなどを考慮した数値としてEV値として0.8以上の差をもって(すなわち、ΔE1−ΔE2≧0.8とする)露出補正することが好ましい数値となる。なお、第一輝度領域、第二輝度領域においてΔEV値を実質的に一定値とする場合(微小に増減する場合も含む)、ΔE1、ΔE2はそれぞれの範囲における平均値と定義する。また、ΔEV値が一定値となるような制御でない場合(各々の輝度領域においてΔEV値で0.5以上の変動がある場合)、ΔE1については第一輝度領域における最低値を採用し、ΔE2については第二輝度領域における最大値を採用することとする。
【0042】
また、ΔE1−ΔE2≧0.8とする数値条件については、3000K、5000Kの光源との比較において算出した数値条件であるが、現実の世界においては様々な光源が存在する。例えば、色温度が高い光源における比較において上述式(2)を算出すると、EV値が0.5〜0.8となる場合もある。そうした場合、さらに現実に存在するあらゆる光源を想定した数値としてΔE1−ΔE2≧0.5とすることも好ましい。
【0043】
次に、上述した露出制御の概念に基づいたカメラ10の具体的な動作について説明する。図7は、カメラ10の動作を示すフローチャートである。このフローチャートの制御処理はメモリ部14に格納されているプログラムに基づき制御部19によって実行される。
【0044】
制御部19は、カメラ10のレリーズボタン11が押下されたことを判断すると(S1)、測光部13に対して測光処理を行うよう指示を出力する。測光部13は、外光輝度を検出し、検出信号を出力する。制御部19は、入力された検出信号に基づいて輝度値となるBV値を算出する(S2)。
【0045】
制御部19は、フィルム感度に応じたSV値とBV値を加算して露出基準値を算出する(S3)。例えば、EV値=BV値+SV値からなる数式を用いてEV値を算出する。具体的に示すと、ISO1600のフィルムのAPEX単位は+9であり、BV値が3のときには、露出基準値は9+3=12となる。
【0046】
そして、制御部19は、フィルム感度検出部12が検出したフィルムの感度がISO1600で示される感度以上であるか否かを判断する(S4)。
【0047】
制御部19は、フィルム感度がISO1600で示される感度以上であると判断すると、露出基準値を補正する(S5)。具体的には、制御部19は、補正制御テーブルから上述算出したBV値に対応したΔEV値を取り出す。そして、制御部19は、S3において算出した露出基準値からΔEV値を減算することにより、露出基準値を補正して露出目標値を算出する。
【0048】
制御部19は、露出目標値EVを用いて露出制御を行う(S6)。ここでいう露出制御とは、レンズの絞り(AV値)とシャッタースピード(TV値)とを制御するものである。この露出制御は、例えば、図8に示すようなプログラム線図を用いて行われる。
【0049】
制御部19は、割り出されたシャッタースピードとF値とを用いて撮影するようシャッター部16に指示を出し、シャッター部16は撮影を行う(シャッター部16におけるシャッター部分(羽根)における開口径をF値で示された大きさだけ開口し、シャッタースピードで示された所定時間後に閉口する)(S7)。
【0050】
また、S4において、フィルム感度がISO1600未満である場合は、通常の処理であるEV値=BV値+SV値とする露出制御を行い(S8)、その後撮影する(S7)。
【0051】
このようにして、フィルム感度に基づいた露出制御を行うことができ、ストロボ発光を使用することなく、高品質の撮影を行うことができる。
【0052】
次に、図4に示した露出制御とは、別の露出制御について説明する。図9は、図4に示した露出制御とは、別の露出制御の概念図である。
【0053】
図9によると、BV値が0〜5を示す第一輝度領域については、EV値を2段階上げるよう制御している。また、BV値が5.5〜8を示す第二輝度領域については、EV値の補正を行わないようにしている。さらに、別の実施形態においては、BV値が5未満のときにはストロボ発光は非発光とし、BV値が5以上のときにはストロボ発光を常時発光とするよう制御するものである。これにより、少なくとも屋内にいるときにはストロボ発光を使用することなく高品質で雰囲気のある写真を撮影することができる。また、屋外にいるときには、ストロボ発光を使用しても、ストロボ発光により被写体が浮き出てしまうといったことがあまりなく、やはり高品質の写真を撮影することができる。
【0054】
以上説明したように、この露出制御に係る実施形態に係るカメラ10によれば、フィルム感度がISO1600以上の高感度である場合に、第一輝度領域の露出補正値ΔEV1を第二輝度領域の露出補正値ΔEV2に対し平均で少なくとも0.5Ev以上の大きい値とすることにより、撮影環境に応じた適切な露出制御が行え、ストロボ発光することなく、より現実に近い光による撮影を簡単に行うことができる。特に、室内の人工照明下での撮影環境において、青感層に対しても適正な露出を与えることができ、より高品質な写真撮影が行える。
【0055】
その際、第一輝度領域の露出補正値ΔEV1を第二輝度領域の露出補正値ΔEV2に対し平均で少なくとも0.8Ev以上の大きい値とする場合、撮影環境に応じたより適切な露出制御が行え、ストロボ発光することなく、より現実に近い光による撮影を簡単に行うことができる。この場合も、室内の人工照明下での撮影環境において、青感層に対しても適正な露出を与えることができ、より高品質な写真撮影が行える。
【0056】
また、この露出制御に係る実施形態のカメラにおいて、ストロボ光を発光するストロボ発光手段を備え、外光輝度が所定値以下である場合は、ストロボ発光手段による発光を行わないようにすることが好ましい。これにより、ストロボ発光による人工的な光による写真撮影を防止して、より現実に近い光による撮影を簡単に行うことができる。
【0057】
この実施形態においてはフィルムを用いたカメラに基づいて説明したが、本発明に係るカメラはフィルムを用いたカメラに限定されるものではない。例えば、CCDを用いたデジタルカメラに適用してもよい。この場合、フィルム感度を検出する代わりにCCDの設定感度を検出し、その設定感度がISO感度1600に相当する感度以上である場合に、第二輝度領域に対し低い輝度に設定される第一輝度領域において露出補正値を平均で少なくとも0.5Ev以上の大きい値に設定し、設定感度と輝度値(Bv)とに基づいて演算される露出基準値に対し露出補正値を減じて露出目標値として露出制御を行えばよい。この場合であっても、上述した露出制御に係る実施形態に係るカメラと同様な作用効果が得られる。
【0058】
次に、上述した露出制御を行うことを前提として、レリーズタイムラグを少なくした実施形態のカメラについて説明する。本実施形態で示されるカメラは、露出目標値に応じて露出制御を行う際、フィルムが所定感度以上(ISO1600以上)の場合は、特別なプログラム線図による露出制御を行い、フィルム感度が所定感度未満の場合は、標準のプログラム線図による露出制御を行うものである。この特別なプログラム線図は、露出目標値における特定範囲において、通常のプログラム線図で定められているF値より大きく設定されたF値を設定するものである。以下、詳細に説明する。
【0059】
本実施形態のカメラ10におけるブロック図は、図2に示されるブロック構成図と同じであり、制御部19における機能において、以下の機能が追加されている。すなわち、制御部19は、上述機能に加えて、さらに算出された露出目標値に応じてF値とシャッタースピードとを可変にすることで露出制御を行うとともに、算出された露出目標値における所定範囲(例えば、2<EV値<8.5)においては、F値を一定にしてシャッタースピードのみを可変にすることで露出制御を行う。また、前記所定範囲を超えた範囲(例えば、EV≧8.5)においては、F値とシャッタースピードとをともに可変にすることで露出制御を行う。フィルム感度検出部12により検出されたフィルム感度が所定感度(例えば1600)以上であった場合には、所定範囲を超えた範囲における、特定範囲(例えば、14≦EV値≦15.5)においては、当該特定範囲の下限で定められたF値より大きく定められたF値(例えば、F値=11)を用いて、当該特定範囲における露出制御を行う。このように、制御部19は、露出目標値を算出する露出値演算手段、および露出制御手段として機能する。
【0060】
ここで、上述の露出制御における具体例を図10に示す。図10は、本実施形態における特別なプログラム線図を示す。このプログラム線図は、標準のプログラム線図と比較して、露出目標値(EV値)が特定範囲(例えば、14≦EV値≦15.5)にある場合、その特定範囲の下限で定められているF値より大きなF値が定められている。図10においては、“14≦EV値≦15.5”の範囲では、F値=11が設定されている。なお、ここでのF値は一定に定められている必要はなく、その特定範囲の下限で定められているF値より大きなF値が定められていればよい。また、本実施形態のとおり、特定範囲の上限で定められているF値に設定されていることが好ましい。
【0061】
次に、図10に示すように、特定範囲においてF値を、特定範囲の下限で定められているF値より大きな値に設定したことにおける作用効果について説明する。図11および図12は、錯乱円の大きさと被写体距離との関係におけるフォーカスレンズのズレ許容幅の関係を示すAF線図である。このAF線図は、縦軸に錯乱円の大きさを示し、横軸に被写体までの距離を示す線図である。この図11において、例えば、フォーカスレンズが723mm離れている被写体に焦点があうように制御された場合、765mm〜685mm離れている被写体に対して許容できる錯乱円の大きさであること(つまり、被写界深度内にいること)が示されている。本実施形態においては、図11が、焦点距離=24mm、F値(FNO)=2であるときのAF線図であり、図12が焦点距離=24mm、F値(FNO)=11であるときのAF線図である。
ここで、錯乱円について説明する。測距装置を使ってレンズのピント合わせを行う場合、通常、レンズはリニアに移動せず、ピントのズレの許容範囲内において段階的に移動することになる。このようなカメラで、“点”を撮影した場合、レンズのピントが合っている状態であれば、そのまま“点”がフィルム面で形成される。また、ピントが許容範囲内での多少のズレをもって、撮影された“点”は、フィルム上にぼやけた状態で形成されることになる。このように、ぼやけた状態で形成されたものを、錯乱円という。
【0062】
一般的なカメラにおけるAF線図の特性は、F値で示されている数値を上げると、つまり絞りを絞ると、AF線図で示される斜線の傾斜は緩やかになるものである。すなわち、F値を上げていくほど、フォーカスレンズによる合焦範囲が広くなり、フォーカスレンズを移動させる必要性がなくなる場合が多くなる。
【0063】
例えば、図11においては、F値=2と、小さい値にF値が設定され、絞りが開放されている状態であるため、AF線図で示されている斜線の傾斜は比較的急である。よって、フォーカスレンズによる錯乱円に対する、フォーカスレンズの位置と被写体距離とのズレ許容幅は狭くなり、必然的に、被写体までの距離に応じて、合焦できるようにフォーカスレンズを適切な合焦位置に移動させる場合が多くなる。したがって、フォーカスレンズを移動させるための時間が必要とされる。
【0064】
一方、図12においては、F値=11と、大きい値にF値が設定され、絞りが絞られている状態であるため、AF線図で示されている斜線の傾斜は比較的緩やかである。よって、フォーカスレンズによる錯乱円に対する、フォーカスレンズの位置と被写体距離とのズレ許容幅は広くなり、必然的に、被写体までの距離に応じて、合焦できるようにフォーカスレンズを適切な合焦位置に移動させる場合が少なくなり、フォーカスレンズを移動させるための時間が省略される。図12においては、フォーカスレンズを最遠セット位置(図12における被写体距離2503mmに合焦させた場合のセット位置)に常に待機させておくように設定した場合、被写体距離が1050mm以上である被写体に対して撮影しようとするとき、被写体はフォーカスレンズのズレ許容幅の範囲にいることになるため、フォーカスレンズを移動させる必要がなく、フォーカスレンズによる合焦動作のための時間を省略することができる。
【0065】
次に、このような特性を考慮したカメラ10の具体的な動作について説明する。図13は、カメラ10の動作を示すフローチャートである。このフローチャートの制御処理はメモリ部14に格納されているプログラムに基づき制御部19によって実行される。
【0066】
制御部19は、カメラ10のレリーズボタン11が押下されたことを判断すると(S11)、測光部13に対して測光処理を行うよう指示を出力する。測光部13は、外光輝度を検出し、検出信号を出力する。制御部19は、入力された検出信号に基づいて輝度値となるBV値を算出する(S12)。
【0067】
制御部19は、フィルム感度に応じたSV値とBV値を加算して露出基準値を算出する(S13)。例えば、EV値=BV値+SV値からなる数式を用いてEV値を算出する。具体的に示すと、ISO1600のフィルムのAPEX単位は+9であり、BV値が3のときには、露出基準値は9+3=12となる。
【0068】
そして、制御部19は、フィルム感度検出部12が検出したフィルムの感度がISO1600で示される感度以上であるか否かを判断する(S14)。
【0069】
制御部19は、フィルム感度がISO1600で示される感度以上であると判断すると、露出基準値を補正する(S15)。具体的には、制御部19は、補正制御テーブルから上述算出したBV値に対応したΔEV値を取り出す。そして、制御部19は、S3において算出した露出基準値からΔEV値を減算することにより、露出基準値を補正して露出目標値を算出する。つまり、検出された外光輝度が、上述本実施形態において説明した所定の第1輝度領域にある場合には、露出基準値から第1の露出補正値を減じて露出目標値を算出し、検出された外光輝度が第1輝度領域より大きい領域に設定されている第2輝度領域にある場合には、露出基準値から、第2の露出補正値を減じて露出目標値を算出する。なお、第2の露出補正値は第1の露出補正値より小さい値に設定されている。
【0070】
制御部19は、S15において算出された露出目標値が、特定範囲(14≦EV値≦15.5)に含まれているか否かを判断する(S16)。S16において、露出目標値が特定範囲にない場合、制御部19は特別なプログラム線図により規定されたF値(標準のプログラム線図に規定されたF値と同じF値)による露出制御を行う(S17)。そして、制御部19は、シャッター部16による撮影を行う(S20)。
【0071】
S16において、露出目標値が特定範囲に含まれている場合、制御部19は特別なプログラム線図を用いて、当該特定範囲の下限で定められているF値より大きく設定されたF値に基づいて露出制御を行う(S18)。ここでは、例えば、露出目標値が“14≦EV値≦15.5”の範囲にある場合、F値=11を用いた露出制御を行う。そして、制御部19は、シャッター部16による撮影を行う(S20)。
【0072】
S14において、制御部19は、フィルム感度がISO1600で示される感度以上でないと判断すると、標準のプログラム線図により規定されたF値による露出制御を行う(S19)。そして、制御部19は、シャッター部16による撮影を行う(S20)。
【0073】
このように、特別なプログラム線図を用いて、フィルム感度がISO1600以上であって露出目標値が特定範囲(14≦EV≦15.5)にある場合は、特定範囲の下限で定められたF値より大きく定められたF値(F値=11)を用いて、露出目標値が特定範囲にある場合おける露出制御を行うことができ、パンフォーカスを拡大することができる。すなわち、パンフォーカスを拡大することにより、フォーカスレンズを大きく移動させることなく、被写体に対して適切な合焦動作を行うことができる。よって、フォーカスレンズを移動させるための時間を節約することができ、レリーズタイムラグを縮め、軽快な撮影を行うことができる。
【0074】
このようなカメラにおいて、フォーカスレンズを移動させる時間を短くし、または省略するためには、フォーカスレンズを撮影頻度の高い位置に予め位置させておくことが好ましい。以下、その詳細について図14に基づいて説明する。図14は、フォーカスレンズを最遠セット位置に移動させるときの動作を示すフローチャートである。
【0075】
図13で示した動作による撮影が終了すると(S21)、直ちにまたは所定時間経過後、制御部19は、フォーカスレンズの位置を移動させるか否かを判断する(S22)。つまり、S21において撮影した際に、フォーカスレンズが最遠セット位置に位置していたか否かを判断する。
【0076】
最遠セット位置にフォーカスレンズが位置しておらず、フォーカスレンズの位置を移動させると、制御部19が判断した場合、制御部19は図示しないレンズ駆動機構を制御してフォーカスレンズを最遠セット位置に移動させ、当該最遠セット位置に待機させ、次の撮影にそなえる(S23)。また、S22において、移動させる必要がないと、制御部19が判断した場合、フォーカスレンズに対する移動制御を行うことなく、処理を終了する。
【0077】
このように、フォーカスレンズのセット位置(待機位置)を最遠セット位置にすることで、被写体までの距離が無限遠である場合(例えば、1050mm以上である場合(図12参照))、レンズ駆動機構により、合焦動作のためのフォーカスレンズが移動されることがなく、フォーカスレンズ移動のための時間を節約して、レリーズタイムラグを縮め、軽快な撮影を行うことができる。すなわち、F値を上げた場合における最遠セット位置は、撮影時における被写体距離の大半を占めると考えられていることから、撮影時のレリーズタイムラグを短縮することができ、軽快な撮影を行うことができる。
【0078】
次に、撮影した被写体距離ごとの撮影頻度(フォーカスレンズをセットしたセット頻度)を計数して、計数した撮影頻度に基づいて適切な合焦位置にフォーカスレンズを待機させるときの動作について説明する。図15は、フォーカスレンズを撮影頻度に応じた適切な待機位置に移動させるときの動作を示すフローチャートである。
【0079】
図13で示された撮影が終了すると(S31)、制御部19は、フォーカスレンズがセットされたセット頻度(撮影頻度)を、セット位置ごとに区別してカウントし(S32)、カウントされたセット頻度をメモリ(図示せず)に記憶させる(S33)。なお、制御部19は、撮影時には、測距された被写体までの距離に応じて、フォーカスレンズを合焦のためのセット位置に移動させていたものとする。
【0080】
記憶終了後、直ちにまたは所定時間経過後、制御部19はフォーカスレンズを移動させることが必要か否かを判断する(S34)。ここでは、セット位置ごとに記憶されたセット頻度に基づいて、頻度の最も高いセット位置にフォーカスレンズを移動させるために、制御部19は、撮影終了時のフォーカスレンズのセット位置と頻度の最も高いフォーカスレンズのセット位置とが一致しているか否かを判断する。
【0081】
ここで、制御部19は、フォーカスレンズを移動させる必要があると判断すると、レンズ駆動機構を用いてフォーカスレンズを頻度の最も高いセット位置に移動させる(S35)。フォーカスレンズを移動させる必要がない場合は、レンズ駆動機構に指示を出すことなく、処理を終了する。
【0082】
このように、フォーカスレンズの待機位置を、撮影時のセット位置ごとのセット頻度(撮影頻度)に基づいて定めることにより、合焦制御のためのフォーカスレンズを駆動させる可能性を低くすることができ、フォーカスレンズを移動させるための時間を節約して、レリーズタイムラグを縮め、軽快な撮影を行うことができる。さらに、フォーカスレンズを移動させる判断(S34で示す判断)を、撮影終了後(セット位置の記憶後)、所定時間経過後に行うようにする場合、当該撮影時におけるフォーカスレンズの駆動を行うことなく、連続的に撮影をすることができる。
【図面の簡単な説明】
【0083】
【図1】本実施形態のカメラ10の斜視図である。
【図2】本実施形態のカメラ10のブロック構成図である。
【図3】図2のカメラにおける補正制御テーブルの概念図である。
【図4】図2のカメラにおける露出制御の概念図である。
【図5】カラーネガの分光感度を示す図である。
【図6】代表的光源の相対強度を示す図である。
【図7】図2のカメラの動作を示すフローチャートである。
【図8】図2のカメラにおける露出制御の具体例を示すプログラム線図である。
【図9】図4の実施形態とは別の露出制御の概念図である。
【図10】本実施形態における特別なプログラム線図を示す。
【図11】錯乱円の大きさと被写体距離との関係におけるフォーカスレンズのズレ許容幅の関係を示す、F値=2のときのAF線図である。
【図12】錯乱円の大きさと被写体距離との関係におけるフォーカスレンズのズレ許容幅の関係を示す、F値=11のときのAF線図である。
【図13】本実施形態のカメラ10の動作を示すフローチャートである。
【図14】フォーカスレンズを最遠セット位置に移動させるときの動作を示すフローチャートである。
【図15】フォーカスレンズを撮影頻度に応じた適切な待機位置に移動させるときの動作を示すフローチャートである。
【符号の説明】
【0084】
10…カメラ、11…レリーズボタン、12…フィルム感度検出部、13…測光部、14…メモリ部、15…ストロボ発光部、16…シャッター部、17…投光部、18…受光部、19…制御部、20…銅鏡。

【特許請求の範囲】
【請求項1】
撮像媒体の撮像感度を検出する感度検出手段と、
外光輝度を検出する輝度検出手段と、
前記感度検出手段により撮像媒体の感度が所定感度以上であると検出された場合であって、前記輝度検出手段により検出された外光輝度が所定の第1輝度領域にある場合には、検出された外光輝度に対応した露出基準値から第1の露出補正値を減じて露出目標値を算出し、前記感度検出手段により撮像媒体の感度が所定感度以上であると検出された場合であって、前記輝度検出手段により検出された外光輝度が前記第1輝度領域より大きい領域に設定されている第2輝度領域にある場合には、検出された外光輝度に対応した露出基準値から前記第1の露出補正値より小さい値に設定されている第2の露出補正値を減じて露出目標値を算出する露出値演算手段と、
前記露出値演算手段により算出された露出目標値に応じてF値とシャッタースピードとを可変にすることで露出制御を行うとともに、前記露出値演算手段により算出された露出目標値における所定範囲においては、F値を一定にしてシャッタースピードのみを露出目標値の増加とともに増加するように露出制御を行い、前記所定範囲を超えた範囲においては、F値とシャッタースピードとを露出目標値の増加とともに増加するように露出制御を行い、前記感度検出手段により検出された撮像感度が所定感度以上であった場合には、前記所定範囲を超えた範囲における、特定範囲においては、当該特定範囲の下限で定められたF値より大きいF値を用いて、当該特定範囲における露出制御を行う露出制御手段と、
を備えるカメラ。
【請求項2】
被写体までの距離を測定する測距手段と、
撮影する際には前記測距手段により測定された被写体までの距離に応じてフォーカスレンズを移動させるとともに、無限遠にいる被写体を撮影するのに適した最遠セット位置に前記フォーカスレンズを待機させるレンズ駆動手段と、
を備えることを特徴とする請求項1に記載のカメラ。
【請求項3】
被写体までの距離を測定する測距手段と、
前記測距手段により測定された距離ごとに、撮影された撮影頻度を計測する頻度計測手段と、
前記頻度計測手段により計測された距離ごとの撮影頻度を記憶する頻度記憶手段と、
撮影する際には前記測距手段により測定された被写体までの距離に応じてフォーカスレンズを移動させるとともに、前記頻度記憶手段に記憶されている頻度の高い距離に対応したセット位置にフォーカスレンズを待機させるレンズ駆動手段と、
を備えることを特徴とする請求項1に記載のカメラ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2006−243186(P2006−243186A)
【公開日】平成18年9月14日(2006.9.14)
【国際特許分類】
【出願番号】特願2005−56491(P2005−56491)
【出願日】平成17年3月1日(2005.3.1)
【出願人】(000005430)フジノン株式会社 (2,231)
【出願人】(000005201)富士写真フイルム株式会社 (7,609)
【Fターム(参考)】