説明

クロックのデューティ・サイクルの自動制御

【課題】クロック信号の立ち下がりを調節して望ましいデューティ・サイクルを達成するデューティ・サイクル補正(DCC)回路を提供する。
【解決手段】幾つかの例では、DCC回路は、入力クロック信号の立ち下がりに応答してパルスを発生し、そのパルスを制御電圧に基づいて遅延し、遅延したパルスに基づいて入力クロック信号の立ち下がりを調節して出力クロック信号を生成し、出力クロック信号のデューティ・サイクルと望ましいデューティ・サイクルとの間の差に基づいて制御電圧を調節する。DCC回路は、望ましいデューティ・サイクルを達成するためにクロック・サイクルの立ち下がりを調節するので、クロック信号の立ち上がりを調節する既存のPLL制御ループへ、その動作に干渉することなく組み込むことができる。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は、クロック信号の管理に関連し、より詳細には、クロック信号のデューティ・サイクル補正回路に関連する。
【背景技術】
【0002】
アメリカ合衆国政府は、NASAジョンソン・スペース・センタにより与えられた契約第NNJ06TA25C号に従った本発明における特定の権利を得ている。
【0003】
フェーズ・ロック・ループ(PLL)は、集積回路のクロック生成および分配システムでよく用いられる。一般に、PLLは、基準信号の位相と整合する位相を有する出力信号を生成する。PLLは、典型的には、制御ループとして実施され、その出力信号がPLLを制御するための負のフィードバック信号として使用される。PLLは位相検出器を含み、位相検出器は、基準クロック信号とフィードバック・クロック信号とを比較して、基準クロック信号とフィードバック・クロック信号との位相のアライメントが取られているか否を判定する。
【0004】
多くのPLLにおいて、位相検出器は、両方の信号の立ち上がりを検出して、この判定を行う。同様に、PLL内の制御ループは、一般に、フェーズ・ロックを達成するために出力クロック信号の立ち上がりのみを動かす。同時に、多くの既存のデューティ・サイクル補正(DCC、duty cycle correction)回路は、クロック信号に対しての望ましいデューティ・サイクルを達成するために、クロック信号の立ち上がりと立ち下がりとの両方を調節する。PLLおよびDCC制御ループの双方とも出力クロック信号の立ち上がりを調節するので、DCCをPLLの制御ループ内に組み込むとPLLの動作に干渉し得る。
【発明の概要】
【0005】
一般に、本開示は、クロック信号の立ち下がりを調節するように構成される、従って、クロック信号のデューティ・サイクルを調節する、デューティ・サイクル補正(DCC)回路に関する。DCCは、入力クロック信号の立ち下がりに応答してパルスを生成する。フィードバック回路網は、出力クロック信号のデューティ・サイクルと、望ましいデューティ・サイクルとを比較し、パルスを遅延させるために用いられる制御信号を生成する。エッジ(縁)調節回路は、遅延されたパルスにおける遅延量に基づいて、入力クロック信号の立ち下がりを調節する。DCC回路は、望ましいデューティ・サイクルを達成するためにクロック・サイクルの立ち下がりを調節するので、このDCC回路は、クロック信号の立ち上がりを調節する既存のPLLの制御ループの動作に干渉することなく、PLLの制御ループへ組み込むことができる。
【0006】
本開示における一例は、入力クロック信号の立ち下がりに応答してパルスを生成するように構成されるパルス発生器を含むデューティ・サイクル補正回路デバイスに関する。このデバイスは、制御電圧に基づいてパルスを遅延するように構成される電圧制御遅延回路を更に含む。このデバイスは、出力クロック信号を生成するために、遅延されたパルスに基づいて、入力クロック信号の立ち下がりを調節するように構成されるエッジ調節回路を更に含む。このデバイスは、出力クロック信号のデューティ・サイクルと望ましいデューティ・サイクルとの間の差に基づいて制御電圧を調節するように構成されるフィードバック回路パス(path、経路)を更に含む。
【0007】
本開示における別の例は、入力クロック信号の立ち下がりに応答してパルスを生成することを含む方法に関する。この方法は、制御電圧に基づいてパルスを遅延することを更に含む。この方法は、出力クロック信号を生成するために、遅延されたパルスに基づいて入力クロック信号の立ち下がりを調節することを更に含む。この方法は、出力クロック信号のデューティ・サイクルと望ましいデューティ・サイクルとの間の差に基づいて制御電圧を調節することを更に含む。
【0008】
本開示における別の例はクロック・シンセサイザ・システムに関し、クロック・シンセサイザ・システムは、基準クロック信号とフィードバック・クロック信号とに基づいて中間クロック信号を生成するように構成されるフェーズ・ロック・ループ・フォワード回路パスを含む。このシステムは、出力クロック信号を生成するために、中間クロック信号の立ち下がりを調節するように構成されるデューティ・サイクル補正回路を更に含む。このシステムは、出力クロック信号を、フィードバック・クロック信号として、フェーズ・ロックト(phase-locked、フェーズ・ロックされた)・ループ・フォワード回路パスへ適用するように構成されるフィードバック回路パスを更に含む。
【0009】
本開示における別の例は、基準クロック信号とフィードバック・クロック信号とに基づいて中間クロック信号を生成することを含む方法に関する。この方法は、出力クロック信号を生成するために、中間クロック信号の立ち下がりを調節することを更に含む。この方法は、出力クロック信号をフィードバック・クロック信号としてフェーズ・ロックト・ループ・フォワード回路パスへ適用することを更に含む。
【図面の簡単な説明】
【0010】
【図1】図1は、本開示に従った例示のクロック・シンセサイザ・システムを示すブロック図である。
【図2】図2は、本開示に従った例示のデューティ・サイクル補正(DCC)回路デバイスを示すブロック図である。
【図3】図3は、本開示に従った別の例示のDCC回路デバイスを示すブロック図である。
【図4】図4は、本開示に従った別の例示のDCC回路デバイスを示す概略図である。
【図5】図5は、図4の例示のDCC内の幾つかの信号のタイミングを示すタイミング図である。
【図6】図6は、本開示のDCC回路の任意のもので使用される電圧制御遅延エレメントを示す概略図である。
【図7】図7は、本開示に従った、クロック信号のデューティ・サイクルを調節するための例示の方法を示すフロー図である。
【図8】図8は、位相がアライメントされデューティ・サイクルが補正されたクロック信号を生成するための例示の方法を示すフロー図である。
【図9】図9は、位相がアライメントされデューティ・サイクルが補正されたクロック信号を生成するための例示の方法を示すフロー図である。
【発明を実施するための形態】
【0011】
一般に、本開示は、クロック信号の立ち下がりを調節するように構成されたデューティ・サイクル補正(DCC)回路に関する。ここで用いられるように、クロック信号の立ち下がりとは、クロック信号内でのハイの論理値からローの論理値への遷移である。DCCは、入力クロック信号の立ち下がりに応答してパルスを生成する。フィードバック回路網は、出力クロック信号のデューティ・サイクルと望ましいデューティ・サイクルとを比較し、パルスを遅延するために使用される制御信号を生成する。エッジ調節回路は、調節されたパルスにおける遅延量に基づいて入力クロック信号の立ち下がりを調節する。DCC回路は、望ましいデューティ・サイクルを達成するためにクロック・サイクルの立ち下がりを調節するので、クロック信号の立ち上がりを調節する既存のPLLの制御ループの動作に干渉することなく、PLLの制御ループへ組み込むことができる。
【0012】
図1は、本開示に従った例示のクロック・シンセサイザ・システム10を示すブロック図である。クロック・シンセサイザ・システム10は出力クロック信号を生成する。この出力クロック信号は、位相が基準クロック信号とアライメント(整合)されており、基準クロックの周波数の倍数の周波数を有する。クロック・シンセサイザ・システム10は、フェーズ・ロック・ループ(PLL)・フォワード回路パス12、デューティ・サイクル補正(DCC)回路14、周波数分割器16、基準クロック信号18、出力クロック信号20、および信号ノード22、24を含む。
【0013】
PLLフォワード回路パス12は、基準クロック信号18と位相がアライメントされた位相調節信号(位相調節された信号)24を生成するように構成される。PLLフォワード回路パス12はフィードバック信号22を受信し、このフィードバック信号22は、位相調節信号24の位相および/または周波数を制御するために用いられる。一般に、PLLフォワード回路パス12は、基準クロック信号18とフィードバック・クロック信号22との間の位相差を求め、位相調節信号24の周波数を調節して、フィードバック信号22の結果的な位相および周波数が、基準クロック信号18の位相および周波数と一致するように、またはそれらと固定の関係を有するようにする。1つの例では、PLLフォワード回路パス12は、基準クロック信号18の立ち上がりとフィードバック・クロック信号22の立ち上がりとの時間差を測定することにより、位相差を求める。
【0014】
PLLフォワード回路パス12は、アナログまたはデジタルのPLL制御ループのフォワード回路パスで一般に見られる任意のコンポーネントを含むことができる。ここで用いられるように、フォワード回路パスとは、PLL制御ループのフィードバック・パスの一部ではない、PLL制御ループの全てまたは一部である。1つの例では、PLLフォワード回路パス12は、位相検出器、ループ・フィルタ、および電圧制御発振器(VCO)を含み得る。位相検出器は、フィードバック信号22の位相および/または周波数を基準クロック信号18に対して比較し、これらの信号間の位相差に基づいてエラー信号を生成する。ループ・フィルタは、エラー信号をフィルタリングして、エラー信号から高次の周波数成分を除去し、フィルタリングされたエラー信号を生成する。VCOは、フィルタリングされたエラー信号により決定される周波数を有する出力クロック信号を生成する。
【0015】
上述のPLLフォワード回路パス12は、単なる例示のPLLフォワード回路パスである。PLL機能を実現することが可能な任意のフォワード回路パスを、図1のクロック・シンセサイザ・システム10においてPLLフォワード回路パス12に使用でき得ることを、理解すべきである。PLLフォワード回路パス12は、本開示の範囲から出ることなく、上述のコンポーネントとは異なるコンポーネント、および/または同じ又は異なる順に配されたコンポーネントを含み得る。例えば、PLLフォワード回路パス12は、デジタル位相検出器、カウンタ、およびデジタル制御される発振器を含み得る。別の例として、PLLフォワード回路パス12は、ループ・フィルタ無しで実施され得る。何れにしても、PLLフォワード回路パス12は、制御ループに含まれるフィードバックを除いたPLL制御ループの全てまたは一部の機能を提供するコンポーネントを含む。
【0016】
DCC回路14は、出力クロック信号20を生成するために位相調節信号24のデューティ・サイクルを調節するように構成される。DCC回路14の定常状態の出力は、望ましいデューティ・サイクルと実質的に整合するデューティ・サイクルを有する。本開示に従うと、DCC回路14は、望ましいデューティ・サイクルを達成するために、位相調節信号24の立ち下がりのタイミングを調節する。DCC回路14は望ましいデューティ・サイクルを達成するために出力クロック信号の立ち下がりを調節するので、DCC回路14は、クロック信号の立ち上がりを調節する既存のPLL制御ループへ、その動作に干渉することなく組み込むことができる。
【0017】
1つの例では、DCC回路14は、入力クロック信号の立ち下がりに応答してパルスを生成し、制御電圧に基づいてパルスを遅延し、遅延したパルスに基づいて入力クロック信号の立ち下がりを調節して出力クロック信号を生成し、出力クロック信号のデューティ・サイクルと望ましいデューティ・サイクルとの差に基づいて制御電圧を調節する。このようにして、DCC回路14は、望ましいデューティ・サイクルを達成するために出力クロック信号20の立ち下がりを制御する制御ループを提供する。
【0018】
幾つかの例では、DCC回路14は、非同期リセット入力をもつシーケンシャル回路エレメントを含み得、その入力でパルスを受信した時に、出力クロック信号20を強制的にローの論理値にする。幾つかの場合、シーケンシャル回路エレメントはまた、入来する位相調節クロック信号24から立ち上がりを受信したときに、出力クロック信号20を強制的にハイの論理値にする。すなわち、DCC回路14のシーケンシャル回路エレメントは、出力クロック信号20の立ち上がりを妨害および/または調節することなく、入来するクロック信号24のデューティ・サイクルを調節する。
【0019】
更なる幾つかの例では、DCC回路14は、フィードバック・ループを制御するために予め存在する外部クロックや発振器の使用を必要としないアナログ・フィードバック・ループを含み得る。そのような例では、アナログ・フィードバック・ループは、回路を構築した後に、望ましいデューティ・サイクルを調節するために使用できる基準電圧入力を使用することができる。アナログ・フィードバック・ループ内で基準電圧を使用することにより、デジタル・フィードバック・ループやステート(状態)・マシンとは異なり、幾つかの例では、望ましいデューティ・サイクルをより正確にプログラムおよび/または調節することができる。
【0020】
更に別の例では、DCC回路14は、パルスの遅延の調節にカレント−スターブド・インバータ(current-starved inverter、電流渇望インバータ)を用いる電圧制御遅延ユニットを含むことができる。そのような例では、制御電圧は、幾つかの場合において、高電圧電源及び低電圧電源の双方からカレント−スターブド・インバータへ流れる電流を調節する。
【0021】
更に別の例では、DCC回路14は、出力クロック信号20の立ち下がりを制御するために使用されるパルスを生成するために、入来するクロック信号の立ち下がりを捕捉する。入来するクロック信号の立ち上がりではなく、立ち下がりに基づいてパルスを生成することにより、よりコンパクトな遅延回路を実現できる。なぜなら、遅延パラメータの動作範囲が有効に低減されるからである。更に、パルスが、入来するクロック信号の立ち下がりに基づく場合、パルスに対して要求される遅延の全体量を低減することができ、クロック・シンセサイザ制御ループのより安定した動作が可能とされる。
【0022】
周波数分割器16は、クロック信号20に基づいて、周波数分割された出力クロック信号22を生成するように構成される。周波数分割器16は、予め設定した又はプログラムされたファクタにより周波数を低減する。周波数分割器された出力クロック信号は、フィードバック・パスに沿ってPLLフォワード回路パス12へ印加され得る。周波数分割器16は、プログラマブルの整数Nを受信するように構成される。この整数Nは、周波数分割の除数として用いられる。1つの例では、周波数分割器16は、モジュロNカウンタとして実施される。モジュロNカウンタは、そのカウントを、出力クロック・サイクル20の各周期について1だけ増加させることができる。モジュロNカウンタは、フィードバック・クロック信号22を生成するが、このフィードバック・クロック信号22の周期は、モジュロNカウンタがN状態の全てをサイクル(一巡り)するために必要な時間に従って定められる。このようにして、周波数分割器16は、出力クロック信号20の周波数を分割してフィードバック・クロック信号22を生成する。上記ではデジタル・カウンタに関して説明したが、周波数分割器16は、当該技術で知られている他のアナログ技術やデジタル技術を用いて実現できることを認識すべきである。
【0023】
クロック・シンセサイザ・システム10の動作の間、PLLフォワード回路パス12は、基準クロック信号18とフィードバック・クロック信号22とを受信する。PLLフォワード回路パス12は、基準クロック信号18とフィードバック信号20との間の位相差に基づいて位相調節信号24を生成する。PLLフォワード回路パス12は、信号18、20の立ち上がりを用いて位相差を求める。この位相差に基づいて、PLLフォワード回路パス12は、位相調節信号24の立ち上がりを調節し、固定量の位相遅延(すなわち、フェーズ・ロック)を達成する。位相調節信号24は、DCC回路14へ供給される。
【0024】
DCC回路14は、位相調節信号24のデューティ・サイクルを調節するが、このとき、出力クロック信号20のデューティ・サイクルが、望ましいデューティ・サイクルと実質的に等しくなるようにする。特に、DCC回路14は、位相調節信号24の立ち上がりを変化させることなく、位相調節信号24の立ち下がりを調節することにより、デューティ・サイクルを調節する。周波数分割器16は、出力信号20の周波数を、プログラマブルのファクタNにより低減する。周波数分割器されたクロック信号16は、フィードバック信号22としてPLLフォワード回路パス12へ印加される。PLLフォワード回路パス12は、基準クロック信号18とフィードバック・クロック信号20との周波数および位相の双方を整合させようと試みるので、位相調節信号24を調節して、PLLフォワード回路パス12は、位相調節信号24の周波数が基準クロック信号18の周波数のN倍であるようにする。このようにして、クロック・シンセサイザ・システム10は、基準クロック信号の周波数の倍数の周波数を有し、フェーズ・ロックされデューティ・サイクルが補正された出力信号を提供する。
【0025】
図1の例示のクロック・シンセサイザ・システム10は周波数分割器を含むものとして示されているが、本開示の技術を用いるクロック・シンセサイザの他の例では、周波数分割器を用いない場合もあることを理解すべきである。そのような場合、本開示の技術は、PLLとDCCとを組み合わせた制御ループを提供することができ、周波数をステップ・アップしない(上げない)。
【0026】
図2は、本開示に従った例示のデューティ・サイクル補正(DCC)回路40デバイスを示すブロック図である。DCC回路40は、入力クロック信号の立ち下がりを調節して、望ましいデューティ・サイクルと実質的に等しいデューティ・サイクルを有する出力クロック信号を生成するように構成される。幾つかの例では、図2のDCC回路40は、図1のDCC回路14を形成するために用いられる。DCC回路40は、パルス発生器42、電圧制御遅延ユニット44、エッジ(縁)調節回路46、フィードバック・パス48、入力クロック信号50、出力クロック信号52、および信号ノード54、56、58を含む。
【0027】
パルス発生器42は、入力クロック信号の立ち下がりに応答してパルスを生成するように構成される。パルス発生器42は、当該技術で知られた組み合わせロジック、シーケンシャル・ロジック、および/またはアナログ回路を用いて実現される。幾つかの例では、DCC回路40は、出力クロック信号20の立ち下がりを制御するために用いられるパルス信号54を生成するために、入来するクロック信号の立ち下がりを捕捉する。入来するクロック信号の立ち上がりではなく立ち下がりに基づいてパルスを生成することにより、よりコンパクトな遅延回路を実現できる。なぜなら、遅延パラメータの動作範囲が有効に低減されるからである。
【0028】
電圧制御遅延ユニット44は、パルス発生器42により生成されたパルス信号54を受信し、制御電圧56に基づいてパルス信号54を遅延するように構成される。幾つかの例では、電圧制御遅延ユニット44は、電圧−電流(voltage-to-current)変換器と、それに続く1又は複数のカレント−スターブド・インバータとを含み得る。幾つかの場合において、高電圧電源及び低電圧電源の双方に対する供給電流は、制御電圧に基づいて調節される。
【0029】
何れにしても、電圧制御遅延ユニット44は、パルス信号54に対応する遅延されたパルス信号58を生成する。遅延量は、制御電圧56により制御される。パルス信号54は入力クロック信号50の立ち下がりに基づくので、立ち上がりに基づく場合とは異なり、望ましいデューティ・サイクルを達成するために必要な遅延の全体量が低減され、それにより、クロック・シンセサイザの制御ループのより安定した動作が可能となる。
【0030】
エッジ調節回路46は、出力クロック信号52を生成するために、遅延されたパルス信号58に基づいて入力クロック信号50の立ち下がりを調節するように構成される。幾つかの例では、エッジ調節回路46は、1または複数のシーケンシャル回路エレメントを含む。シーケンシャル回路エレメントは、パルス信号58内でパルスが検出された時に、出力クロック信号52を強制的にローの論理値にするように構成される。幾つかの例では、シーケンシャル回路エレメントはまた、入来するクロック信号50内で立ち上がりが検出されたときに、出力信号52を強制的にハイの論理値にする。すなわち、シーケンシャル回路エレメントは、出力クロック信号20の立ち上がりを妨害および/または調節することなく、入来するクロック信号24のデューティ・サイクルを調節する。他の例では、エッジ調節回路46は、別のタイプの組み合わせ回路および/またはアナログ回路を用いて実現される。
【0031】
フィードバック・パス48は、出力クロック信号52のデューティ・サイクルと望ましいデューティ・サイクルとの間の差に基づいて制御電圧信号56を調節するように構成される。望ましいデューティ・サイクルは、フィードバック・パス48へハードワイヤで結合されるか又はプログラムされる。幾つかの例では、基準電圧入力が、望まれるデューティ・サイクルを制御する。
【0032】
幾つかの例では、フィードバック・パス48は、出力クロックのデューティ・サイクルに実質的に比例する第1の電圧を生成することにより、出力クロック信号52のデューティ・サイクルを測定する回路を含む。フィードバック・パス48は、第1の電圧と、望ましいデューティ・サイクルを表す基準電圧とを比較し、測定されたデューティ・サイクルと基準電圧との間の差に実質的に比例する制御電圧を出力する。更に別の例では、フィードバック・パス48は、アナログ・フィードバック・パスとして実施され、これは、フィードバック・ループを制御するために予め存在する外部クロックや発振器を使用する必要がない。
【0033】
DCC回路40の動作中、パルス発生器42は、入力クロック信号50を受信し、入力クロック信号50の立ち下がりに応答してパルス信号54を発生する。電圧制御遅延ユニット44は、制御電圧54に基づいてパルスを遅延し、遅延されたパルス信号として遅延パルス信号(遅延されたパルス信号)58を出力する。制御電圧54は、遅延ユニット44によりパルス信号54へ適用される遅延量を制御する。1つの例では、制御電圧56が増加すると、遅延ユニット44により作られる遅延量が減少する。同様に、制御電圧56が減少すると、遅延ユニット44により作られる遅延量が増加する。
【0034】
エッジ調節回路46は、入力クロック信号50と遅延パルス信号58とを受信し、遅延パルス信号58に基づいて入力クロック信号50の立ち下がりを調節して出力クロック信号52を生成する。エッジ調節回路46は、入力クロック信号50の立ち上がりを検出すると、出力クロック信号52を強制的にハイの論理値にする。エッジ調節回路46は、遅延パルス信号58上でパルスを検出すると、出力クロック信号52を強制的にローの論理値にする。
【0035】
フィードバック回路パス48は、出力クロック信号52のデューティ・サイクルと望ましいデューティ・サイクルとの間の差に基づいて制御電圧56を調節する。言い換えると、フィードバック回路パス48は、出力クロック信号52のデューティ・サイクルを測定し(決定し)、その測定されたデューティ・サイクルと望ましいデューティ・サイクルとを比較し、測定されたデューティ・サイクルと望ましいデューティ・サイクルとの間の差に基づいて制御電圧56を調節する。このようにして、DCC回路40は、出力クロック信号52が実質的に望ましいデューティ・サイクルにあるように調節する。
【0036】
幾つかの例では、固定遅延ユニットを、入力クロック信号50とエッジ調節回路46との間に配置することができる。そのような例では、固定遅延ユニットは、入力クロック信号50を固定量だけ遅延するように構成される。そのような例では、遅延されたクロック信号は、入力クロック信号50の代わりにエッジ調節回路46へ供給される。
【0037】
電圧制御遅延ユニット44に関して説明したが、幾つかの例では、電圧制御遅延ユニット44を電流制御遅延ユニットに代えられ、フィードバック・パス22を、遅延機能を制御するための制御電流信号を生成するように構成でき得ることを、理解すべきである。
【0038】
図3は、本開示に従った別の例のDCC回路60デバイスを示すブロック図である。DCC回路60は、幾つかの例では、図1のDCC回路14を形成するため、および図2のDCC回路40を形成するために使用できる。DCC回路60は、入力クロック信号50の立ち下がりを調節して、望ましいデューティ・サイクルと実質的に等しいデューティ・サイクルを有する出力クロック信号を生成するように構成される。DCC回路60は、固定遅延ユニット62、パルス発生器64、電圧制御遅延ユニット66、シーケンシャル回路エレメント68、ローパス・フィルタ70、デューティ・サイクル・コントローラ72、入力クロック信号74、入力基準電圧76、出力クロック信号78、および信号ノード80、82、84、86、88を含む。
【0039】
DCC回路60は、図2のDCC回路40に関して先に述べたコンポーネントと類似の幾つかのコンポーネントを含む。例えば、パルス発生器64と電圧制御遅延ユニット66とは、それぞれ、図2と関連して説明したパルス発生器42と電圧制御遅延ユニット44とに対応し、同じ又は類似のコンポーネントを用いて構成することができる。幾つかの例では、ローパス・フィルタ70とデューティ・サイクル・コントローラ72とは、図2のDCC回路40のフィードバック・パス48を形成するために使用され得る。更に別の例では、シーケンシャル回路エレメント68は、図2のDCC回路40のエッジ調節回路46を形成するために使用され得る。
【0040】
固定遅延ユニット62は、入力クロック信号74を固定の遅延量だけ遅延して、遅延された入力クロック信号80を作るように構成される。固定の遅延量を入力クロック信号74の立ち上がりに適用することにより、「負の遅延」を入力クロック信号74の立ち下がりに適用するのと同じ効果を提供する。これにより、デューティ・サイクル補正回路60は、入力クロック信号74に対して出力クロック信号78のデューティ・サイクルを効果的に低減することが可能となる。言い換えると、入力クロック信号74の立ち上がりを固定の遅延量だけ遅延することにより、デューティ・サイクル補正回路60は、入力クロック信号74のデューティ・サイクルより小さい望ましいデューティ・サイクルをもつ出力クロック78を生成することができる。
【0041】
可変量の遅延が適用される入力クロック信号74の立ち下がりではなく、入力クロック信号74の立ち上がりが固定の遅延量だけ遅延されることに留意されたい。すなわち、固定遅延ユニット62を用いる例では、入力クロック信号74の立ち下がりが調節され(すなわち、遅延量が調節され)、入力クロック信号74の立ち上がりは調節されない(すなわち、遅延量が調節されない)。
【0042】
パルス発生器64は、入力クロック信号74の立ち下がりに応答してパルス信号82を発生するように構成される。電圧制御遅延ユニット66は、デューティ・サイクル・コントローラ72からの制御電圧84に基づいてパルス信号82を遅延し、遅延されたパルス信号86を発生するように構成される。
【0043】
シーケンシャル回路エレメント68は、遅延されたパルス信号86に基づいて、遅延されたクロック信号(遅延クロック信号)80の立ち下がりを調節して、出力クロック信号78を生成するように構成される。シーケンシャル回路エレメント68は、DCC回路40(図2)のエッジ調節回路46と類似のエッジ調節回路として動作することができる。シーケンシャル回路エレメント68は、クロッキング(clocking)入力90と、非同期入力92と、出力94とを含む。クロッキング入力90は、遅延クロック信号80を受信し、非同期入力92は、遅延されたパルス信号(遅延パルス信号)86を受信する。クロッキング入力90が、遅延クロック信号80内で正の遷移(例えば、ロー論理値からハイ論理値への移行)を検出すると、シーケンシャル回路エレメント86は、出力クロック信号78を強制的にハイの論理値にする。非同期入力92がパルス信号86内でパルスを検出すると、シーケンシャル回路エレメント68は、出力クロック信号78を強制的にローの論理値にする。ここで用いるように、非同期入力とは、クロッキング入力90から独立してトリガ又は活性化される入力のことである。従って、パルス信号86上で発生する何れのパルスもシーケンシャル回路エレメント68を活性化してローの論理値へ遷移させる。図3には示していないが、シーケンシャル回路エレメント68は他の同期入力および/または非同期入力を含み得る。
【0044】
ローパス・フィルタ70は、出力クロック信号78のデューティ・サイクルに実質的に比例する電圧信号88を発生するように構成される。1つの例では、ローパス・フィルタ70は、RCフィルタなどのような、アナログの一次の単極のローパス・フィルタとして実現される。他の例では、ローパス・フィルタ70は、高次のフィルタを用いて実現される。幾つかの例では、デジタルのローパス・フィルタ70を、ローパス・フィルタ70に変えて用いることができる。いずれにしても、ローパス・フィルタ70は、出力クロック信号78から高周波数成分を除去し、事実上は出力クロック信号78の平均値である電圧信号88を生成する。この平均値は、出力クロック78のデューティ・サイクルに比例する。
【0045】
デューティ・サイクル・コントローラ72は、制御電圧信号84を調節するように構成され、制御電圧信号84が、電圧信号88と入力基準電圧76との間の差に実質的に比例するようにする。幾つかの例では、デューティ・サイクル・コントローラ72は、演算増幅器を含むことができ、この演算増幅器は電圧信号84と基準電圧76とを比較し、その比較結果に基づいて制御信号84を調節する。
【0046】
DCC回路60の動作中、入力クロック信号は、固定遅延ユニット62およびパルス発生器64へ供給される。固定遅延ユニット62は、固定の遅延量だけクロック信号74を遅延し、結果として得られる遅延されたクロック信号80をシーケンシャル回路エレメント62のクロッキング入力90へ供給する。パルス発生器64は、クロック信号74のそれぞれの立ち下がりに対してパルス信号82内にパルスを発生させる。電圧制御遅延ユニット66は、制御電圧84により制御される可変の遅延量だけパルス信号82を遅延する。遅延されたパルス信号(遅延パルス信号)86は、シーケンシャル回路エレメント68の非同期入力92へ供給される。シーケンシャル回路エレメント68は、遅延パルス信号86に基づいて遅延クロック信号80の立ち下がりを調節して、出力クロック信号78を発生する。
【0047】
ローパス・フィルタ70は、出力クロック信号78のデューティ・サイクルと実質的に比例する電圧信号88を発生する。デューティ・サイクル・コントローラ72は、電圧信号88と基準電圧信号とを比較し、比較結果に基づいて制御電圧84を調節して、出力クロック信号78が望ましいデューティ・サイクルに調整されるようにする。
【0048】
図4は、本開示に従った別の例示のDCC回路100デバイスを示す概略図である。DCC回路100は、入力クロック信号の立ち下がりを調節して、望ましいデューティ・サイクルと実質的に等しいデューティ・サイクルを有する出力クロック信号を発生するように構成される。DCC回路100は、固定遅延ユニット102、インバータ104、106、ANDゲート108、電圧制御遅延110、フリップフロップ112、バッファ114、116、118、120、インバータ122、抵抗124、コンデンサ126、演算増幅器128、入力クロック信号130、ハイ論理電圧供給源132、およびクロック出力134、136を含む。
【0049】
DCC回路100は、図3のDCC回路60と関連して既に説明したコンポーネントと類似の幾つかのコンポーネントを含む。例えば、電圧制御遅延110と固定遅延ユニット102とは、それぞれ、図3と関連して説明した電圧制御遅延ユニット66と固定遅延ユニット62とに対応し、同じ又は類似のコンポーネントを用いて構築でき得る。幾つかの例では、インバータ104、106とANDゲート108とは、図3のパルス発生器64を形成するために用いられ得る。更に別の例では、フリップフロップ112とハイ論理電圧供給源132とは、図3のシーケンシャル回路エレメント68を形成するために用いられ得る。更に別の例では、抵抗124とコンデンサ126とは、図3のローパス・フィルタ70を形成するために用いられ得る。更に別の例では、演算増幅器128は、図3のデューティ・サイクル・コントローラ72を形成するために用いられ得る。
【0050】
パルス発生器は、インバータ104、106とANDゲート108とを含むものとして定義できる。インバータ104は、入力クロック信号130の極性を反転する。インバータ106は、極性の反転されたクロック信号の反転されたものを生成する。ANDゲート108は、極性の反転されたクロック信号と、極性の反転されたクロック信号が反転された信号とを受信し、これらの信号へ論理AND関数を適用する。インバータ106は僅かな遅延を発生するので、極性の反転されたクロック信号を反転したものは、インバータ104により発生された極性の反転されたクロック信号に対して僅かに遅延されている。これにより、ANDゲート108は、インバータ106によりもたらされる遅延と実質的に等しいパルス幅を有するハイ論理電圧パルスを発生する。
【0051】
入来するクロック信号の立ち上がりではなく立ち下がりに基づいてパルスを生成することにより、よりコンパクトな遅延回路を実現することができる。なぜなら、遅延パラメータの動作範囲が有効に低減されるからである。更に、パルスが、入来するクロック信号の立ち下がりに基づく場合、パルス信号に対して必要とされる遅延の全体量を低減することができ、それにより、クロック・シンセサイザの制御ループのより安定した動作が可能とされる。
【0052】
エッジ調節回路は、フリップフロップ112とハイ論理電圧供給源132とを含むものとして定義できる。フリップフロップ112は、正エッジ・トリガ型のDフリップフロップ(positive edge-triggered D-flip-flop)であり得、これはクロック入力(CK)、非同期リセット入力(R)、データ入力(D)、非反転出力(Q)、および反転出力(Q−(Qバー))を有する。クロック入力は、遅延されたクロック信号の立ち上がりを検出し、非反転出力を強制的にハイの論理値にし、反転出力を強制的にローの論理値にする。非同期リセット入力は、遅延されたパルス信号のパルスを検出し、非反転出力を強制的にローの論理値にし、反転出力を強制的にハイの論理値にする。
【0053】
図4に示すフリップフロップ112は単なる例示であり、本開示の範囲から離れることなく、他のタイプのシーケンシャル回路エレメントをフリップフロップ112に代えて用いられ得ることを理解されたい。例えば、JK、SR、またはDラッチおよび/またはフリップフロップを、フリップフロップ112を実現するために使用することができる。幾つかの例では、フリップフロップ112に対するトリガ又はクロッキングは、エッジ−トリガ・クロッキング(edge-triggered clocking)やパルス−トリガ・クロッキング(pulse-triggered clocking)として実現できる。
【0054】
ローパス・フィルタは、抵抗124とコンデンサ126とを含むものとして定義できる。ローパス・フィルタは、Dフリップフロップの反転出力の反転されたものを受信する。抵抗値およびキャパシタンス値は、演算増幅器128の非反転入力での接地に対する電圧が出力クロック信号134、136のデューティ・サイクルに比例するように選択される。
【0055】
デューティ・サイクル・コントローラは、演算増幅器128を含むものとして定義される。演算増幅器128は、飽和範囲(saturation range)ではなく線形範囲で動作し、ローパス・フィルタにより発生された電圧と基準電圧との間の差に実質的に比例する信号を発生する。少量のコモン・モード(common mode)電圧もまた、演算増幅器128の出力に現れるが、差分モード(differential mode)成分である主な信号成分は、入力信号間の差に実質的に比例する。このようにして、演算増幅器128は、第1の電圧と基準電圧との間の差に実質的に比例する出力電圧信号を発生する。デジタル・フィードバック・ループやステート・マシンではなく、アナログ・フィードバック・ループ内で基準電圧を用いることにより、望ましいデューティ・サイクルをより正確にプログラムおよび/または調節できる。
【0056】
クロック入力130は、固定遅延ユニット102とインバータ104の入力とへ結合される。インバータ104の出力は、インバータ106の入力と、AND(アンド)ゲート108の1つの入力とに結合される。ANDゲート108の出力は電圧制御遅延ユニット110へ結合される。固定遅延ユニット102の出力は、Dフリップフロップ112のクロック入力へ結合される。電圧制御遅延ユニット110の出力は、Dフリップフロップ112の非同期リセット入力へ結合される。ハイの論理値に対応する高電圧源132は、Dフリップフロップ112のデータ入力へ結合される。Dフリップフロップ112の非反転出力は、バッファ114の入力へ結合される。バッファ114の出力は、バッファ118の入力へ結合される。
【0057】
バッファ118の出力は、非反転のクロック出力134を構成する。Dフリップフロップ112の反転出力は、バッファ116の入力へ結合される。バッファ116の出力は、バッファ120の入力とインバータ122の入力とへ結合される。バッファ120の出力は、反転されたクロック出力136を構成する。インバータ122の出力は、抵抗124の第1端子へ結合される。抵抗124の第2端子は、コンデンサ126の第1端子へ結合される。コンデンサ126の第2端子は、接地電圧へ結合される。コンデンサ126の第1端子は、演算増幅器128の非反転入力へ結合される。基準電圧138は、演算増幅器128の反転入力へ結合される。演算増幅器128の出力は、電圧制御遅延ユニット110の制御電圧入力へ結合される。
【0058】
図5は、図4の例示のDCC回路100内の幾つかの信号のタイミングを示すタイミング図140である。タイミング図140は、入力クロック信号142、固定遅延クロック信号144、パルス信号146、遅延されたパルス信号148、および出力信号150を含む。
【0059】
入力クロック信号142は、DCC回路100の入力130での信号に対応する。固定遅延クロック信号144は、DCC回路100の固定遅延ユニット102の出力での信号に対応する。パルス信号146は、DCC回路100のパルス発生器のANDゲート108の出力での信号に対応する。遅延パルス信号148は、DCC回路100の電圧制御遅延ユニット110の出力での信号に対応する。出力信号150は、DCC回路100の出力端子134での信号に対応する。
【0060】
図5に示すように、入力クロック信号142は、実質的に周期的なクロック信号であり、修正されていないデューティ・サイクルを有し得る。固定遅延ユニット102は、入力クロック信号142に対して固定遅延を有する固定遅延クロック信号144を発生する。パルス発生器はパルス信号146を発生し、この信号は、入力クロック信号142のそれぞれの立ち下がりに対してのパルスを有する。電圧制御遅延ユニット110は、遅延されたパルス信号148を発生する。最後に、Dフリップフロップ112は、固定遅延クロック信号144の立ち下がりを調節して、補正されたデューティ・サイクルを有する出力クロック信号150を発生する。
【0061】
図6は、本開示におけるDCC回路の何れかで使用するための電圧制御遅延エレメント160を示す概略図である。電圧制御遅延エレメント160は、電圧−電流変換器(voltage-to-current converter)162、1以上のカレント・スターブド・インバータ164、制御電圧入力信号、入力信号168、および出力信号170を含む。1つの例では、入力信号168はパルス発生器の出力へ結合される。
【0062】
電圧制御遅延エレメント160はまた、回路レッグ(leg、足部)176、178、180、および182を含む。レッグ176は、トランジスタ184、186と、抵抗208とを含む。トランジスタ186は、制御電圧入力166に基づいて、レッグ176を通って流れる電流の量を調節する。制御電圧信号166の接地に対して電圧が増加すると、レッグ176を通る電流が増加する。制御電圧信号166の接地に対して電圧が減少すると、レッグ176を通る電流が減少する。トランジスタ184は、複数の電流ミラーに対しての入力トランジスタとして働く。抵抗208は、回路を適正に動作させるために、レッグ176を通って流れることのできる電流の量を制限する。
【0063】
レッグ178は、トランジスタ188、190を含む。第1の電流ミラーは、トランジスタ184および188により形成される。第1の電流ミラーは、レッグ176を通過する電流に実質的に比例する、レッグ178をを通る電流を生成する。トランジスタ190は、複数の電流ミラーに対する入力トランジスタとして働く。
【0064】
レッグ180は、トランジスタ192、194、196、198を含む。トランジスタ194、196は、インバータ回路を形成するためのスイッチとして動作する。トランジスタ192は、トランジスタ194がターンオンされたときにノード210が充電するレートを制御する。トランジスタ198は、トランジスタ196がターンオンされたときにノード210が放電するレートを制御する。
【0065】
第2の電流ミラーはトランジスタ184、192により形成され、第3の電流ミラーはトランジスタ190、198により形成される。第2の電流ミラーは、トランジスタ192のドレイン端子で、レッグ176を通る電流と実質的に比例する電流を生成する。第3の電流ミラーは、トランジスタ198のドレイン端子で、レッグ178を通る電流と実質的に比例する電流を生成する。レッグ178を通る電流はレッグ176を通る電流と実質的に比例するので、第3の電流ミラーにより生成される電流もまた、レッグ176を通る電流と実質的に比例する。
【0066】
レッグ182は、トランジスタ200、202、204、206を含む。トランジスタ200、204は、インバータ回路を形成するためのスイッチとして動作する。トランジスタ200は、トランジスタ202がターンオンされたときにノード170が充電するレートを制御する。トランジスタ206は、トランジスタ204がターンオンされたときにノード170が放電するレートを制御する。
【0067】
第4の電流ミラーはトランジスタ184、200により形成され、第5の電流ミラーはトランジスタ190、206により形成される。第4の電流ミラーは、トランジスタ200のドレイン端子で、レッグ176を通る電流と実質的に比例する電流を生成する。第5の電流ミラーは、トランジスタ206のドレイン端子で、レッグ178を通る電流と実質的に比例する電流を生成する。レッグ178を通る電流はレッグ176を通る電流と実質的に比例するので、第5の電流ミラーにより生成される電流もまた、レッグ176を通る電流と実質的に比例する。
【0068】
5つの電流ミラーの全てのものの出力電流が、レッグ176を通る電流と実質的に比例するので、5つの電流ミラーの全てのものの出力電流は互いに実質的に比例する。比例の度合い(すなわち、比例定数(proportionality constant))は、トランジスタの大きさの比率により決定される。
【0069】
電圧−電流変換器162は、制御電圧入力信号166を、制御電圧信号166の電圧に比例するレッグ176における電流量へと変換するように構成される。レッグ176における電流量は、レッグ178へ、およびカレント・スターブド・インバータ164へミラーされる。カレント・スターブド・インバータ164は、電流信号に基づいて入力信号を遅延するように構成される。レッグ180、182へミラーされる電流の量は、ノード210および170が充電および放電するレートを決定する。制御電圧166が増加すると、レッグ180、182を通る電流も増加する。これにより、カレント・スターブド・インバータ164の充電/放電のレートが増加し、それにより、入力信号168と出力信号170との間の遅延の量が減少する。同様に、制御電圧166が減少すると、レッグ180、182を通る電流も減少する。これにより、カレント・スターブド・インバータ164の充電/放電のレートが減少し、それにより、入力信号168と出力信号170との間の遅延の量が増加する。
【0070】
トランジスタ186、190、196、198、204、206は、n型金属酸化膜半導体(NMOS)トランジスタで実現でき、トランジスタ184、188、192、194、200、202は、p型金属酸化膜半導体(PMOS)トランジスタで実現できる。しかしながら、npn型バイポーラ接合トランジスタ(npn−BJT)およびpnp型バイポーラ接合トランジスタ(pnp−BJT)を、1以上のNMOSトランジスタおよびPMOSトランジスタに代えて用いることもできることに留意されたい。そのような場合、本開示においてMOSトランジスタのゲート端子について言及する場合、本開示はまたBJTのベース端子を言及しているものと理解される。同様に、本開示においてMOSトランジスタのソース端子またはドレイン端子について言及する場合、本開示はまたBJTのエミッタ端子またはコレクタ端子を、それぞれ、言及しているものと理解される。
【0071】
図7は、本開示に従ってクロック信号のデューティ・サイクルを調節するための例示的方法を示すフロー図である。ここでは図2のDCC回路40に関して説明しているが、図7に示す技術は、図1ないし図4のデバイスまたはシステムにおいて実施できる。パルス発生器42は、入力クロック信号の立ち下がりに応答してパルスを発生する(220)。電圧制御遅延ユニット44は、制御電圧に基づいてパルスを遅延する(222)。エッジ調節回路46は、遅延されたパルスに基づいて入力クロック信号の立ち下がりを調節して、出力クロック信号を生成する(224)。フィードバック経路48は、出力クロック信号のデューティ・サイクルと望ましいデューティ・サイクルとの間の差に基づいて制御電圧を調節する(226)。
【0072】
図8は、位相がアライメントされデューティ・サイクルが補正されたクロック信号を生成するための例示的な方法を示すフロー図である。一例として、図8に示される技術は、図1と関連して説明したクロック・シンセサイザ・システム10において実施され得る。PLLフォワード回路パス12は、基準クロック信号およびフィードバック・クロック信号に基づいて中間クロック信号を発生する(230)。デューティ・サイクル補正回路14は、中間クロック信号の立ち下がりを調節して、出力クロック信号を生成する(232)。フィードバック・パスは、出力クロック信号を、フィードバック・クロック信号として、フェーズロックされたループのフォワード回路パスへ印加する(234)。
【0073】
図9は、位相がアライメントされデューティ・サイクルが補正されたクロック信号を生成するための例示的な方法を示すフロー図である。一例として、図8に示された技術は、図1と関連して説明したクロック・シンセサイザ・システム10において実施され得る。PLLフォワード回路パス12は、基準クロック信号およびフィードバック・クロック信号に基づいて中間クロック信号を発生する(240)。デューティ・サイクル補正回路14は、中間クロック信号の立ち下がりを調節して出力クロック信号を生成する(242)。周波数分割器16は、出力クロック信号に基づいて、周波数分割された出力クロック信号を生成する(244)。フィードバック・パス22は、周波数分割された出力クロック信号を、フィードバック・クロック信号として、フェーズロックされたループのフォワード回路パスへ印加する(246)。
【0074】
本開示において説明した回路のコンポーネントは、個別のコンポーネントとして、また、1以上の集積デバイスとして、また、それらの任意の組み合わせとして、実現することができる。本開示において説明した回路のコンポーネントは、例えばCMOS処理技術を含む広汎な処理技術のうちの任意のものを用いて、作ることができる。更に、ここで説明した回路は、遠隔通信の応用、一般的コンピューティングの応用、クロックの生成および分配のシステムを用いる任意の応用を含む様々な応用において用いることができる。

【特許請求の範囲】
【請求項1】
デューティ・サイクル補正(DCC)回路デバイスであって、
入力クロック信号(50)の立ち下がりに応答してパルス(54)を発生するように構成されるパルス発生器(42)と、
制御電圧(56)に基づいて前記パルス(54)を遅延するように構成される電圧制御遅延回路(44)と、
遅延された前記パルス(58)に基づいて前記入力クロック信号(50)の前記立ち下がりを調節して出力クロック信号(52)を生成するように構成されるエッジ調節回路(46)と、
前記出力クロック信号(52)のデューティ・サイクルと望ましいデューティ・サイクルとの間の差に基づいて前記制御電圧(56)を調節するように構成されるフィードバック回路パス(48)と
を備えるデバイス。
【請求項2】
請求項1に記載のデバイスであって、前記エッジ調節回路(46)は、非同期制御入力(92)を有するシーケンシャル回路エレメント(68)を備え、前記シーケンシャル回路エレメント(68)は、遅延された前記パルス(86)が前記非同期制御入力(92)を活性化するときに、前記出力クロック信号(78)をローの論理電圧にリセットするように構成される、デバイス。
【請求項3】
請求項1に記載のデバイスであって、前記エッジ調節回路(46)は、非同期リセット入力とクロッキング入力とを有する正エッジ・トリガ・Dフリップフロップ(112)を備え、前記非同期リセット入力は、遅延された前記パルスと結合され、前記クロッキング入力は、前記入力クロック信号と前記入力クロック信号の遅延されたものとの少なくとも1つに結合される、デバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−283808(P2010−283808A)
【公開日】平成22年12月16日(2010.12.16)
【国際特許分類】
【外国語出願】
【出願番号】特願2010−85173(P2010−85173)
【出願日】平成22年4月1日(2010.4.1)
【出願人】(500575824)ハネウェル・インターナショナル・インコーポレーテッド (1,504)
【Fターム(参考)】