説明

ジフタロイルピレン系化合物、ジフタロイルピレン系化合物の製造方法及び該ジフタロイルピレン系化合物を用いた電子写真感光体、光電変換素子、太陽電池、光センサー

【課題】本発明の目的は、光電変換効率が高く、電子写真感光体や太陽電池或いは光センサーとして有用な新規なジフタロイルピレン系化合物及びジフタロイルピレン系化合物の製造方法を提供することであり、又、該ジフタロイルピレン系化合物を用いた電子写真感光体、光電変換素子、太陽電池、光センサーを提供することである。
【解決手段】下記一般式(1)で表されることを特徴とするジフタロイルピレン系化合物。
【化1】

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光電変換材料として、新規なジフタロイルピレン系化合物、ジフタロイルピレン系化合物の製造方法及び該ジフタロイルピレン系化合物を用いた電子写真感光体、光電変換素子、太陽電池、光センサーに関するものである。
【背景技術】
【0002】
近年、光電変換材料として、350nm〜600nmの短波長光に対し、高感度を有する顔料や色素の開発が望まれている。
【0003】
1つには、短波長レーザを用いた高精細のデジタル画像を形成できる電子写真感光体の電荷発生物質としての応用が期待される。この短波長レーザ用感光体の電荷発生物質としては、従来アンスアンスロン系顔料がよく知られているが(特許文献1)、今後、開発が期待される高速のプリンターや複写機では、これらアンスアンスロン系顔料では、十分な感度や高速性が得られず、現在ではより高速、高感度の電荷発生物質の開発が望まれている。
【0004】
又、光電変換材料の他の応用例として、太陽電池や光センザーの分野でも、従来のシリコン半導体を用いた太陽電池や光センザーから、よりコストの安い有機化合物を用いた光電変換材料の技術開発が盛んである。
【0005】
有機太陽電池や光センサーとしては、p型有機半導体と仕事関数の小さい金属を接合させるショットキー型光電変換素子、p型有機半導体とn型無機半導体、あるいはp型有機半導体と電子受容性有機化合物を接合させるヘテロ接合型光電変換素子等がある。これらに用いられる有機半導体としては、クロロフィル、ペリレン、ジスアゾなどの合成色素や顔料、ポリアセチレン等の導電性高分子材料、またはそれらの複合材料等であり、これらを真空蒸着法、キャスト法、またはディッピング法などにより、薄膜化したもので形成されている。しかし、変換効率は1%以下と低く、また耐久性も悪いという問題があった。
【0006】
又、ルテニウム錯体系色素を多孔質酸化チタン電極に吸着させることで、現在、シリコン太陽電池並みの性能を有するまでになっている(非特許文献1)。
【0007】
しかしながら、前記ルテニウム錯体系色素は比較的優れた特性を有することがわかっているが、色素が高価であること、および錯体の中心金属であるルテニウムが稀少元素であり将来にわたる安定的な供給に懸念がもたれることから、より安価で安定的に供給可能な有機色素がより好ましい。
【0008】
このルテニウム錯体系色素を代替えするものとして、これまでにも多くの有機色素が検討されており、例えば、ルテニウム錯体色素の他、メロシアニン色素、キサンテン系色素、クマリン系色素、アクリジン系色素、フェニルメタン系色素等が検討されているが、これら色素を用いた場合の光電変換効率は未だ充分なものではなく、さらに変換効率の高い光電変換素子を構成できる有機色素が待望されていた。
【0009】
又、色素増感型太陽電池は上記の如くナノサイズの多孔質酸化物半導体の表面に色素を吸着させる必要があるため、多くは溶媒可溶の有機染料が用いられるが、有機染料は一般に耐久性に問題を有しており、屋外で使用する太陽電池では、初期に得られた高い光電変換効率の劣化が大きい。即ち、色素増感型太陽電池は、高い光電変換効率に加え、高耐久性を備えることが望まれている。
【特許文献1】特開2006−126246号公報
【非特許文献1】J.Am.Chem.Soc.115(1993)6382
【発明の開示】
【発明が解決しようとする課題】
【0010】
本発明は、上記問題点を解決するためになされた。本発明の目的は、光電変換効率が高く、電子写真感光体や太陽電池或いは光センサーとして有用な新規なジフタロイルピレン系化合物及びジフタロイルピレン系化合物の製造方法を提供することであり、又、該ジフタロイルピレン系化合物を用いた電子写真感光体、光電変換素子、太陽電池、光センサーを提供することである。
【課題を解決するための手段】
【0011】
本願発明者等は、光電変換効率が高く、耐久性を改善できる新規化合物の探索を行なった結果、波長が350〜600nm近辺に高い光電変換効率を示す新規な化合物を見出し、本願発明を完成した。
【0012】
即ち、本発明は以下のような構成の新規な化合物を用いることにより達成される。
1.下記一般式(1)で表されることを特徴とするジフタロイルピレン系化合物。
【0013】
【化1】

【0014】
(一般式(1)中、X1及びX2はアルキル基、アルコシキ基、アリール基、ハロゲン原子、ニトロ基、シアノ基を表し、同時に2個以上置換して環構造を形成してもよい。又、X1及びX2は同じでも異なってもよい。R1〜R6は、水素原子、アルキル基、アルコシキ基、アリール基、ハロゲン原子、ニトロ基、シアノ基を表す。nは1〜4の整数を表す。)
2.下記一般式(2)で表されるピレン誘導体と一般式(3)で表される無水フタル酸誘導体を反応させて得られることを特徴とする前記1に記載のジフタロイルピレン系化合物の製造方法。
【0015】
【化2】

【0016】
(一般式(2)中、R1〜R6は、水素原子、アルキル基、アルコシキ基、アリール基、ハロゲン原子、ニトロ基、シアノ基を表す。)
【0017】
【化3】

【0018】
(一般式(3)中、X3は水素原子、アルキル基、アルコシキ基、アリール基、ハロゲン原子、ニトロ基、シアノ基を表し、同時に2個以上置換して環構造を形成してもよい。nは1〜4の整数を表す。)
3.前記1に記載のジフタロイルピレン系化合物を電荷発生物質として含有することを特徴とする電子写真感光体。
4.前記1に記載のジフタロイルピレン系化合物を光電変換材料として含有することを特徴とする光電変換素子。
5.前記1に記載のジフタロイルピレン系化合物を光電変換材料として含有することを特徴とする太陽電池。
6.前記1に記載のジフタロイルピレン系化合物を光電変換材料として含有することを特徴とする光センサー。
【発明の効果】
【0019】
本発明の新規なジフタロイルピレン系化合物、ジフタロイルピレン系化合物の製造方法を用いることにより、短波長側で、高感度と繰り返し特性が改善され、ドット再現性が優れた高画質特性の電子写真感光体、及び高い光電変換効率と優れた安定性とを示す光電変換素子、太陽電池、光センサーを提供することができる。
【発明を実施するための最良の形態】
【0020】
以下、本発明について、詳細に説明する。
【0021】
本発明のジフタロイルピレン系化合物は前記一般式(1)で表されることを特徴とする。
【0022】
本発明のジフタロイルピレン系化合物は、前記一般式(1)の構成を有することにより、電子写真感光体の電荷発生物質として用いた場合は、短波長レーザ等による像露光光に対し、高感度と繰り返し特性が改善され、ドット再現性が優れた高画質特性の電子写真感光体を提供することができる。
【0023】
又、太陽電池や光センサーに用いる光電変換材料として用いた場合は、高い光電変換効率と優れた安定性とを示す光電変換素子、太陽電池、光センサーを提供することができる。
【0024】
以下、本発明のジフタロイルピレン系化合物について説明する。
【0025】
本発明に係わるジフタロイルピレン系化合物は、前記一般式(1)の構造を有する。
【0026】
前記一般式(1)中、X1及びX2はアルキル基、アルコシキ基、アリール基、ハロゲン原子、ニトロ基、シアノ基を表し、同時に2個以上置換して環構造を形成してもよい。又、X1及びX2は同じでも異なってもよい。R1〜R6は、水素原子、アルキル基、アルコシキ基、アリール基、ハロゲン原子、ニトロ基、シアノ基を表す。nは1〜4の整数を表す。
【0027】
以下に、一般式(1)のジフタロイルピレン系化合物の具体例を下記に例示する。
【0028】
【化4】

【0029】
【化5】

【0030】
【化6】

【0031】
【化7】

【0032】
【化8】

【0033】
【化9】

【0034】
【化10】

【0035】
次に、本発明のジフタロイルピレン系化合物の合成例にについて記載する。
合成例1)
【0036】
【化11】

【0037】
200mlの4頭フラスコに冷却管、温度計、撹拌機を装着し、1:10g(0.05mol)及び2:17.6g(0.12mol)を入れ、内温が80℃位まで加熱撹拌し溶融させる。
内温を50℃まで下げてジクロロエタン100mlを加え完溶させる。内温を50℃程度に保ったまま塩化アルミニウム:32.9g(0.25mol)を少しづつ加える。加え終わったら、内温を70℃まで上げて、3時間反応する。
【0038】
反応終了後、内温が40℃程度まで下がったら、希塩酸を加え反応を止める。その後ジクロロエタンを完全に除去し、ろ過、水洗、乾燥を行なう。粗収量(粗結晶):22.0g、この粗結晶をニトロベンゼンにて再結晶を行ない18.9gの3を得た。
【0039】
【化12】

【0040】
500mlの4頭フラスコに冷却管、温度計、撹拌器を装着し、3:10g(0.02mol)、4:31.0g(0.22mol)とニトロベンゼンを混合させ、濃硫酸を2滴加え加熱還流を30分間行なう。還流している間に結晶が析出する。内温が100℃以下になったら、ろ過、洗浄を行ない、乾燥する。これをニトロベンゼンにて再結晶を行ない6.15gの化合物例[C−1]を得た。
合成例2)
【0041】
【化13】

【0042】
合成例1)と同様の方法にて3の合成を行ない、20.2gの3を得た。
【0043】
【化14】

【0044】
得られた3を用い、合成例1と同様にして化合物例[C−10]を6.6g得た。
【0045】
上記合成例で示されたように、本発明のジフタロイルピレン系化合物は、前記一般式(2)のピレン誘導体と一般式(3)の無水フタル酸誘導体を反応させる合成工程を経て合成することができる。
【0046】
次に、本発明のジフタロイルピレン系化合物を用いた電子写真感光体、光電変換素子、太陽電池、光センサーについて説明する。
【0047】
《電子写真感光体》
発生物質として用いる。これらの電荷発生物質を含有する有機感光体の構成について以下に記載する。
【0048】
本発明において、有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機感光体を全て含有する。
【0049】
本発明に係わる感光体の構成は、導電性支持体上に感光層として電荷発生層および電荷輸送層を順次積層した構成が好ましい。更に、導電性支持体と感光層の間に中間層を設けることが好ましく、また、必要により、感光層上にさらに表面保護層を形成した構成にしてもよい。
【0050】
以下に本発明に係わる有機感光体の層構成の好ましい具体例について記載する。
【0051】
導電性支持体
本発明に係わる感光体に用いられる導電性支持体としてはシート状或いは円筒状の導電性支持体が用いられる。
【0052】
円筒状の導電性支持体とは回転することによりエンドレスに画像を形成できるに必要な円筒状の支持体を意味し、円筒度が5〜40μmが好ましく、7〜30μmがより好ましい。
【0053】
この円筒度とは、JIS規格(B0621−1984)による。即ち、円筒基体を2つの同軸の幾何学的円筒で挟んだとき、同軸2円筒の間隔が最小となる位置の半径の差で表し、本発明では該半径の差をμmで表す。円筒度の測定方法は円筒状基体の両端10mmの2点、中心部、両端と中心部の間を3等分した点の4点、計7点の真円度を測定し求める。測定器は非接触万能ロール径測定機((株)ミツトヨ製)を用いて測定できる。
【0054】
導電性支持体の材料としてはアルミニウム、ニッケルなどの金属ドラム、又はアルミニウム、酸化錫、酸化インジュウムなどを蒸着したプラスチックドラム、又は導電性物質を塗布した紙・プラスチックドラムを使用することができる。導電性支持体としては常温で比抵抗103Ωcm以下が好ましい。
【0055】
本発明で用いられる導電性支持体は、その表面に封孔処理されたアルマイト膜が形成されたものを用いても良い。アルマイト処理は、通常例えばクロム酸、硫酸、シュウ酸、リン酸、硼酸、スルファミン酸等の酸性浴中で行われるが、硫酸中での陽極酸化処理が最も好ましい結果を与える。硫酸中での陽極酸化処理の場合、硫酸濃度は100〜200g/l、アルミニウムイオン濃度は1〜10g/l、液温は20℃前後、印加電圧は約20Vで行うのが好ましいが、これに限定されるものではない。又、陽極酸化被膜の平均膜厚は、通常20μm以下、特に10μm以下が好ましい。
【0056】
中間層
本発明においては導電性支持体と感光層の間に、中間層を設けることが好ましい。
【0057】
本発明に用いられる中間層にはN型半導性粒子を含有することが好ましい。該N型半導性粒子とは、主たる電荷キャリアが電子である粒子を意味する。すなわち、主たる電荷キャリアが電子であることから、該N型半導性粒子を絶縁性バインダーに含有させた中間層は、基体からのホール注入を効率的にブロックし、また、感光層からの電子に対してはブロッキング性が少ない性質を有する。N型半導性粒子としては、酸化チタン(TiO2)、酸化亜鉛(ZnO)が好ましく、特に酸化チタンが特に好ましく用いられる。
【0058】
N型半導性粒子は数平均一次粒子径が3.0〜200nmの範囲の微粒子を用いる。特に、5nm〜100nmが好ましい。数平均一次粒子径とは、微粒子を透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに100個の粒子を一次粒子として観察し、画像解析によってフェレ方向平均径としての測定値である。数平均一次粒径が3.0nm未満のN型半導性粒子は中間層バインダー中での均一な分散ができにくく、凝集粒子を形成しやすく、該凝集粒子が電荷トラップとなって転写メモリーが発生しやすい。一方、数平均一次粒径が200nmより大きいN型半導性粒子は中間層の表面に大きな凹凸を作りやすく、これらの大きな凹凸を通して画像ムラが発生しやすい。又、数平均一次粒径が200nmより大きいN型半導性粒子は分散液中で沈澱しやすく、凝集物が発生しやすく、その結果、画像ムラが発生しやすい。
【0059】
前記酸化チタン粒子は、結晶形としては、アナターゼ形、ルチル形、ブルッカイト形及びアモルファス形等があるが、中でもルチル形酸化チタン顔料又はアナターゼ形酸化チタン顔料は、中間層を通過する電荷の整流性を高め、即ち、電子の移動性を高め、帯電電位を安定させ、残留電位の増大を防止すると共に、高密度のドット画像を形成することができ、本発明に係わるN型半導性粒子として最も好ましい。
【0060】
本発明に用いられる中間層を形成するために作製する中間層塗布液は前記表面処理酸化チタン等のN型半導性粒子の他にバインダー樹脂、分散溶媒等から構成される。
【0061】
N型半導性粒子の中間層中での比率は、中間層のバインダー樹脂との体積比(バインダー樹脂の体積を1とすると)で1.0〜2.0倍が好ましい。中間層中でこのような高密度で本発明に係わるN型半導性粒子を用いることにより、中間層の整流性が高まり、膜厚を厚くしても残留電位の上昇や転写メモリーも発生せず、黒ポチを効果的に防止でき、電位変動が小さい良好な有機感光体を形成することができる。又、このような中間層はバインダー樹脂100体積部に対し、N型半導性粒子を100〜200体積部を用いることが好ましい。
【0062】
感光層
電荷発生層
本発明に係わる有機感光体には、電荷発生物質として前記一般式(1)のジフタロイルピレン系化合物を用いる。又、これらの顔料を他の顔料と併用して用いることができる。
【0063】
電荷発生層にCGMの分散媒としてバインダーを用いる場合、バインダーとしては公知の樹脂を用いることができるが、最も好ましい樹脂としてはホルマール樹脂、ブチラール樹脂、シリコーン樹脂、シリコーン変性ブチラール樹脂、フェノキシ樹脂等が挙げられる。バインダー樹脂と電荷発生物質との割合は、バインダー樹脂100質量部に対し20〜600質量部が好ましい。これらの樹脂を用いることにより、繰り返し使用に伴う残留電位増加を最も小さくできる。電荷発生層の膜厚は0.3μm〜2μmが好ましい。
【0064】
電荷輸送層
電荷輸送層には電荷輸送物質(CTM)及びCTMを分散し製膜するバインダー樹脂を含有する。その他の物質としては必要により酸化防止剤等の添加剤を含有しても良い。
【0065】
電荷輸送物質(CTM)としては350〜500nmの領域のレーザ光の吸収が小さく、且つ電荷輸送能が高い化合物が好ましい。又、本発明では電荷輸送層を複数の電荷輸送層から構成してもよい。
【0066】
電荷輸送層には電荷輸送物質(CTM)及びCTMを分散し製膜するバインダー樹脂を含有する。その他の物質としては必要により前記したフッ素系樹脂粒子の他に酸化防止剤等の添加剤を含有しても良い。
【0067】
電荷輸送物質(CTM)としては公知の正孔輸送性(P型)の電荷輸送物質(CTM)を用いることが好ましい。例えばトリフェニルアミン誘導体、ヒドラゾン化合物、スチリル化合物、ベンジジン化合物、ブタジエン化合物などを用いることができる。これら電荷輸送物質は通常、適当なバインダー樹脂中に溶解して層形成が行われる。特に、像露光のレーザ光の波長を吸収しない電荷輸送物質が好ましく用いられる。
【0068】
電荷輸送層(CTL)に用いられるバインダー樹脂としては熱可塑性樹脂、熱硬化性樹脂いずれの樹脂かを問わない。例えばポリスチレン、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、シリコーン樹脂、メラミン樹脂並びに、これらの樹脂の繰り返し単位構造のうちの2つ以上を含む共重合体樹脂。又これらの絶縁性樹脂の他、ポリ−N−ビニルカルバゾール等の高分子有機半導体が挙げられる。これらの中で吸水率が小さく、CTMの分散性、電子写真特性が良好なポリカーボネート樹脂が最も好ましい。
【0069】
バインダー樹脂と電荷輸送物質との割合は、バインダー樹脂100質量部に対し50〜200質量部が好ましい。又、電荷輸送層の合計膜厚は30μm以下が好ましく、10〜25μmがより好ましい。該膜厚が30μmを超えると、電荷輸送層内での、短波長レーザの吸収や散乱が大きくなり、鮮鋭性の低下や、残留電位の増加が発生しやすい。
【0070】
又、本発明に係わる感光体の表面層には酸化防止剤を含有させることが好ましい。表面層は感光体の帯電時の活性ガス、例えばNOxやオゾン等で酸化されやすく、画像ボケが発生しやすいが、酸化防止剤を共存させることにより、画像ボケの発生を防止することが出来る。該酸化防止剤とは、その代表的なものは有機感光体中ないしは有機感光体表面に存在する自動酸化性物質に対して、光、熱、放電等の条件下で酸素の作用を防止ないし、抑制する性質を有する物質である。代表的には下記の化合物群が挙げられる。
【0071】
又、本発明に係わる感光体の最上層には、含フッ素樹脂微粒子を含有させた構成が好ましい。再表面層に含フッ素樹脂微粒子を含有させることにより、感光体表面に形成されたトナー画像の記録紙等への転写性が向上し、ドット画像の再現性を向上させる。
【0072】
中間層、電荷発生層、電荷輸送層等の層形成に用いられる溶媒又は分散媒としては、n−ブチルアミン、ジエチルアミン、エチレンジアミン、イソプロパノールアミン、トリエタノールアミン、トリエチレンジアミン、N,N−ジメチルホルムアミド、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,2−ジクロロプロパン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、トリクロロエチレン、テトラクロロエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ等が挙げられる。本発明はこれらに限定されるものではないが、ジクロロメタン、1,2−ジクロロエタン、メチルエチルケトン等が好ましく用いられる。また、これらの溶媒は単独或いは2種以上の混合溶媒として用いることもできる。
【0073】
《光電変換素子》
本願発明の光電変換素子について、図1を用いて説明する。
【0074】
図1は、本発明の光電変換素子の構造の一例を示す部分断面図である。
【0075】
1は導電性支持体、2は感光層、3は電荷移動層、4は対向電極を表す。尚、導電性支持体1と感光層2をあわせて半導体電極ともいう。
【0076】
ここで、感光層2は本発明のジフタロイルピレン系化合物を光電変換材料として含有する層であり、電荷移動層3は通常、レドックス電解質が含有し、導電性支持体1、感光層2、対向電極4に接触した形態で用いられる。
【0077】
本発明の光電変換素子は、上記感光層2がpnヘテロ接合型の複層構造或いは色素増感型の単層構造を有することが好ましい。pn接合型の複層構造は、図1に示すような導電性支持体1上に、フタロシアニン顔料等のn型半導体層を設け、その上に本願発明のジフタロイルピレン系化合物顔料のp型半導体層を設けて感光層2を形成する。
【0078】
pn接合型の層構成は、p型或いはn型の顔料を溶媒と必要によりバインダー等の媒体中に分散させ、該分散により得られた分散液を塗布することにより形成することができる。又、該pn接合層を塗布後に燒結し、pn接合型燒結層を形成してもよい。
【0079】
n型半導体層に用いられる顔料としては、上記フタロシアニン顔料の他に、酸化チタン、酸化亜鉛等が挙げられる。
【0080】
上記p型又はn型半導体層の膜厚は、各々0.05〜1μmの範囲が好ましい。又、p又はnの各層に含有される顔料の含有率は各層毎に30質量%以上であることが好ましい。又、pn接合型光電変換素子の場合は、図1中の3の電荷移動層は不要であり、導電性支持体、感光層及び対抗電極で構成することが好ましい。
【0081】
一方、色素増感型の構造では、感光層を酸化チタン等の半導体層で形成し、該半導体層に本発明に係るジフタロイルピレン系化合物を吸着させることにより上記感光層2を色増感させて形成する。この色素増感型の場合は、ジフタロイルピレン系化合物を適切な溶媒に溶解し、導電性支持体1上に形成された半導体層をその溶液に浸漬することによって行われる。その際には半導体層は、焼成処理がなされていることが好ましい。焼成処理により、酸化チタン等の半導体材料がジフタロイルピレン系化合物を吸着しやすくなり、色増感効果が高まると思われる。又、半導体層は、あらかじめ減圧処理、また加熱処理により膜中の気泡を除去し、前記ジフタロイルピレン系化合物が半導体層内部深くに進入できるようにしておくことが好ましい。
【0082】
色素増感型の半導体層に用いられる半導体材料としては、前記酸化チタン(TiO2)以外に、SnO2、Fe23、WO3、ZnO、Nb25、CdS、ZnS、PbS、Bi23、CdSe、CdTe、GaP、InP、GaAs、CuInS2、CuInSe2、Ti34等が挙げられるが、好ましく用いられるのは、TiO2、ZnO、SnO2、Fe23、WO3、Nb25、CdS、PbSであり、好ましく用いられるのは、これらのうち金属酸化物もしくは金属硫化物半導体である。これらのうち更に好ましく用いられるのは、金属酸化物半導体であり、なかでもTiO2またはNb25であり、より好ましく用いられるのはTiO2である。
【0083】
上記感光層2を形成するに際し、ジフタロイルピレン系化合物或いは酸化チタン等の分散或いは溶解に用いられる溶媒としては、特に制限されないが、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、シクロヘキサノール、グリシドール、フルフリルアルコール、ベンジルアルコールなどのアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテートなどのグリコール誘導体類、o−キシレン、トルエン、シクロヘキサンなどの炭化水素、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、ブチロラクトンなどのエステル、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、メチル−n−ペンチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノンなどのケトンが挙げられる。
【0084】
色素増感型構造では、導電性支持体1上に感光層2を形成したら、該感光層2と向かい合うようにして対向電極4を配置する。さらに、半導体電極と対向電極4の間に電荷移動層であるレドックス電解質を注入して光電変換素子とする。
【0085】
《太陽電池》
本発明の太陽電池について説明する。
【0086】
本発明の太陽電池は、前記した本発明の光電変換素子の一態様として、太陽光に最適の設計並びに、回路設計が行われ、太陽光を光源として用いたときに最適な光電変換が行われるような構造を有する。即ち、光電変換材料用半導体に太陽光が照射されうる構造となっている。本発明の太陽電池を構成する際には、太陽電池構造全体を樹脂封止することが好ましい。
【0087】
本発明の太陽電池に太陽光または太陽光と同等の電磁波を照射すると、光電変換材料として本願発明のジフタロイルピレン系化合物を用いた光電変換素子は、照射された光もしくは電磁波を吸収して励起する。励起によって発生した電子又は正孔は、次いで導電性支持体1を経由して対向電極4に移動に移動する。このようにして電子が流れ、本発明の光電変換素子を用いた太陽電池を構成することができる。
【0088】
導電性支持体=支持体
本発明の光電変換素子や本発明の太陽電池に用いられる導電性支持体には、金属板のような導電性材料や、ガラス板やプラスチックフイルムのような非導電性材料に導電性物質を設けた構造のものを用いることができる。導電性支持体に用いられる材料の例としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム)あるいは導電性金属酸化物(例えばインジウム−スズ複合酸化物、酸化スズにフッ素をドープしたもの)や炭素を挙げることができる。導電性支持体の厚さは特に制約されないが、0.3mm〜5mmが好ましい。
【0089】
また導電性支持体は実質的に透明であることが好ましく、実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることがさらに好ましく、80%以上であることが最も好ましい。透明な導電性支持体を得るためには、ガラス板またはプラスチックフイルムの表面に、導電性金属酸化物からなる導電性層を設けることが好ましい。透明な導電性支持体1を用いる場合、光は支持体側から入射させることが好ましい。
【0090】
導電性支持体は表面抵抗は、50Ω/cm2以下であることが好ましく、10Ω/cm2以下であることがさらに好ましい。
【0091】
対向電極
本発明に用いられる対向電極について説明する。
【0092】
対向電極は、導電性を有するものであればよく、任意の導電性材料が用いられる。金電極、白金電極、導電材料表面に金又は白金蒸着を施したもの、ロジウム金属、ルテニウム金属、酸化ルテニウム、カーボン等が挙げられる。
【0093】
《光センサー》
本願発明の光センサーとしては、CCD、CMOS等の固体撮像システムを用いたデジタルカメラ用の光センサー等に用いることができる。光センサーの基本的構造は特開2003−234460号公報等に記されているように、光電変換膜(電磁波吸収/光電変換部位)と走査回路部(電荷転送/読み取り部位)が導電性材料によって、電気的に接続されている構造を有しているが、本願発明の光センサーは光電変換膜に前記ジフタロイルピレン系化合物を光電変換材料として用い青又は緑色部の光電変換効率を改善できる材料として用いられる。
【0094】
光センサーの光電変換膜はほぼ前記した光電変換素子と同様の構造で構成できる。但し、光が直接入射されない側の対向電極には不透明の導電性支持体が好ましい。このような支持体としてはアルミニウムや銅の金属支持体やこれらの金属で表面加工されたシート等が好ましく用いられる。
【0095】
これらの光導電膜は赤や緑の長波長感度を有する他の光電変換膜と積層し、白色或いはフルカラーに対応した光電変換膜を形成してもよい。
【0096】
そして、これらの光電変換膜は、走査回路部上に電気的に接続され、光センサーを構成することができる。
【0097】
走査回路部は、半導体基板上にMOSトランジスタが各画素単位に形成された構成や、あるいは、撮像素子としてCCDを有する構成を適宜採用することができる。
【0098】
例えばMOSトランジスタを用いた固体撮像素子の場合、電極を透過した入射光によって光導電膜の中に電荷が発生し、電極に電圧を印加することにより電極と電極との間に生じる電界によって電荷が光導電膜の中を電極まで走行し、さらにMOSトランジスタの電荷蓄積部まで移動し、電荷蓄積部に電荷が蓄積される。電荷蓄積部に蓄積された電荷は、MOSトランジスタのスイッチングにより電荷読出し部に移動し、さらに電気信号として出力される。これにより、フルカラーの画像信号が、信号処理部を含む固体撮像装置に入力される。
【実施例】
【0099】
以下、実施例をあげて本発明を詳細に説明するが、本発明の様態はこれに限定されない。尚、下記文中「部」とは「質量部」を表す。
(実施例1)
感光体1の作製
下記の様に感光体1を作製した。
【0100】
円筒形アルミニウム支持体の表面を切削加工し、十点表面粗さRz=1.5(μm)の導電性支持体を用意した。
〈中間層〉
中間層1
上記導電性支持体上に、下記中間層塗布液を浸漬塗布法で塗布し、120℃30分で乾燥し、乾燥膜厚1.0μmの中間層1を形成した。
【0101】
下記中間層分散液を同じ混合溶媒にて二倍に希釈し、一夜静置後に濾過(フィルター;日本ポール社製リジメッシュフィルター公称濾過精度:5ミクロン、圧力;50kPa)し、中間層塗布液を作製した。
【0102】
(中間層分散液の作製)
バインダー樹脂:(例示ポリアミドN−1) 1部(1.00体積部)
N型半導性粒子:ルチル形酸化チタンA1(一次粒径35nm;メチルハイドロジェンシロキサンとジメチルシロキサンの共重合体(モル比1:1)を用い、酸化チタン全質量の5質量%の量で表面処理したもの) 3.5部(1.0体積部)
エタノール/n−プロピルアルコール/THF(=45/20/30質量比)10部
上記成分を混合し、サンドミル分散機を用い、10時間、バッチ式にて分散して、中間層分散液を作製した。
【0103】
〈電荷発生層:CGL〉
電荷発生物質(CGM):前記C−1 24部
ポリビニルブチラール樹脂「エスレックBL−1」(積水化学社製) 12部
2−ブタノン/シクロヘキサノン=4/1(v/v) 300部
上記組成物を混合し、サンドミルを用いて分散し、電荷発生層塗布液を調製した。この塗布液を浸漬塗布法で塗布し、前記中間層の上に乾燥膜厚0.5μmの電荷発生層を形成した。
【0104】
〈電荷輸送層(CTL)〉
電荷輸送物質(CTM):下記CTM−1 225部
ポリカーボネート(Z300:三菱ガス化学社製) 300部
酸化防止剤(下記AO) 6部
THF/トルエン混合液(体積比3/1混合) 2000部
シリコンオイル(KF−54:信越化学社製) 1部
を混合し、溶解して電荷輸送層塗布液1を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、110℃70分の乾燥を行い、乾燥膜厚20.0μmの電荷輸送層1を形成し、感光体1を作製した。
【0105】
【化15】

【0106】
感光体2〜8の作製
感光体1のCGMをC−1から表1に記載の例示化合物に変更した以外は感光体1と同様にし、感光体2〜8を作製した。
【0107】
感光体9の作製(比較例感光体)
感光体1のC−1を下記C−R(多環キノン顔料)に変更した以外は感光体1と同様にし、感光体9を作製した。
【0108】
【化16】

【0109】
《評価1》
このようにして作成した電子写真感光体を、静電複写紙試験装置(川口電機製:EPA−8100)を用いて、以下のように評価した。
【0110】
(感度)
感光体の表面電位を−700Vになるようにコロナ帯電器で帯電し、次いでモノクロメータで分離した400nmの単色光で露光し、表面電位が−350Vまで減衰するのに必要な光量を測定し、感度(E1/2)を求めた。
【0111】
同様に、450nm、500nmの単色光における感度を測定した。
【0112】
(繰り返し特性)
次に初期暗部電位(Vd)及び初期明部電位(Vl)をそれぞれ−700V、−200V付近に設定し、450nmの単色光を用いて帯電、露光を3000回繰り返し、Vd、Vlの変動量(ΔVd、ΔVl)を測定した。
【0113】
以上の結果を表1に示す。
【0114】
尚、以下表中のマイナス記号は電位の低下を表し、プラス記号は電位の上昇を表す。
【0115】
(画像評価)
評価機としてコニカ社製デジタル複写機Konica7085改造機(像露光光源に450nmの半導体レーザを使用、ビーム径30μmで、1200dpiの露光を行い、プロセス速度は500mm/secに改造)を用い、該複写機に感光体1〜9を搭載し評価した。評価項目と評価基準を下記に示す。
【0116】
1ドットラインの評価
白地のA4紙に1ドットラインと黒べた画像を作製し、下記の基準で評価した。
【0117】
◎:1ドットラインが連続して再現されており、黒べたの画像濃度が1.2以上(良好 )
○:1ドットラインは連続して再現されているが、黒べたの画像濃度が1.2未満〜1 .0以上(実用性に問題なし)
×:1ドットラインが切断されて再現されているか、又は1ドットラインが連続して再 現されていても、黒べたの画像濃度が1.0未満(実用性に問題有り)
2ドットラインの評価
べた黒の画像の中に、2ドットラインの白線を作製し、下記の基準で評価した。
【0118】
◎:2ドットラインの白線が連続して再現されており、黒べたの画像濃度が1.2以上 (良好)
○:2ドットラインの白線は連続して再現されているが、黒べたの画像濃度が1.2未 満〜1.0以上(実用性に問題なし)
×:2ドットラインの白線が切断されて再現されているか、又は2ドットラインの白線 は連続して再現されていても、黒べたの画像濃度が1.0未満(実用性に問題有り )
上記のべた画像濃度は、マクベス社製RD−918を使用して測定。紙の反射濃度を「0」とした相対反射濃度で測定した。結果は表1に示した。
【0119】
【表1】

【0120】
表1より明らかなように、一般式(1)のジフタロイルピレン系化合物を電荷発生物質を用いた有機感光体1〜8は、短波長レーザ光等の400〜500nmの照射光に対して、優れた感度特性及び繰り返し特性を有し、450nmの短波長レーザ光を用いての画像評価においても1ドットライン及び2ドットラインの再現性が優れている。一方、比較例の多環キノン化合物を電荷発生物質に用いた感光体9は、感度及び繰り返し特性の評価においても、本発明の感光体1〜8に比し相対的に劣っており、画像評価においても1ドットラインの再現性の劣化が大きい。
【0121】
(実施例2)
《光電変換素子101の作製》
フッ素をドープした酸化スズをコートした透明導電性ガラス板上(導電性支持体1)に膜厚0.4μmのチタニルフタロシアニン層を蒸着により形成した。このチタニルフタロシアニン層(N層)の上に、膜厚0.5μmのジフタロイルピレン層(P層)を蒸着により形成し、更にその上に、対向電極4として、膜厚1μmの金層を蒸着で形成し、PN接合型の光電変換素子101を作製した。
【0122】
《光電変換素子102〜108の作製》:本発明
光電変換素子101の作製において、ジフタロイルピレン(C−1)を表2に記載のそれぞれの例示化合物に変更した以外は同様にして、光電変換素子102〜108を得た。
【0123】
《光電変換素子R1の作製》:比較例
光電変換素子101の作製において、ジフタロイルピレン(C−1)を表2に記載の前記比較化合物C−Rに変更した以外は同様にして、光電変換素子R1を得た。
【0124】
【表2】

【0125】
(実施例3)
《太陽電池SC−101〜SC−108及びSC−R1の作製》:本発明
光電変換素子101〜108及びR1の側面を樹脂で封入した後、リード線を取り付けて、本発明の太陽電池SC−101〜SC−108及びSCR1を各々3ロットずつ作製した。
【0126】
《太陽電池SC−R1の作製》:比較例
上記の太陽電池SC−1の作製において、比較の光電変換素子R1を用いた以外は同様にして、太陽電池SC−R1を3ロットずつ作製した。
【0127】
《太陽電池の光電変換効率の評価》
上記で得られた太陽電池SC−101〜SC−108、及び太陽電池SC−R1の各々にソーラーシミュレーター(JASCO(日本分光)製、低エネルギー分光感度測定装置CEP−25)により100mW/m2の強度の光を照射した時の光電変換効率を測定し表1に示した。示した値は、同じ構成および作製方法の太陽電池3つについての測定結果の平均値とした。
【0128】
光電変換効率(エネルギー変換効率)の評価
上述の太陽電池SC−101〜SC−108、SC−R1について、それぞれの光電変換効率(エネルギー変換効率η)を評価すべく試験を行った。この評価試験は、ソーラーシミュレータ(ワコム電創株式会社製、商品名;「WXS−85−H型」)を用い、AMフィルター(AM−1.5)を通したキセノンランプから100mW/cm2の疑似太陽光を照射することにより以下の手順で行った。
【0129】
完成直後の各太陽電池について、I−Vテスターを用いて、室温にて電流−電圧特性を測定し、短絡電流(Jsc)、開放電圧(Voc)、及び曲線因子(F.F.)を求め、これらから光電変換効率(η(%))を求めた。なお、太陽電池の光電変換効率(η(%))は、下記式(A)に基づいて算出した。
【0130】
η=100×(Voc×Jsc×F.F.)/P・・・(A)
ここで、Pは入射光強度[mW/cm-2]、Vocは開放電圧[V]、Jscは短絡電流密度[mA・cm-2]、F.F.は曲線因子を示す。これによって得た光電変換効率の結果を表3に示す。
【0131】
【表3】

【0132】
表3より、本発明の太陽電池SC−101〜SC−108は高い光電変換特性を示し、前記一般式(1)のジフタロイルピレン系化合物を太陽電池の光変換材料として用いることが有効であることを示している。一方、比較例の太陽電池SC−R1は光電変換効率は、本発明の太陽電池に比し著しく低いことが確認される。また、且つ、本発明の太陽電池SC−101〜SC−108は、ソーラーシミュレーターによる100mW/m2の光照射100時間を経ても光電変換効率の低下が認められず、安定性に優れていることを確認した。
(実施例4)
《光センサーの動作確認》:本発明
前記光電変換素子101〜108及びR1(対応する光サンサーNo.をLC−101〜LC−108及びLC−R1とした)を用いて、光センサーとしての動作を以下の要領で確認した。
【0133】
これらの光センサーLC−101〜LC−108及びLC−R1の光照射による電流変化を評価することにより、光センサーとしての有用性を評価した。
【0134】
評価は、これら光センサーの両端に10Vの印加電圧をかけた状態で、キセノンランプ(浜松ホトニクス社製L2274)の光源に、青のフィルターを通して得られる青色光を、201uxの強度で照射した。照射光強度を照度計(ミノルタ社製)で測定した。使用したフィルターの特性は400〜500nmの平均透過率が80%以上の特性を有しているものである。
【0135】
光照射の開始開始時間から2.0秒後の定常電流を測定し、光照射前の定常電流に対する電流値の増加倍率(開始開始時間から2.0秒後の定常電流/光照射前の定常電流)を計算して、各光センサーの評価を行った。その結果を表4に示す。
【0136】
【表4】

【0137】
表4より、光センサーLC−101〜LC−108の電流値の増加率は、比較例の光センサーLC−R1に比し、優れて高いことが見られる。
【図面の簡単な説明】
【0138】
【図1】本発明の光電変換素子の構造の一例を示す部分断面図である。
【符号の説明】
【0139】
1 導電性支持体
2 感光層
3 電荷移動層
4 対向電極

【特許請求の範囲】
【請求項1】
下記一般式(1)で表されることを特徴とするジフタロイルピレン系化合物。
【化1】

(一般式(1)中、X1及びX2はアルキル基、アルコシキ基、アリール基、ハロゲン原子、ニトロ基、シアノ基を表し、同時に2個以上置換して環構造を形成してもよい。又、X1及びX2は同じでも異なってもよい。R1〜R6は、水素原子、アルキル基、アルコシキ基、アリール基、ハロゲン原子、ニトロ基、シアノ基を表す。nは1〜4の整数を表す。)
【請求項2】
下記一般式(2)で表されるピレン誘導体と一般式(3)で表される無水フタル酸誘導体を反応させて得られることを特徴とする請求項1に記載のジフタロイルピレン系化合物の製造方法。
【化2】

(一般式(2)中、R1〜R6は、水素原子、アルキル基、アルコシキ基、アリール基、ハロゲン原子、ニトロ基、シアノ基を表す。)
【化3】

(一般式(3)中、X3は水素原子、アルキル基、アルコシキ基、アリール基、ハロゲン原子、ニトロ基、シアノ基を表し、同時に2個以上置換して環構造を形成してもよい。nは1〜4の整数を表す。)
【請求項3】
請求項1に記載のジフタロイルピレン系化合物を電荷発生物質として含有することを特徴とする電子写真感光体。
【請求項4】
請求項1に記載のジフタロイルピレン系化合物を光電変換材料として含有することを特徴とする光電変換素子。
【請求項5】
請求項1に記載のジフタロイルピレン系化合物を光電変換材料として含有することを特徴とする太陽電池。
【請求項6】
請求項1に記載のジフタロイルピレン系化合物を光電変換材料として含有することを特徴とする光センサー。

【図1】
image rotate


【公開番号】特開2008−74813(P2008−74813A)
【公開日】平成20年4月3日(2008.4.3)
【国際特許分類】
【出願番号】特願2006−258641(P2006−258641)
【出願日】平成18年9月25日(2006.9.25)
【出願人】(303000372)コニカミノルタビジネステクノロジーズ株式会社 (12,802)
【Fターム(参考)】