説明

パターン検査装置及びパターン検査方法

【目的】より高精度に光軸調整がなされたレーザ光で検査可能なパターン検査装置を提供する。
【構成】パターン検査装置100は第1から第4象限の面で独立に受光するフォトダイオードアレイ212が受光したレーザ光の光量を用いて、レーザ光と供に発生するノイズ成分光の発生方向を特定するノイズ方向特定回路128と、レーザ光の光量を用いて、ノイズ成分光の光量を演算するノイズ光量演算回路130と、ノイズ成分光の発生方向の重心値の絶対値がノイズ成分光の光量をレーザ光の総光量で除した値になり、ノイズ成分光の発生方向と直交する方向の重心値が0になるように、ミラー202,204の反射面の位置を制御するミラー制御部121,122と、光軸が調整されたレーザ光を用いて、被検査試料のパターンの光学画像を取得する光学画像取得部150と、参照画像を入力し、光学画像と参照画像とを比較する比較回路108と、を備えたことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、パターン検査装置及びパターン検査方法に係り、例えば、光源からのレーザ光の光軸を調整し、調整されたレーザ光で半導体製造に用いる試料となる物体のパターン欠陥を検査するパターン検査装置およびその方法に関する。
【0002】
近年、大規模集積回路(LSI)の高集積化及び大容量化に伴い、半導体素子に要求される回路線幅はますます狭くなってきている。これらの半導体素子は、回路パターンが形成された原画パターン(マスク或いはレチクルともいう。以下、マスクと総称する)を用いて、いわゆるステッパと呼ばれる縮小投影露光装置でウェハ上にパターンを露光転写して回路形成することにより製造される。よって、かかる微細な回路パターンをウェハに転写するためのマスクの製造には、微細な回路パターンを描画することができるパターン描画装置を用いる。かかるパターン描画装置を用いてウェハに直接パターン回路を描画することもある。例えば、電子ビームやレーザビームを用いて描画される。
【0003】
そして、多大な製造コストのかかるLSIの製造にとって、歩留まりの向上は欠かせない。しかし、1ギガビット級のDRAM(ランダムアクセスメモリ)に代表されるように、LSIを構成するパターンは、サブミクロンからナノメータのオーダーになろうとしている。歩留まりを低下させる大きな要因の一つとして、半導体ウェハ上に超微細パターンをフォトリソグラフィ技術で露光、転写する際に使用されるマスクのパターン欠陥があげられる。近年、半導体ウェハ上に形成されるLSIパターン寸法の微細化に伴って、パターン欠陥として検出しなければならない寸法も極めて小さいものとなっている。そのため、LSI製造に使用される転写用マスクの欠陥を検査するパターン検査装置の高精度化が必要とされている。
【0004】
一方、マルチメディア化の進展に伴い、LCD(Liquid Crystal Display:液晶ディスプレイ)は、500mm×600mm、またはこれ以上への液晶基板サイズの大型化と、液晶基板上に形成されるTFT(Thin Film Transistor:薄膜トランジスタ)等のパターンの微細化が進んでいる。従って、極めて小さいパターン欠陥を広範囲に検査することが要求されるようになってきている。このため、このような大面積LCDのパターン及び大面積LCDを製作する時に用いられるフォトマスクの欠陥を短時間で、効率的に検査するパターン検査装置の開発も急務となってきている。
【0005】
マスクパターンの微細化・高集積化に伴い、検査装置は高い分解能が要求され、検査装置の照明光の波長も短いものとなっている。例えば、266nm以下の深紫外光が用いられる。そして、かかる照明光となるレーザ光をレーザ光源装置から発振している。そして、かかるレーザ光の光軸を調整して検査装置内部へと照明している。例えば、面受光素子でレーザ光を受光し、レーザ光の形状を判別して、レーザ光の形状の対称性を利用して光軸を調整する手法が考案されている(例えば、特許文献1参照)。
【0006】
しかしながら、かかるレーザ光源から発生するレーザ光には、本来使用したいメインのレーザ光以外に、ノイズ成分光が一緒に発生する場合があり、かかるノイズ成分光によって、使用したい本来のレーザ光の光軸調整に誤差が生じてしまうといった問題があった。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2005−259833号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
上述したように、従来、レーザ光源から発生するレーザ光と一緒に発生するノイズ成分光によって、使用したい本来のレーザ光の光軸調整に誤差が生じてしまうといった問題があった。
【0009】
そこで、本発明は、上述した問題点を克服し、より高精度に光軸調整がなされたレーザ光で検査可能なパターン検査装置および方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明の一態様のパターン検査装置は、
レーザ光を発生する光源と、
レーザ光を順に反射して、レーザ光の光軸を調整する、それぞれ反射面の位置を変更可能な第1と第2のミラーと、
第1と第2のミラーで反射されたレーザ光の一部を分岐するハーフミラーと、
ハーフミラーで分岐されなかった残りのレーザ光を、パターンが形成された被検査試料に照明する照明光学系と、
照明光学系と共役な位置に配置され、ハーフミラーで分岐されたレーザ光の一部を第1から第4象限の面で独立に受光する、第1の受光部と、
第2のミラーと共役な位置に配置され、ハーフミラーで分岐された前記レーザ光の一部を第1から第4象限の面で独立に受光する、第2の受光部と、
第1と第2の受光部の少なくとも1つが受光したレーザ光の光量を用いて、光源からレーザ光と供に発生するノイズ成分光の発生方向を特定するノイズ成分方向特定部と、
第1と第2の受光部の少なくとも1つが受光したレーザ光の光量を用いて、ノイズ成分光の光量を演算するノイズ成分光量演算部と、
第1と第2の受光部が受光した各レーザ光の重心をそれぞれ演算する重心演算部と、
ノイズ成分光の発生方向の重心値の絶対値がノイズ成分光の光量を第1の受光部で受光したレーザ光の総光量で除した値になり、ノイズ成分光の発生方向と直交する方向の重心値が0になるように、第1のミラーの反射面の位置を制御する第1のミラー制御部と、
ノイズ成分光の発生方向の重心値の絶対値がノイズ成分光の光量を第2の受光部で受光したレーザ光の総光量で除した値になり、ノイズ成分光の発生方向と直交する方向の重心値が0になるように、第2のミラーの反射面の位置を制御する第2のミラー制御部と、
第1と第2のミラーによって、光軸が調整されたレーザ光を用いて、被検査試料のパターンの光学画像を取得する光学画像取得部と、
参照画像を入力し、光学画像と参照画像とを比較する比較部と、
を備えたことを特徴とする。
【0011】
また、レーザ光のx方向の重心は、第1と第4象限面で受光した各光量の和から第2と第3象限面で受光した各光量の和を引いた値を第1から第4象限面で受光した各光量の総光量で除した値で定義され、
レーザ光のy方向の重心は、第3と第4象限面で受光した各光量の和から第1と第2象限面で受光した各光量の和を引いた値を第1から第4象限面で受光した各光量の総光量で除した値で定義されると好適である。
【0012】
また、ノイズ成分方向特定部は、第1と第2のミラーの少なくとも1つを複数の位置に移動させることで得られる移動方向におけるレーザ光の光量変化を用いて、ノイズ成分光の発生方向を特定するように構成すると好適である。
【0013】
また、ノイズ成分方向特定部は、第1と第2のミラーの少なくとも1つを複数の位置に移動させることで得られる移動方向におけるレーザ光の光量変化を用いて、ノイズ成分光の光量を演算すると好適である。
【0014】
本発明の一態様のパターン検査方法は、
光源からレーザ光を発生する工程と、
それぞれ反射面の位置を変更可能な第1と第2のミラーの少なくとも1つを複数の位置に移動させながら第1と第2のミラーでレーザ光を順に反射し、パターンが形成された被検査試料に照明する照明光学系と共役な位置に配置された第1の受光部により、第1と第2のミラーで反射されたレーザ光の一部を第1から第4象限の面で独立に受光する工程と、
第1と第2のミラーの少なくとも1つを複数の位置に移動させながら第1と第2のミラーでレーザ光を順に反射し、第2のミラーと共役な位置に配置された第2の受光部により、第1と第2のミラーで反射されたレーザ光の一部を第1から第4象限の面で独立に受光する工程と、
第1と第2の受光部の少なくとも1つが受光したレーザ光の光量を用いて、光源からレーザ光と供に発生するノイズ成分光の発生方向を特定する工程と、
第1と第2の受光部の少なくとも1つが受光したレーザ光の光量を用いて、ノイズ成分光の光量を演算する工程と、
第1と第2の受光部が受光した各レーザ光の重心をそれぞれ演算する工程と、
ノイズ成分光の発生方向の重心値の絶対値がノイズ成分光の光量を第1の受光部で受光したレーザ光の総光量で除した値になり、ノイズ成分光の発生方向と直交する方向の重心値が0になるように、第1のミラーの反射面の位置を制御する工程と、
ノイズ成分光の発生方向の重心値の絶対値がノイズ成分光の光量を第2の受光部で受光したレーザ光の総光量で除した値になり、ノイズ成分光の発生方向と直交する方向の重心値が0になるように、第2のミラーの反射面の位置を制御する工程と、
第1と第2のミラーによって、光軸が調整された前記レーザ光を用いて、被検査試料のパターンの光学画像を取得する工程と、
参照画像を入力し、光学画像と参照画像とを比較する工程と、
を備えたことを特徴とする。
【発明の効果】
【0015】
本発明によれば、ノイズ成分光を除いてレーザ光の光軸を調整できる。よって、かかる光軸が調整されたレーザ光を照明光として用いてパターン検査を行うことで高精度な検査ができる。
【図面の簡単な説明】
【0016】
【図1】実施の形態1におけるパターン検査装置の一部の構成を示す概念図である。
【図2】実施の形態1におけるパターン検査装置の残りの構成を示す概念図である。
【図3】実施の形態1におけるレーザ光のビームプロファイルの一例を示す図である。
【図4】実施の形態1におけるパターン検査方法の要部工程を示すフローチャート図である。
【図5】実施の形態1におけるレーザ光をy方向にスキャンさせた場合のフォトダイオードアレイ上の像の一例を示す概念図である。
【図6】実施の形態1におけるレーザ光をx方向にスキャンさせた場合のフォトダイオードアレイ上の像の一例を示す概念図である。
【図7】実施の形態1におけるフォトダイオードアレイで測定される総光量で示すビームプロファイルの一例を示す図である。
【図8】実施の形態1におけるレーザ光をx方向にスキャンさせた場合のフォトダイオードアレイ上の像の他の一例を示す概念図である。
【図9】実施の形態1におけるレーザ光をy方向にスキャンさせた場合のフォトダイオードアレイ上の像の他の一例を示す概念図である。
【図10】実施の形態1における光学画像の取得手順を説明するための図である。
【図11】別の光学画像取得手法を説明するための図である。
【発明を実施するための形態】
【0017】
実施の形態1.
図1は、実施の形態1におけるパターン検査装置の一部の構成を示す概念図である。図2は、実施の形態1におけるパターン検査装置の残りの構成を示す概念図である。図1,2において、マスク等の基板を試料として、かかる試料の欠陥を検査するパターン検査装置100は、光源103と光軸調整部172と照明光学系170と光学画像取得部150と制御回路160を備えている。光軸調整部172は、ミラー202,204、ハーフミラー230,232、ミラー234、駆動機構222,224、及びフォトダイオードアレイ212,214を備えている。光学画像取得部150は、XYθテーブル102、拡大光学系104、フォトダイオードアレイ105、センサ回路106、レーザ測長システム122、及びオートローダ130を備えている。制御回路160では、コンピュータとなる制御計算機110が、データ伝送路となるバス120を介して、位置回路107、比較部の一例となる比較回路108、展開回路111、参照回路112、オートローダ制御回路113、テーブル制御回路114、記憶装置の一例となる磁気ディスク装置109、磁気テープ装置115、フレキシブルディスク装置(FD)116、CRT117、パターンモニタ118、プリンタ119、ミラー制御回路121,122、測定回路124,126、記憶装置の一例となる磁気ディスク装置140、ノイズ方向特定回路128、ノイズ光量演算回路130、重心演算回路132、判定回路134、及び、光軸調整回路136に接続されている。
【0018】
また、フォトダイオードアレイ212の入射面は、照明光学系170への入射面と共役な関係となる位置に配置される。フォトダイオードアレイ214の入射面は、ミラー204の反射面と共役な関係となる位置に配置される。具体的には、レーザ光源103から発生したレーザ光は、ミラー202で反射され、続いてミラー204で反射される。反射されたレーザ光は、ハーフミラー230で一部が分岐され、残りが照明光学系170へと入射される。ハーフミラー230で分岐されたレーザ光の一部の光線は、さらに、ハーフミラー232で分岐され、一部の光線がフォトダイオードアレイ214で受光される。ハーフミラー232を通過した残りの光線はミラー234で反射され、フォトダイオードアレイ212で受光される。また、ミラー202の反射面は、サーボモータ等を用いた駆動機構222によって例えば2軸方向に移動させられるように構成される。同様に、ミラー204の反射面は、サーボモータ等を用いた駆動機構224によって例えば2軸方向に移動させられるように構成される。ミラー202,204の反射面の位置を制御することで、照明光学系170に入射するレーザ光の光軸がずれないように調整する。
【0019】
また、XYθテーブル102は、X軸モータ、Y軸モータ、θ軸モータにより駆動される。図1,2では、本実施の形態1を説明する上で必要な構成部分について記載している。パターン検査装置100にとって、通常、必要なその他の構成が含まれても構わないことは言うまでもない。
【0020】
図3は、実施の形態1におけるレーザ光のビームプロファイルの一例を示す図である。図3において、縦軸は光強度、横軸は位置を示している。光源103から発生するレーザ光には、本来使用したいメインのレーザ光20以外に、ノイズ成分光10が一緒に発生する場合がある。レーザ光20とノイズ成分光10を区別せずに光軸を調整しようとすると、レーザ光20とノイズ成分光10の合成光の重心を光軸に合わせる結果となってしまう。そのため、本来使用したいレーザ光20の重心が光軸からずれてしまい、以降の光学系に入射した際にレーザ光20の一部が照明に使用されなくなってしまう(或いは、光がけられてしまうともいう)。その結果、光量のロスが生じる。そこで、実施の形態1では、かかるノイズ成分光10の発生方向と光量を特定し、ノイズ成分光10を除いた本来使用したいレーザ光20の重心を光軸に調整する。
【0021】
図4は、実施の形態1におけるパターン検査方法の要部工程を示すフローチャート図である。図4において、y方向走査(スキャン)工程(S102)と、光量測定工程(S104)と、x方向走査(スキャン)工程(S106)と、光量測定工程(S108)と、ノイズ光方向特定工程(S114)と、ノイズ光量演算工程(S116)と、重心演算工程(S118)と、判定工程(S120)と、光軸調整工程(S122)と、パターン検査工程(S130)といった一連の工程を実施する。図4では、y方向走査(スキャン)工程(S102)及び光量測定工程(S104)の組を実施した後、x方向走査(スキャン)工程(S106)及び光量測定工程(S108)の組を実施しているが、これに限るものではない。y方向走査(スキャン)工程(S102)及び光量測定工程(S104)の組と、x方向走査(スキャン)工程(S106)及び光量測定工程(S108)の組は、どちらを先におこなっても構わない。また、ノイズ光方向特定工程(S114)とノイズ光量演算工程(S116)についても順序はどちらが先でもよい。
【0022】
y方向走査(スキャン)工程(S102)として、光源103からレーザ光を発生させる。そして、光軸調整回路136は、それぞれ反射面の位置を変更可能なミラー202,204の少なくとも1つをy方向に向かって複数の位置に移動させながらミラー202,204でレーザ光を順に反射し、レーザ光をフォトダイオードアレイ212,214の受光面上を走査させる。
【0023】
図5は、実施の形態1におけるレーザ光をy方向にスキャンさせた場合のフォトダイオードアレイ上の像の一例を示す概念図である。図5では、例えば、レーザ光20に対して、y方向にノイズ成分光10が発生している場合を示している。ここで、フォトダイオードアレイ212(第1の受光部の一例)は、縦横2×2の配列で4つの受光素子30,32,34,36が並ぶように構成される。4つの受光素子30,32,34,36は、第1から第4象限の面で独立に光を受光する。そして、受光素子30は、フォトダイオードアレイ212の中心を基準位置(x,y=0)として、−x,+yの正の領域(第2象限:Aで示す領域)の面に入射する光の光量を受光する。受光素子32は、−x,−yの正の領域(第3象限:Bで示す領域)の面に入射する光の光量を受光する。受光素子34は、+x,+yの正の領域(第1象限:Cで示す領域)の面に入射する光の光量を受光する。受光素子36は、+x,−yの正の領域(第4象限:Dで示す領域)の面に入射する光の光量を受光する。同様に、フォトダイオードアレイ214(第2の受光部の一例)は、縦横2×2の配列で4つの受光素子40,42,44,46が並ぶように構成される。4つの受光素子40,42,44,46は、第1から第4象限の面で独立に光を受光する。そして、受光素子40は、フォトダイオードアレイ212の中心を基準位置(x,y=0)として、−x,+yの正の領域(第2象限:Aで示す領域)の面に入射する光の光量を受光する。受光素子42は、−x,−yの正の領域(第3象限:Bで示す領域)の面に入射する光の光量を受光する。受光素子44は、+x,+yの正の領域(第1象限:Cで示す領域)の面に入射する光の光量を受光する。受光素子46は、+x,−yの正の領域(第4象限:Dで示す領域)の面に入射する光の光量を受光する。
【0024】
ここでは、フォトダイオードアレイ212について、4つのフォトダイオードを受光素子30,32,34,36として組み合わせているが、これに限るものではなく、受光面を4分割した領域で独立に光量を計測できる受光機構であれば構わない。フォトダイオードアレイ214についても同様である。
【0025】
光軸調整回路136は、例えば、ミラー制御回路121を制御して、駆動機構224にミラー204の反射面の位置を移動させる。その際、まずは、光源103から発生した光(レーザ光20とノイズ成分光10の両方)が例えばフォトダイオードアレイ212で全く検出できない−y方向の位置から順にy方向に向かって光が移動するように走査する。或いは+y方向の位置から順に−y方向に向かって光が移動するように走査してもよい。例えば、y方向に向かって複数の位置にステップ送りするように走査する。これにより、光源103から発生した光(レーザ光20とノイズ成分光10の両方)が、全く検知されない位置から、順に、ノイズ成分光10だけが受光素子32,36(B,D)で光量が検出される。続いて、ノイズ成分光10とレーザ光20の両方が受光素子32,36(B,D)で光量が検出される。続いて、ノイズ成分光10だけが受光素子30,34(A,C)で光量が検出され、レーザ光20だけが受光素子32,36(B,D)で光量が検出される。続いて、ノイズ成分光10とレーザ光20の一部が受光素子30,34(A,C)で光量が検出され、レーザ光20の残部が受光素子32,36(B,D)で光量が検出される。続いて、ノイズ成分光10とレーザ光20の両方が受光素子30,34(A,C)で光量が検出される。続いて、レーザ光20だけが受光素子30,34(A,C)で光量が検出される。そして、最後にレーザ光20とノイズ成分光10の両方が、全く検知されなくなる。フォトダイオードアレイ212の代わりにフォトダイオードアレイ214であっても同様である。
【0026】
光量測定工程(S104)として、測定回路126は、受光素子30,32,34,36を使ってy方向に走査された各位置での光量を測定する。具体的には、受光素子30,32,34,36は、y方向に走査された各位置での光をそれぞれ受光し、受光した光量を光電変換して、測定回路126に出力する。そして、光軸調整回路136は、測定回路126で測定された各位置での光量をミラー202の反射面の位置と相対させて記憶装置140に格納する。同様に、測定回路124は、受光素子40,42,44,46を使ってy方向に走査された各位置での光量を測定する。具体的には、受光素子40,42,44,46は、y方向に走査された各位置での光をそれぞれ受光し、受光した光量を光電変換して、測定回路124に出力する。そして、光軸調整回路136は、測定回路124で測定された各位置での光量をミラー202の反射面の位置と相対させて記憶装置140に格納する。
【0027】
次に、x方向走査(スキャン)工程(S106)として、光軸調整回路136は、それぞれ反射面の位置を変更可能なミラー202,204の少なくとも1つをx方向に向かって複数の位置に移動させながらミラー202,204でレーザ光を順に反射し、レーザ光をフォトダイオードアレイ212,214の受光面上を走査させる。
【0028】
図6は、実施の形態1におけるレーザ光をx方向にスキャンさせた場合のフォトダイオードアレイ上の像の一例を示す概念図である。図6では、図5と同様、例えば、レーザ光20に対して、y方向にノイズ成分光10が発生している場合を示している。
【0029】
光軸調整回路136は、例えば、ミラー制御回路121を制御して、駆動機構224にミラー204の反射面の位置を移動させる。その際、まずは、光源103から発生した光(レーザ光20とノイズ成分光10の両方)が例えばフォトダイオードアレイ212で全く検出できない−x方向の位置から順にx方向に向かって光が移動するように走査する。或いは+x方向の位置から順に−x方向に向かって光が移動するように走査してもよい。例えば、x方向に向かって複数の位置にステップ送りするように走査する。これにより、光源103から発生した光(レーザ光20とノイズ成分光10の両方)が、全く検知されない位置から、順に、レーザ光20とノイズ成分光10の両方が受光素子30,32(A,B)で光量が検出される。或いは、レーザ光20の一部とノイズ成分光10の両方が受光素子30に、レーザ光20の残部が受光素子32に検出される。続いて、レーザ光20とノイズ成分光10の両方が受光素子30,32,34,36(A,B,C,D)で光量が検出される。或いは、レーザ光20の一部とノイズ成分光10の両方が30,34に、レーザ光20の残部が受光素子32,36に検出される。続いて、レーザ光20とノイズ成分光10の両方が受光素子33,36(C,D)で光量が検出される。或いは、レーザ光20の一部とノイズ成分光10の両方が受光素子34に、レーザ光20の残部が受光素子36に検出される。そして、最後にレーザ光20とノイズ成分光10の両方が、全く検知されなくなる。フォトダイオードアレイ212の代わりにフォトダイオードアレイ214であっても同様である。
【0030】
光量測定工程(S108)として、測定回路126は、受光素子30,32,34,36を使ってx方向に走査された各位置での光量を測定する。具体的には、受光素子30,32,34,36は、x方向に走査された各位置での光をそれぞれ受光し、受光した光量を光電変換して、測定回路126に出力する。そして、光軸調整回路136は、測定回路126で測定された各位置での光量をミラー202の反射面の位置と相対させて記憶装置140に格納する。同様に、測定回路124は、受光素子40,42,44,46を使ってx方向に走査された各位置での光量を測定する。具体的には、受光素子40,42,44,46は、x方向に走査された各位置での光をそれぞれ受光し、受光した光量を光電変換して、測定回路124に出力する。そして、光軸調整回路136は、測定回路124で測定された各位置での光量をミラー202の反射面の位置と相対させて記憶装置140に格納する。
【0031】
以上のようにして、記憶装置140には、x,y方向にスキャンした場合のフォトダイオードアレイ212,214が受光した光量がミラー202の反射面の位置に相対させて格納される。
【0032】
ここでは、ミラー202の反射面の位置を移動させたが、これに限るものではない。ミラー202の代わりに、ミラー204の反射面の位置を移動させて同様に測定してもよい。或いは、ミラー202,204の両方の反射面の位置を移動させて同様に測定してもよい。また、x,y方向へ走査した際の測定データを、フォトダイオードアレイ212,214の両方で測定したが、これに限るものではない。フォトダイオードアレイ212,214のいずれか一方で測定するだけでもよい。
【0033】
図7は、実施の形態1におけるフォトダイオードアレイで測定される総光量で示すビームプロファイルの一例を示す図である。図7では、レーザ光20に対して、y方向にノイズ成分光10が発生している場合に、y方向に光をスキャンさせた場合のビームプロファイルの一例が示されている。縦軸は光量、横軸はy方向位置を示す。図7に示すように、y位置の移動に伴って、まずは、ノイズ成分光10の光量が測定され、続いて、ノイズ成分光10の光量にレーザ光20の光量が加算されていく。そして、レーザ光20とノイズ成分光10の両方の光量の総和となり、ノイズ成分光10の光量が減っていく。そして、最後にレーザ光20の光量が減少していく。
【0034】
図8は、実施の形態1におけるレーザ光をx方向にスキャンさせた場合のフォトダイオードアレイ上の像の他の一例を示す概念図である。図8では、例えば、レーザ光20に対して、x方向にノイズ成分光10が発生している場合を示している。
【0035】
図9は、実施の形態1におけるレーザ光をy方向にスキャンさせた場合のフォトダイオードアレイ上の像の他の一例を示す概念図である。図8では、図7と同様、例えば、レーザ光20に対して、x方向にノイズ成分光10が発生している場合を示している。
【0036】
図8,9に示すように、x方向にノイズ成分光10が発生している場合、x方向に走査した際、以下のようになる。かかる場合には、図8に示すように、光源103から発生した光(レーザ光20とノイズ成分光10の両方)が、全く検知されない位置から、順に、ノイズ成分光10だけが受光素子30,32(A,B)で光量が検出される。続いて、ノイズ成分光10とレーザ光20の両方が受光素子30,32(A,B)で光量が検出される。続いて、ノイズ成分光10だけが受光素子34,36(C,D)で光量が検出され、レーザ光20だけが受光素子30,32(A,B)で光量が検出される。続いて、ノイズ成分光10とレーザ光20の一部が受光素子34,36(C,D)で光量が検出され、レーザ光20の残部が受光素子30,32(A,B)で光量が検出される。続いて、ノイズ成分光10とレーザ光20の両方が受光素子34,36(C,D)で光量が検出される。続いて、レーザ光20だけが受光素子34,36(C,D)で光量が検出される。そして、最後にレーザ光20とノイズ成分光10の両方が、全く検知されなくなる。フォトダイオードアレイ212の代わりにフォトダイオードアレイ214であっても同様である。そして、同様に、測定回路126は、受光素子30,32,34,36を使ってx方向に走査された各位置での光量を測定する。測定回路124は、受光素子40,42,44,46を使ってx方向に走査された各位置での光量を測定する。そして、光軸調整回路136は、測定回路124,126で測定された各位置での光量をミラー202の反射面の位置と相対させて記憶装置140に格納する。
【0037】
図8,9に示すように、x方向にノイズ成分光10が発生している場合、y方向に走査した際、以下のようになる。かかる場合には、図9に示すように、光源103から発生した光(レーザ光20とノイズ成分光10の両方)が、全く検知されない位置から、順に、レーザ光20とノイズ成分光10の両方が受光素子32,36(B,D)で光量が検出される。或いは、レーザ光20の一部とノイズ成分光10の両方が受光素子36に、レーザ光20の残部が受光素子32に検出される。続いて、レーザ光20とノイズ成分光10の両方が受光素子30,32,34,36(A,B,C,D)で光量が検出される。或いは、レーザ光20の一部とノイズ成分光10の両方が34,36に、レーザ光20の残部が受光素子30,32に検出される。続いて、レーザ光20とノイズ成分光10の両方が受光素子30,34(A,C)で光量が検出される。或いは、レーザ光20の一部とノイズ成分光10の両方が受光素子34に、レーザ光20の残部が受光素子30に検出される。そして、最後にレーザ光20とノイズ成分光10の両方が、全く検知されなくなる。フォトダイオードアレイ212の代わりにフォトダイオードアレイ214であっても同様である。そして、同様に、測定回路126は、受光素子30,32,34,36を使ってx方向に走査された各位置での光量を測定する。測定回路124は、受光素子40,42,44,46を使ってx方向に走査された各位置での光量を測定する。そして、光軸調整回路136は、測定回路124,126で測定された各位置での光量をミラー202の反射面の位置と相対させて記憶装置140に格納する。
【0038】
ノイズ光方向特定工程(S114)として、ノイズ方向特定回路128は、記憶装置140に格納されたx,y方向の測定データを読み出し、フォトダイオードアレイ212,214の少なくとも1つが受光したレーザ光の光量を用いて、光源103からレーザ光20と供に発生するノイズ成分光10の発生方向を特定する。具体的には、ノイズ方向特定回路128は、ノイズ成分方向特定部の一例である。ノイズ方向特定回路128は、ミラー202,204の少なくとも1つを複数の位置に移動させることで得られる移動方向におけるレーザ光の光量変化を用いて、ノイズ成分光の発生方向を特定する。さらに具体的に言えば、測定データから、例えば、y方向にノイズ成分光10が発生している場合には、図7に示したようなビームプロファイルが得られる。例えば、x方向にノイズ成分光10が発生している場合には、図7の横軸をx位置と読み替えたビームプロファイルが得られる。また、例えば、−y方向にノイズ成分光10が発生している場合には、図7に示したようなビームプロファイルを左右反転させたビームプロファイルが得られる。また、例えば、−x方向にノイズ成分光10が発生している場合には、図7の横軸をx位置と読み替えたビームプロファイルを左右反転させたビームプロファイルが得られる。このように測定データから得られるビームプロファイルの光量変化からノイズ成分光10の発生方向を特定できる。具体的には、図7の例では、y位置の移動に伴って、まずは、ノイズ成分光10の光量が測定され、続いて、ノイズ成分光10の光量にレーザ光20の光量が加算されていく。よって、ノイズ成分光10がレーザ光20に対してy方向に位置していることがわかる。よって、ノイズ成分光10の発生方向はy方向であることを特定できる。逆に、y位置の移動に伴って、レーザ光20とノイズ成分光10の両方の光量の総和の状態からノイズ成分光10の光量が減っていき、その後レーザ光20の光量が減少していけば、ノイズ成分光10がレーザ光20に対して−y方向に位置していることがわかる。よって、ノイズ成分光10の発生方向は−y方向であることを特定できる。
【0039】
同様に、x位置の移動に伴って、まずは、ノイズ成分光10の光量が測定され、続いて、ノイズ成分光10の光量にレーザ光20の光量が加算されていく場合、ノイズ成分光10がレーザ光20に対してx方向に位置していることがわかる。よって、ノイズ成分光10の発生方向はx方向であることを特定できる。逆に、x位置の移動に伴って、レーザ光20とノイズ成分光10の両方の光量の総和の状態からノイズ成分光10の光量が減っていき、その後レーザ光20の光量が減少していけば、ノイズ成分光10がレーザ光20に対して−x方向に位置していることがわかる。よって、ノイズ成分光10の発生方向は−x方向であることを特定できる。
【0040】
ノイズ光量演算工程(S116)として、ノイズ光量演算回路130は、フォトダイオードアレイ212,214の少なくとも1つが受光したレーザ光の光量を用いて、ノイズ成分光10の光量を演算する。ノイズ光量演算回路130は、ノイズ成分光量演算部の一例である。具体的には、ノイズ光量演算回路130は、ミラー202,204の少なくとも1つを複数の位置に移動させることで得られる移動方向におけるレーザ光の光量変化を用いて、ノイズ成分光10の光量を演算する。さらに具体的には、ノイズ成分光10の発生方向はy方向である場合、図7に示したように、フォトダイオードアレイ212が受光した総光量としいて、まずは、ノイズ成分光10の光量ΔL0が検出される。よって、かかる光量ΔL0を求めればよい。或いは、y位置の移動に伴って、レーザ光20とノイズ成分光10の両方の光量の総和L1の状態からノイズ成分光10の光量ΔL0が減ることからも光量ΔL0を演算できる。
【0041】
以上のようにして、ノイズ成分光10の発生方向と光量を取得することができる。実施の形態1では、かかる情報を用いて、ノイズ成分光10の影響を排除したレーザ光20の光軸調整を行なう。
【0042】
重心演算工程(S118)として、重心演算回路132は、フォトダイオードアレイ212,214が受光した各レーザ光の重心をそれぞれ演算する。重心演算回路132は、重心演算部の一例である。具体的には、x方向の重心とy方向の重心を演算する。レーザ光のx方向の重心Gxは、第1と第4象限面(C,D)で受光した各光量の和から第2と第3象限面(A,B)で受光した各光量の和を引いた値を第1から第4象限面(A,B,C,D)で受光した各光量の総光量で除した値で定義され、以下の式1で表現できる。レーザ光のy方向の重心Gyは、第3と第4象限面(B,D)で受光した各光量の和から第1と第2象限面(C,A)で受光した各光量の和を引いた値を第1から第4象限面(A,B,C,D)で受光した各光量の総光量で除した値で定義され、以下の式2で表現できる。
(1) Gx={(Lc+Ld)−(La+Lb)}/(La+Lb+Lc+Ld)
(2) Gy={(Lb+Ld)−(La+Lc)}/(La+Lb+Lc+Ld)
【0043】
La,Lb,Lc,Ldは、それぞれ、第2象限(A)の光量、第3象限(B)の光量、第1象限(C)の光量、第4象限(D)の光量を示す。ここで、Gx=0及びGy=0となるように、ミラー202,204の反射面の位置を制御すればレーザ光20のビーム形状の重心を光軸に合わせることができそうである。しかし、実際には、上述したように、ノイズ成分光10も同時に発生しているため、かかる位置は、ノイズ成分光10の影響を受けた位置となる。よって、レーザ光20のビーム形状の重心が光軸からずれてしまう。そこで、実施の形態1では、ノイズ成分光10の発生方向の重心値がノイズ成分光10の光量をレーザ光の総光量で除した値の絶対値になり、ノイズ成分光10の発生方向と直交する方向の重心値が0になるように、ミラー202,204の反射面の位置を制御する。具体的には、以下のように動作する。
【0044】
判定工程(S120)として、判定回路134は、演算されたx,y方向の重心値Gx,Gyを入力し、ノイズ成分光10の発生方向の重心値の絶対値が、ΔL0/(La+Lb+Lc+Ld)であり、ノイズ成分光10の発生方向と直交する方向の重心値が0であるかどうかを判定する。例えば、ノイズ成分光10の発生方向がx方向である場合、Gx=ΔL0/(La+Lb+Lc+Ld)、かつ、Gy=0かどうかを判定する。例えば、ノイズ成分光10の発生方向がy方向である場合、Gx=0、かつ、Gy=ΔL0/(La+Lb+Lc+Ld)かどうかを判定する。かかる判定は、フォトダイオードアレイ212,214の両方がそれぞれかかる条件になっているかどうかを判定する。そして、かかる条件になっていなければ、S122に進む。かかる条件になっていれば光軸調整終了である。
【0045】
光軸調整工程(S122)として、光軸調整回路136は、例えば、ミラー制御回路121を制御して、駆動機構224にミラー204の反射面の位置を移動させる。或いは、例えば、ミラー制御回路122を制御して、駆動機構222にミラー202の反射面の位置を移動させる。或いは、例えば、ミラー制御回路121,122を制御して、駆動機構222,224にミラー202,204の反射面の位置を移動させる。そして、重心演算工程(S118)に戻り、重心演算工程(S118)から光軸調整工程(S122)までを判定工程(S120)における上述した条件になるまで繰り返す。
【0046】
具体的には、ミラー制御回路122は、ノイズ成分光10の発生方向の重心値の絶対値がノイズ成分光10の光量をフォトダイオードアレイ212で受光したレーザ光の総光量で除した値になり、ノイズ成分光10の発生方向と直交する方向の重心値が0になるように、ミラー202の反射面の位置を制御する。ミラー制御回路121は、第1のミラー制御部の一例である。同様に、ミラー制御回路122は、ノイズ成分光10の発生方向の重心値の絶対値がノイズ成分光10の光量をフォトダイオードアレイ214で受光したレーザ光の総光量で除した値になり、ノイズ成分光10の発生方向と直交する方向の重心値が0になるように、ミラー204の反射面の位置を制御する。ミラー制御回路121は、第2のミラー制御部の一例である。
【0047】
パターン検査工程(S130)として、光学画像取得部150は、ミラー202,204によって、光軸が調整されたレーザ光20を用いて、被検査試料のパターンの光学画像を取得する。そして、比較回路108は、参照画像を入力し、光学画像と参照画像とを比較する。以下、具体的に説明する。
【0048】
検査開始前に、まず、オートローダ制御回路113により制御されたオートローダ130により、パターン形成された被検査試料となるフォトマスク101は、XYθ各軸のモータによって水平方向及び回転方向に移動可能に設けられたXYθテーブル102上にロードされ、そして、XYθテーブル102上に載置される。また、フォトマスク101のパターン形成時に用いた設計パターンの情報(設計パターンデータ)は、装置外部からパターン検査装置100に入力され、記憶装置(記憶部)の一例である磁気ディスク装置109に記憶される。
【0049】
XYθテーブル102は、制御計算機110の制御の下にテーブル制御回路114により駆動される。X方向、Y方向、θ方向に駆動する3軸(X−Y−θ)モータの様な駆動系によって移動可能となっている。これらの、Xモータ、Yモータ、θモータは、例えばステップモータを用いることができる。そして、XYθテーブル102の移動位置はレーザ測長システム122により測定され、位置回路107に供給される。また、XYθテーブル102上のフォトマスク101はオートローダ制御回路113により駆動されるオートローダ130から自動的に搬送され、検査終了後に自動的に排出されるものとなっている。また、拡大光学系104は、例えば圧電変換素子等によって駆動され、フォトダイオードアレイ105へと像の焦点が合わされる。
【0050】
図10は、実施の形態1における光学画像の取得手順を説明するための図である。被検査領域は、図10に示すように、例えばY方向に向かって、スキャン幅Wの短冊状の複数の検査ストライプに仮想的に分割される。そして、更にその分割された各検査ストライプが連続的に走査されるようにXYθテーブル102の動作が制御され、X方向に移動しながら光学画像が取得される。フォトダイオードアレイ105では、図10に示されるようなスキャン幅Wの画像を連続的に入力する。そして、第1の検査ストライプにおける画像を取得した後、第2の検査ストライプにおける画像を今度は逆方向に移動しながら同様にスキャン幅Wの画像を連続的に入力する。そして、第3の検査ストライプにおける画像を取得する場合には、第2の検査ストライプにおける画像を取得する方向とは逆方向、すなわち、第1の検査ストライプにおける画像を取得した方向に移動しながら画像を取得する。このように、連続的に画像を取得していくことで、無駄な処理時間を短縮することができる。ここでは、フォワード(FWD)−バックワード(BWD)手法を用いているが、これに限るものではなくフォワード(FWD)−フォワード(FWD)手法を用いても構わない。
【0051】
フォトマスク101に形成されたパターンには、XYθテーブル102の上方に配置されている上述した光源103によって光が照射される。光源103から照射されるレーザ光20は、上述した照明光学系170を介してフォトマスク101を照射する。照明によってフォトマスク101を透過した光は、拡大光学系104を介してフォトダイオードアレイ105に光学像として結像し、入射する。フォトダイオードアレイ105上に結像されたパターンの像は、フォトダイオードアレイ105によって光電変換され、更にセンサ回路106によってA/D(アナログデジタル)変換される。フォトダイオードアレイ105には、例えばTDI(タイムディレイインテグレータ)センサのようなセンサが設置されている。以上のようにして、光学画像取得部150は、被検査試料の検査ストライプ毎の光学画像データ(ストライプデータ)を取得する。
【0052】
センサ回路106出力された各検査ストライプの測定データ(光学画像データ)は、検査ストライプ毎に、順に、位置回路107から出力されたXYθテーブル102上におけるフォトマスク101の位置を示すデータとともに比較回路108に出力される。測定データは、画素毎に例えば8ビットの符号なしデータであり、各画素の明るさの階調を例えば0〜255で表現している。これらの光源103、照明光学系170、拡大光学系104、フォトダイオードアレイ105、及びセンサ回路106によって高倍率の検査光学系が構成されている。
【0053】
展開回路111(参照画像作成部の一例)は、所定の領域毎に、磁気ディスク装置109から制御計算機110を通して設計パターンデータを読み出し、読み出されたフォトマスク101の設計パターンデータを2値ないしは多値のイメージデータである設計画像データ(参照画像データ)に変換(展開処理)する。所定の領域は、比較対象となる光学画像に対応する画像の領域(エリア)とすればよい。
【0054】
設計パターンデータに定義されるパターンを構成する図形は長方形や三角形を基本図形としたもので、設計パターンデータには、例えば、図形の基準位置における座標(x、y)、辺の長さ、長方形や三角形等の図形種を区別する識別子となる図形コードといった情報で各パターン図形の形、大きさ、位置等を定義した図形データが格納されている。
【0055】
かかる図形データが設計画像作成回路112に入力されると、図形ごとのデータにまで展開し、その図形データの図形形状を示す図形コード、図形寸法などを解釈する。そして、所定の量子化寸法のグリッドを単位とするマス目内に配置されるパターンとして2値ないしは多値の画像データを展開する。そして、展開された画像データ(展開画像データ)は、回路内の図示しないパターンメモリ、或いは磁気ディスク装置109内に格納される。言い換えれば、設計パターンデータを読み込み、検査領域を所定の寸法を単位とするマス目として仮想分割してできたマス目ごとに設計パターンにおける図形が占める占有率を演算し、nビットの占有率データを図示しないパターンメモリ、或いは磁気ディスク装置109に出力する。例えば、1つのマス目を1画素として設定すると好適である。そして、1画素に1/2(=1/256)の分解能を持たせるとすると、画素内に配置されている図形の領域分だけ1/256の小領域を割り付けて画素内の占有率を演算する。そして、展開された画像データは、各画素に対して8ビットの占有率データで定義されたエリア単位の画像データとしてパターンメモリ、或いは磁気ディスク装置109に格納される。
【0056】
そして、参照回路112は、展開された画像データに対してデータ処理(画像処理)を行い、適切なフィルタ処理を施す。光学画像データ(測定データ)は、拡大光学系104の解像特性やフォトダイオードアレイ105のアパーチャ効果等によってフィルタが作用した状態、言い換えれば連続変化するアナログ状態にある。そのため、画像強度(濃淡値)がデジタル値の設計側のイメージデータである展開画像データにも所定のモデルに沿ったフィルタ処理を施すことにより、測定データに合わせることができる。例えば、拡大或いは縮小処理をおこなうリサイズ処理、コーナー丸め処理、或いはぼかし処理といったフィルタ処理を施す。このようにして光学画像と比較する参照画像を作成する。所定の領域は、比較対象となる光学画像に対応する画像の領域(エリア)とすればよい。作成された参照画像データは比較回路108に出力される。
【0057】
そして、比較回路108(比較部)内では、ストライプ毎の光学画像データを読み出し、光学画像データを参照データと同じサイズの領域の画像となるように光学画像データを切り出す。そして、比較回路108は、所定の判定条件で、対応する光学画像データと参照データとを位置合わせをおこなってから画素毎に比較する。かかる検査手法は、ダイーツーデータベース検査である。そして、比較結果が出力される。比較結果は、磁気ディスク装置109、磁気テープ装置115、フレキシブルディスク装置(FD)116、CRT117、パターンモニタ118、或いはプリンタ119より出力されればよい。
【0058】
或いは、同一の設計パターンで描画された複数のパターン領域(被検査領域)が形成されているフォトマスク101を用いて、ダイーツーダイ検査を行なっても良い。かかる場合、例えば2つのパターン領域を合わせた全体が図10で示した複数の検査ストライプに仮想分割される。そして、光学画像取得部150によって、検査ストライプ毎に光学画像データ(測定データ)が取得される。そのため、1つの検査ストライプの測定データには、2つのパターン領域の両方の画像が含まれている。そして、2つの領域の一方の画像を検査対象画像とし、他方を参照画像として、ダイーツーダイ検査を行なっても良い。
【0059】
また、重心演算工程(S118)から光軸調整工程(S122)までの各工程は、パターン検査工程を開始した後も、パターン検査工程と並行してリアルタイムで実施すると好適である。
【0060】
以上のように、実施の形態1では、ノイズ成分光を除いてレーザ光の光軸を調整できる。よって、レーザ光20の光量のロスを低減できる。その結果、かかる光軸が調整されたレーザ光を照明光として用いてパターン検査を行うことで高精度な検査ができる。
【0061】
実施の形態2.
実施の形態1では、フォトダイオードアレイ212,214の検出感度をノイズ成分光10も検出可能な感度(図3に示した例えば光量H0が検出可能な感度)に設定したが、これに限るものではない。例えば、フォトダイオードアレイ212,214の検出感度を下げて、ノイズ成分光10を検出できない感度(図3に示した例えば光量H1が検出可能な感度)に設定してもよい。これにより、ノイズ成分光を除いてレーザ光の光軸を調整できる。かかる場合には、図4のうち、y方向走査(スキャン)工程(S102)からノイズ光量演算工程(S116)までの各工程と、判定工程(S120)とが不要にできる。また、光軸調整工程(S122)の際、ミラー制御回路122は、重心値が、x,y方向ともに0となる位置にラー202の反射面の位置を制御し、ミラー制御回路122は、重心値が、x,y方向ともに0となる位置にラー204の反射面の位置を制御すればよい。
【0062】
図11は、別の光学画像取得手法を説明するための図である。図2等の構成では、スキャン幅Wの画素数を同時に入射するフォトダイオードアレイ105を用いているが、これに限るものではなく、図11に示すように、XYθテーブル102をX方向に定速度で送りながら、レーザ干渉計で一定ピッチの移動を検出した毎にY方向に図示していないレーザスキャン光学装置でレーザビームをY方向に走査し、透過光或いは反射光を検出して所定の大きさのエリア毎に二次元画像を取得する手法を用いても構わない。
【0063】
以上の説明において、「〜部」、「〜回路」或いは「〜工程」と記載したものは、コンピュータで動作可能なプログラムにより構成することができる。或いは、ソフトウェアとなるプログラムだけではなく、ハードウェアとソフトウェアとの組合せにより実施させても構わない。或いは、ファームウェアとの組合せでも構わない。また、プログラムにより構成される場合、プログラムは、磁気ディスク装置109、磁気テープ装置115、FD116、或いはROM(リードオンリメモリ)等の記録媒体に記録される。例えば、位置回路107、比較回路108、展開回路111、参照回路112、オートローダ制御回路113、テーブル制御回路114、ミラー制御回路121,122、測定回路124,126、ノイズ方向特定回路128、ノイズ光量演算回路130、重心演算回路132、判定回路134、及び、光軸調整回路136等は、電気的回路で構成されていても良いし、制御計算機110によって処理することのできるソフトウェアとして実現してもよい。また電気的回路とソフトウェアの組み合わせで実現しても良い。
【0064】
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、実施の形態では、透過光を用いて透過型の光学系を用いているが、反射光あるいは、透過光と反射光を同時に用いる構成としてよい。
【0065】
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。
【0066】
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全てのパターン検査装置或いはパターン検査方法は、本発明の範囲に包含される。
【符号の説明】
【0067】
10 ノイズ成分光
20 レーザ光
30,32,34,36,40,42,44,46 受光素子
100 パターン検査装置
101 フォトマスク
102 XYθテーブル
103 光源
104 拡大光学系
105 フォトダイオードアレイ
106 センサ回路
107 位置回路
108 比較回路
109,140 磁気ディスク装置
110 制御計算機
112 設計画像作成回路
115 磁気テープ装置
120 バス
121,122 ミラー制御回路
124,126 測定回路
128 ノイズ方向特定回路
130 ノイズ光量演算回路
132 重心演算回路
134 判定回路
136 光軸調整回路
150 光学画像取得部
160 制御回路
170 照明光学系
172 光軸調整部
202,204 ミラー
230,232 ハーフミラー
234 ミラー
222,224 駆動機構
212,214 フォトダイオードアレイ

【特許請求の範囲】
【請求項1】
レーザ光を発生する光源と、
前記レーザ光を順に反射して、前記レーザ光の光軸を調整する、それぞれ反射面の位置を変更可能な第1と第2のミラーと、
前記第1と第2のミラーで反射された前記レーザ光の一部を分岐するハーフミラーと、
前記ハーフミラーで分岐されなかった残りのレーザ光を、パターンが形成された被検査試料に照明する照明光学系と、
前記照明光学系と共役な位置に配置され、前記ハーフミラーで分岐された前記レーザ光の一部を第1から第4象限の面で独立に受光する、第1の受光部と、
前記第2のミラーと共役な位置に配置され、前記ハーフミラーで分岐された前記レーザ光の一部を第1から第4象限の面で独立に受光する、第2の受光部と、
前記第1と第2の受光部の少なくとも1つが受光したレーザ光の光量を用いて、前記光源から前記レーザ光と供に発生するノイズ成分光の発生方向を特定するノイズ成分方向特定部と、
前記第1と第2の受光部の少なくとも1つが受光したレーザ光の光量を用いて、前記ノイズ成分光の光量を演算するノイズ成分光量演算部と、
前記第1と第2の受光部が受光した各レーザ光の重心をそれぞれ演算する重心演算部と、
前記ノイズ成分光の発生方向の重心値の絶対値が前記ノイズ成分光の光量を第1の受光部で受光したレーザ光の総光量で除した値になり、前記ノイズ成分光の発生方向と直交する方向の重心値が0になるように、前記第1のミラーの反射面の位置を制御する第1のミラー制御部と、
前記ノイズ成分光の発生方向の重心値の絶対値が前記ノイズ成分光の光量を第2の受光部で受光したレーザ光の総光量で除した値になり、前記ノイズ成分光の発生方向と直交する方向の重心値が0になるように、前記第2のミラーの反射面の位置を制御する第2のミラー制御部と、
前記第1と第2のミラーによって、光軸が調整された前記レーザ光を用いて、前記被検査試料のパターンの光学画像を取得する光学画像取得部と、
参照画像を入力し、前記光学画像と前記参照画像とを比較する比較部と、
を備えたことを特徴とするパターン検査装置。
【請求項2】
レーザ光のx方向の重心は、第1と第4象限面で受光した各光量の和から第2と第3象限面で受光した各光量の和を引いた値を第1から第4象限面で受光した各光量の総光量で除した値で定義され、
レーザ光のy方向の重心は、第3と第4象限面で受光した各光量の和から第1と第2象限面で受光した各光量の和を引いた値を第1から第4象限面で受光した各光量の総光量で除した値で定義されることを特徴とする請求項1記載のパターン検査装置。
【請求項3】
前記ノイズ成分方向特定部は、前記第1と第2のミラーの少なくとも1つを複数の位置に移動させることで得られる移動方向におけるレーザ光の光量変化を用いて、ノイズ成分光の発生方向を特定することを特徴とする請求項1又は2記載のパターン検査装置。
【請求項4】
前記ノイズ成分方向特定部は、前記第1と第2のミラーの少なくとも1つを複数の位置に移動させることで得られる移動方向におけるレーザ光の光量変化を用いて、前記ノイズ成分光の光量を演算することを特徴とする請求項1〜3いずれか記載のパターン検査装置。
【請求項5】
光源からレーザ光を発生する工程と、
それぞれ反射面の位置を変更可能な第1と第2のミラーの少なくとも1つを複数の位置に移動させながら前記第1と第2のミラーでレーザ光を順に反射し、パターンが形成された被検査試料に照明する照明光学系と共役な位置に配置された第1の受光部により、前記第1と第2のミラーで反射された前記レーザ光の一部を第1から第4象限の面で独立に受光する工程と、
前記第1と第2のミラーの少なくとも1つを複数の位置に移動させながら前記第1と第2のミラーでレーザ光を順に反射し、前記第2のミラーと共役な位置に配置された第2の受光部により、前記第1と第2のミラーで反射された前記レーザ光の一部を第1から第4象限の面で独立に受光する工程と、
前記第1と第2の受光部の少なくとも1つが受光したレーザ光の光量を用いて、前記光源から前記レーザ光と供に発生するノイズ成分光の発生方向を特定する工程と、
前記第1と第2の受光部の少なくとも1つが受光したレーザ光の光量を用いて、前記ノイズ成分光の光量を演算する工程と、
前記第1と第2の受光部が受光した各レーザ光の重心をそれぞれ演算する工程と、
前記ノイズ成分光の発生方向の重心値の絶対値が前記ノイズ成分光の光量を第1の受光部で受光したレーザ光の総光量で除した値になり、前記ノイズ成分光の発生方向と直交する方向の重心値が0になるように、前記第1のミラーの反射面の位置を制御する工程と、
前記ノイズ成分光の発生方向の重心値の絶対値が前記ノイズ成分光の光量を第2の受光部で受光したレーザ光の総光量で除した値になり、前記ノイズ成分光の発生方向と直交する方向の重心値が0になるように、前記第2のミラーの反射面の位置を制御する工程と、
前記第1と第2のミラーによって、光軸が調整された前記レーザ光を用いて、前記被検査試料のパターンの光学画像を取得する工程と、
参照画像を入力し、前記光学画像と前記参照画像とを比較する工程と、
を備えたことを特徴とするパターン検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2012−177650(P2012−177650A)
【公開日】平成24年9月13日(2012.9.13)
【国際特許分類】
【出願番号】特願2011−41603(P2011−41603)
【出願日】平成23年2月28日(2011.2.28)
【出願人】(504162958)株式会社ニューフレアテクノロジー (669)
【Fターム(参考)】