説明

位置ずれ検出装置、発光装置、照明装置、プロジェクタ、車両用前照灯および位置ずれ調整方法

【課題】励起光を所望の照射面積で発光部に照射する。
【解決手段】レーザ素子24、集光レンズ27および発光部3の間の相対位置関係を検知する検知部21と、検知部21の検知結果と上記の相対位置関係において基準とすべき基準相対位置関係とを比較し、レーザ素子24、集光レンズ27および発光部3の間の、検知部21の検知の際における相対位置関係が基準相対位置関係からずれているか否かを判定する判定部22とを備える位置ずれ検出装置20である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高輝度光源として機能する発光装置、当該発光装置を備えた照明装置、プロジェクタおよび車両用前照灯に関し、特に、このような発光装置等に好適な位置ずれ検出装置および位置ずれ調整方法に関するものである。
【背景技術】
【0002】
近年、励起光源として発光ダイオード(LED;Light Emitting Diode)や半導体レーザ(LD;Laser Diode)等の半導体発光素子を用い、これらの励起光源から生じた励起光を、蛍光体を含む発光部に照射することによって発生する蛍光を照明光として用いる発光装置の研究が盛んになってきている。
【0003】
このような従来の発光装置の一例として、特許文献1に開示された光源装置がある。この特許文献1に開示された光源装置は、半導体レーザと、半導体レーザからのレーザ光を平行光線束とするコリメータと、コリメータからの平行光線束のレーザ光を集光するコンデンサと、コンデンサで集光したレーザ光を吸収し自然放出光としてインコヒーレント光を放出する蛍光体とを有している。この光源装置は、コヒーレントなレーザ光が漏れないようにレーザ光反射鏡を有する構成を採用している。
【0004】
また、特許文献2に開示された光源装置は、半導体レーザと、半導体レーザからの励起光を導光する光ファイバーと、光ファイバー射出端部と光学的に接続され、その射出端部から射出された励起光を受光し、波長の異なる光を射出する波長変換部材(すなわち、発光部)と、その波長変換部材および励起光の光路上に配置された光発散手段を保持するための保持部材とを有している。そして、励起光の利用効率を高くし、照明光射出部を小型化するために、光ファイバー射出端部とレンズなどの光発散手段と波長変換部材との距離や、光発散手段と波長変換部材の有効領域の範囲を最適化している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2003−295319号公報(2003年10月15日公開)
【特許文献2】特開2010−81957号公報(2010年4月15日公開)
【発明の概要】
【発明が解決しようとする課題】
【0006】
上述したように、励起光源にレーザ光源を用い、蛍光体などの発光部を発光させ、照明光を得る発光装置がある。このような発光装置において、レーザ光を凸レンズに代表されるような集光するための光学部材を用いて発光部に照射する場合が典型的である。このような場合、レーザ光源、光学部材および発光部という、3つの部材の間における相対的な位置関係が非常に重要である。
【0007】
つまり、このような発光装置では、これら3つの部材のうちのいずれかの位置が何かの拍子にずれて、言い換えると、各々の位置が最適な位置から変動すると、その結果、発光部上における、光学部材によるレーザ光の集光状態が変化してしまう場合がある。この場合、発光部に照射されるレーザ光の光密度が所望の状態よりも高くなってしまったり、あるいは逆に、低くなってしまったりすることになる。
【0008】
このような場合、これら3つの部材間における相対位置関係が最適な位置関係からずれないようにすることが強く望まれることは言うまでもない。そして、このことは、それらの間における相対位置関係の、最適な位置関係からのずれが検出可能となっていることが必須の前提条件である。
【0009】
また、上で述べたような相対的な位置関係のずれは、以下の問題を引き起こす要因となる。
(1)目に対する危険性の増大
(2)発光部の劣化
(3)発光部の、発光の強度、色度および配光特性の変動
小さな発光点を有する光源から放射された高いエネルギーの光が人間の目に入射した場合、網膜上では、その小さな発光点のサイズにまで光源像が絞られる。これにより、結像箇所におけるエネルギー密度が極めて高くなってしまうことがある。例えば、半導体レーザ素子から放射されるレーザ光は、発光点サイズが10μm角よりも小さい場合があり、そのような光源から放射される光が直接、あるいは、レンズやミラーといった光学部材を介したとしても小さな発光点が直接または間接的に見える状態で、目に入射すると、網膜上の結像箇所が損傷してしまうことがある。
【0010】
これを回避するためには、発光点のサイズを、一定の有限サイズ以上(当然、光密度にも依存するが、具体的には、例えば1mm×1mm以上)に拡大しなければならない。
【0011】
典型的な高出力の半導体レーザにおける発光点のサイズは、例えば1μm×10μmである。面積としては10μm=1.0×10−5mmである。すなわち、発光点が1mmの光源と比較すると、同じエネルギーの光であったとしても、網膜上に結像される領域のエネルギー密度は10倍も高くなってしまう。
【0012】
発光点のサイズを拡大させることにより、網膜上の結像サイズを拡大させることができる。これにより、同じエネルギーの光が目に入射した場合であっても、網膜上のエネルギー密度を低減させることが可能となる。
【0013】
さらに、光の輝度の観点から言えば、目に対する安全性を確保しつつ、要求される輝度が得られる範囲に収めなければならない。
【0014】
特許文献1に開示された光源装置は、レーザダイオードからのコヒーレント光を、蛍光体に照射し、インコヒーレント光に変換している。この変換により、人の目に対する安全性を確保している。さらに、蛍光体でインコヒーレント光に変換されず、蛍光体を透過してくるレーザ光については、反射鏡を用いて、照明光照射側(人の目に向かっていく方向)にレーザ光が投影されてしまうことを回避している。
【0015】
しかし、特許文献1には、半導体レーザと蛍光体との間に位置ずれが起きた場合、上で述べたような、蛍光体にレーザ光が集中し、高光密度で照射されてしまうという課題については開示されていない。そもそも、特許文献1は、半導体レーザと蛍光体の各々の位置がずれてしまうことを想定しているものではない。
【0016】
また、特許文献2に開示された光源装置は、励起光の利用効率を高くし、照明光射出部を小型化するために、光ファイバー射出端部とレンズなどの光発散手段と波長変換部材との距離や、光発散手段と波長変換部材の有効領域の範囲を最適化している。
【0017】
しかし、上記(1)〜(3)の問題点を解消することを目的とするものではなく、特許文献1と同様、半導体レーザと蛍光体の各々の位置を調整することはできない。
【0018】
なお、上記問題は、励起光源が半導体レーザの場合に限定される問題ではなく、高出力可能な励起光源であれば、半導体レーザ特有の特性を有していない励起光源、例えば、発光ダイオード(LED)等であっても、問題となる。
【0019】
本発明は、上記の問題点を解決するためになされたもので、その目的は、励起光源から出射された励起光を、光学部材を通して発光部に集光し、当該発光部を発光させる発光装置において、上記励起光源、上記光学部材および上記発光部の間の相対位置関係のずれを検出可能な位置ずれ検出装置、発光装置、照明装置、プロジェクタ、車両用前照灯および位置ずれ調整方法を提供することにある。
【課題を解決するための手段】
【0020】
上記目的を達成するために、本発明に係る位置ずれ検出装置は、励起光源から出射された励起光を、光学部材を通して発光部に集光し、当該発光部を発光させる発光装置における、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を検知する検知手段と、上記検知手段の検知結果と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係において基準とすべき基準相対位置関係とを比較し、上記励起光源、上記光学部材および上記発光部の間の、上記検知手段の検知の際における相対位置関係が、上記基準相対位置関係から、ずれているか否かを判定する判定手段とを備える。
【0021】
上記構成によれば、励起光源から出射し光学部材を経由して集光された励起光を発光部に照射することにより発光する発光装置に対して、励起光源と光学部材と発光部との相対位置関係を、それらの間における基準相対位置関係からのずれを検出装置により検出することができる。例えば、発光装置が搭載される照明器具や車両の動きにより、励起光源と光学部材と発光部との相対位置関係がずれた場合でも、ずれたことを検出することができる。
【0022】
上記基準相対位置関係は、上記発光部に集光される励起光に関する、上記発光部上における照射領域の面積あるいは当該照射領域の上記発光部上における位置のうちの少なくとも一方を基に、予め設定されていることが好ましい。
【0023】
上記構成によれば、励起光が所望の状態からずれて発光部に照射される、つまり、励起光が所望の状態よりも集中して発光部に照射される、あるいは所望の状態よりも拡散して照射される状態となった場合、ずれを検出することができる。
【0024】
上記励起光源を支持する励起光源支持面および上記発光部を支持する発光部支持面のいずれか一方の面側から他方の面側に向かってレーザ光を出射するレーザ光源と、上記レーザ光源から出射されたレーザ光のうち、上記他方の面側から反射されて上記一方の面側に戻る戻り光を受光する受光部とをさらに備え、上記検知手段は、自身の検知結果として、上記受光部から、上記戻り光の、上記受光部上での焦点形状を取得し、上記判定手段は、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を上記基準相対位置関係にしたときにおける、上記受光部上の焦点形状である基準焦点形状と、上記検知手段により取得された上記受光部上での焦点形状と、を比較し、それら2つの焦点形状の間に変化があった場合、上記ずれているという判定を行なうことが好ましい。
【0025】
上記構成によれば、受光部上での焦点形状の変化を判定することにより、励起光源と光学部材と発光部との相対位置関係のずれを高速かつ高精度で検出することができる。
【0026】
上記レーザ光源は、上記発光装置の上記励起光源として用いられており、上記発光部から発光された光を遮断し、且つ、上記戻り光を透過する光機能フィルターをさらに備え、上記光機能フィルターは、上記受光部の、光を受光する受光面側に配置されていることが好ましい。
【0027】
上記構成によれば、発光装置は、励起光源とレーザ光源とを同一の光源として備えることができ、かつ、光機能フィルターによって発光部から出射した光を受光部に受光することを防ぐことができる。そのため、レーザ光源およびその光学系を構成する必要がなく、検出装置を小型化・簡略化することができ、さらに受光部には励起光源からの励起光のみ受光され、励起光源と光学部材と発光部との相対位置関係のずれを、基準相対位置関係からのずれにより高精度に検出することができる。
【0028】
上記励起光源を支持する励起光源支持部材あるいは上記光学部材を支持する光学部材支持部材のうちの少なくとも一方に配置されたカメラと、上記カメラの撮像領域に含まれたマーカーとをさらに備え、上記マーカーは、上記励起光源支持部材に配置されたカメラの撮像領域に含まれ、且つ、上記光学部材支持部材に配置されたマーカー、あるいは、上記光学部材支持部材に配置されたカメラの撮像領域に含まれ、且つ、上記発光部を支持する発光部支持部材に配置されたマーカー、のうちの少なくとも一方を含み、上記検知手段は、自身の検知結果として、上記カメラにより上記マーカーを撮像した撮像結果を取得し、上記判定手段は、上記カメラと上記マーカーとの間の相対位置関係を上記基準相対位置関係にしたときにおける、上記カメラによる撮像結果と、上記検知手段により取得された撮像結果と、を比較し、それら2つの撮像結果の間に変化があった場合、上記ずれているという判定を行なうことが好ましい。
【0029】
上記構成によれば、カメラによるマーカーの撮像結果の変化を判定することにより、励起光源と光学部材と発光部との相対位置関係のずれを高速かつ高精度で検出することができる。
【0030】
本発明に係る発光装置は、励起光を出射する励起光源と、上記励起光源から出射された励起光を集光する光学部材と、上記光学部材により集光された励起光により発光する発光部と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係におけるずれを検出する位置ずれ検出装置と、上記位置ずれ検出装置により検出されたずれを調整する位置ずれ調整装置とを備え、上記位置ずれ検出装置は、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を検知する検知手段と、上記検知手段の検知結果と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係において基準とすべき基準相対位置関係とを比較し、上記励起光源、上記光学部材および上記発光部の間の、上記検知手段の検知の際における相対位置関係が、上記基準相対位置関係から、ずれているか否かを判定する判定手段とを有し、上記位置ずれ調整装置は、上記位置ずれ検出装置によりずれの検出が行なわれたときに、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を上記基準相対位置関係に引き戻すことにより、上記位置ずれ検出装置により検出されたずれを調整する。
【0031】
上記構成によれば、励起光源から出射し光学部材を経由して集光された励起光を発光部に照射することにより発光する。
【0032】
励起光源と光学部材と発光部との相対位置関係がずれた場合に、検出部によって基準相対位置関係からのずれを検出し、位置ずれ調整装置によって基準位置関係に戻される。例えば、発光装置が搭載される照明器具や車両の動きにより、励起光源と光学部材と発光部との相対位置関係がずれた場合でも、位置ずれ調整装置により再び、基準相対位置関係に戻されることになる。このため、上で述べたようなずれが生じた場合でも、励起光を所望の位置および範囲で発光部に照射し続けることが可能となる。
【0033】
それにより、励起光が所望の状態よりも集中して発光部に照射されることによる発光部の劣化を遅らせたり、輝度が極めて高くなることや、アイセーフの観点からの危険性を防いだりすることができる。ここで、アイセーフとは、人間の目に対する安全性のことを指す。また逆に、励起光が所望の状態より集中させることができず発光部に照射されることにより、輝度が低くなり所望の光学特性を得られないことも防ぐことができる。
【0034】
上記基準相対位置関係は、上記発光部に集光される励起光に関する、上記発光部上における照射領域の面積あるいは当該照射領域の上記発光部上における位置のうちの少なくとも一方を基に、予め設定されていることが好ましい。
【0035】
上記構成によれば、励起光が所望の状態からずれて発光部に照射される、つまり、励起光が所望の状態よりも集中して発光部に照射される、あるいは所望の状態よりも拡散して照射される状態となった場合、ずれを検出することができる。
【0036】
上記位置ずれ調整装置は、上記励起光源、上記光学部材あるいは上記発光部のうちの少なくとも1つの位置を移動させる移動機構を含むことが好ましい。
【0037】
上記構成によれば、励起光源、光学部材および発光部の少なくとも1つの位置を移動させることにより、基準相対位置関係へ適切に戻すことができる。それにより、励起光の照射位置が発光部からずれてしまうことを防ぐことができる。また、励起光を所望の照射面積で発光部に照射することができる。
【0038】
よって、励起光が所望の状態よりも集中して発光部に照射されることによる発光部の劣化を遅らせたり、輝度が極めて高くなることや、アイセーフの観点からの危険性を防いだりすることができる。また逆に、励起光が所望の状態より集中させることができず発光部に照射されることにより、輝度が低くなり所望の光学特性を得られないことも防ぐことができる。
【0039】
上記移動機構は、上記励起光源および上記発光部を固定し、上記光学部材を移動させることを特徴とすることが好ましい。
【0040】
上記構成によれば、上記励起光源と上記光学部材と上記発光部との相対位置関係を、上記光学部材の位置を移動させることにより、基準相対位置関係に保つことができる。それにより、位置ずれ調整装置が移動させる対象が光学部材のみとなるため、位置ずれ調整装置を小型化・簡略化することができる。
【0041】
本発明に係る発光装置は、励起光を出射する励起光源と、上記励起光源から出射された励起光を集光する光学部材と、上記光学部材により集光された励起光により発光する発光部と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を保持する弾性部材とを備える。
【0042】
上記構成によれば、励起光源から出射し光学部材を経由して集光された励起光を発光部に照射することにより発光する。
【0043】
ここで、上記励起光源、上記光学部材および上記発光部の間の相対位置関係は、例えば、バネといった弾性部材の弾性力によって、保持されている。具体的には、励起光源と光学部材と発光部との相対位置関係がずれた場合でも、弾性部材の弾性力により、基準位置関係に戻される。このため、上で述べたようなずれが生じた場合でも、励起光を所望の位置および範囲で発光部に照射し続けることが可能となる。
【0044】
それにより、励起光が所望の状態よりも集中して発光部に照射されることによる発光部の劣化を遅らせたり、輝度が極めて高くなることや、アイセーフの観点からの危険性を防いだりすることができる。また逆に、励起光が所望の状態より集中させることができず発光部に照射されることにより、輝度が低くなり所望の光学特性を得られないことも防ぐことができる。
【0045】
上記発光部から発光された光を反射する反射鏡をさらに備えることが好ましい。
【0046】
上記構成によれば、発光部より出射した光を反射鏡により、所望の方向へと反射させることができる。
【0047】
上記励起光源は、レーザ光源であることが好ましい。
【0048】
上記構成によれば、レーザ光は光学系によって集光することが容易である。その為、高出力かつ高輝度な発光装置を得ることができ、なおかつ励起光が所望の状態よりも集中して発光部に照射されることによる発光部の劣化を遅らせたり、輝度が極めて高くなることや、アイセーフの観点からの危険性を防いだりすることができる。
【0049】
上記レーザ光源は、半導体レーザ光源であることが好ましい。
【0050】
上記構成によれば、半導体レーザは小型である為、発光装置を小型化することができる。また発光装置が小型化すると、この発光装置を用いた照明装置のデザインの自由度を格段に向上させることができる。
【0051】
本発明に係る位置ずれ調整方法は、励起光源から出射された励起光を、光学部材を通して発光部に集光し、当該発光部を発光させる発光装置における、上記励起光源、上記光学部材および上記発光部の間の相対位置関係におけるずれを検出する位置ずれ検出工程と、上記位置ずれ検出工程にて検出されたずれを調整する位置ずれ調整工程とを含み、上記位置ずれ検出工程は、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を検知する検知工程と、上記検知工程での検知結果と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係において基準とすべき基準相対位置関係とを比較し、上記励起光源、上記光学部材および上記発光部の間の、上記検知工程での検知の際における相対位置関係が、上記基準相対位置関係から、ずれているか否かを判定する判定工程と、を含み、上記位置ずれ調整工程は、上記位置ずれ検出工程にてずれの検出が行なわれたときに、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を上記基準相対位置関係に引き戻すことにより、上記位置ずれ検出工程にて検出されたずれを調整する。
【0052】
上記構成によれば、励起光源から出射し、光学部材を経由して集光された励起光を発光部に照射することにより発光する。
【0053】
励起光源と光学部材と発光部との相対位置関係のずれを、それらの間における基準相対位置関係からのずれにより検出した場合に、位置調整方法によって基準相対位置関係に戻される。例えば、発光装置が搭載される照明器具や車両の動きにより、励起光源と光学部材と発光部との相対位置関係がずれた場合でも、位置調整方法により再び、基準相対位置関係に戻されることになる。このため、上で述べたようなずれが生じた場合でも、励起光を所望の位置および範囲で発光部に照射し続けることが可能となる。
【0054】
それにより、励起光が所望の状態よりも集中して発光部に照射されることによる発光部の劣化を遅らせたり、輝度が極めて高くなることや、アイセーフの観点からの危険性を防いだりすることができる。また逆に、励起光が所望の状態より集中させることができず発光部に照射されることにより、輝度が低くなり所望の光学特性を得られないことも防ぐことができる。
【0055】
また、上記発光装置を備えている照明装置、プロジェクタおよび車両用前照灯も本発明の技術的範囲に含まれる。
【発明の効果】
【0056】
本発明によれば、励起光源から出射された励起光を、光学部材を通して発光部に集光し、当該発光部を発光させる発光装置において、上記励起光源、上記光学部材および上記発光部の間の相対位置関係のずれを検出可能となるという効果を奏する。
【図面の簡単な説明】
【0057】
【図1】本発明の一実施形態に係る発光装置の構成を示す図である。
【図2】本発明の一実施形態に係る位置ずれ調整方法の処理手順を示すフローチャートである。
【図3】本発明の他の実施形態に係る発光装置の構成を示す図である。
【図4】本発明の他の実施形態に係る発光装置の構成を示す図である。
【図5】本発明の他の実施形態に係る発光装置の構成を示す図である。
【図6】マーカーの具体例を説明する模式図である。
【図7】本発明の他の実施形態に係る発光装置の構成を示す図である。
【図8】本発明の他の実施形態に係る発光装置の構成を示す図である。
【図9】本発明の他の実施形態に係る発光装置に用いられる半導体レーザ装置の構成を示す図であり、(a)は、半導体レーザ装置と発光部との位置関係を示す図であり、(b)は、半導体レーザ装置の外観を示す図である。
【図10】半導体レーザ装置の断面図である。
【発明を実施するための形態】
【0058】
本発明の実施の一形態について図1および図2に基づいて説明すれば、以下のとおりである。
【0059】
〔実施形態1〕
<発光装置101の構成>
図1は、本発明の一実施形態に係る発光装置101の概略構成を示す断面図である。図1に示すように、発光装置101は、レーザ素子(励起光源、半導体レーザ)2と、発光部3と、集光レンズ(光学部材)4と、レーザ素子支持部材(励起光源支持部材)5と、金属ベース(発光部支持部材)6と、放熱板7と、集光レンズ支持部材(光学部材支持部材)8と、反射鏡9と、位置ずれ検出装置20と、位置ずれ調整装置40と、を備えている。
【0060】
(レーザ素子2)
レーザ素子2は、励起光を出射する励起光源として機能する発光素子である。このレーザ素子2は、複数設けられていてもよい。その場合、複数のレーザ素子2のそれぞれから励起光としてのレーザ光が発振される。
【0061】
レーザ素子2は、1チップに1つの発光点を有するものであってもよく、1チップに複数の発光点を有するものであってもよい。レーザ素子2のレーザ光の波長は、例えば、405nm(青紫色)または450nm(青色)であるが、これらに限定されず、発光部3に含める蛍光体の種類に応じて適宜選択されればよい。
【0062】
また、励起光源(発光素子)として、レーザ素子2の代わりに、発光ダイオード(LED)を用いることも可能である。
【0063】
本実施形態では、波長405nm、出力500mWの半導体レーザチップを20個並べたものを1パッケージに実装したものを用いた。
【0064】
レーザ素子2は、レーザ素子支持部材5により支持されている。具体的には、レーザ素子2は、レーザ素子支持部材5の発光部3に対向する主面であるレーザ素子支持面(励起光源支持面)5a上に配置されており、発光部3に向け、レーザ光を出射する。
【0065】
レーザ素子支持部材5は、例えば、レーザ素子2を駆動する駆動回路(図示省略)を搭載しており、この駆動回路は、レーザ素子2に駆動電流を供給し、レーザ素子2を駆動する。
【0066】
(発光部3)
発光部3は、レーザ素子2から出射され、集光レンズ4によって集光されたレーザ光を受けて蛍光を発するものである。発光部3は、レーザ光を受けて発光する蛍光体(蛍光物質)を含んでいる。具体的には、発光部3は、封止材の内部に蛍光体が分散されているもの、または、蛍光体を押し固めたもの、または押し固めて熱処理を施したもの、または、蛍光体を堆積させて熱処理などの適切な後処理を施したものである。発光部3は、レーザ光を蛍光に変換するため、波長変換素子であると言える。
【0067】
この発光部3は、放熱板7の上かつ反射鏡9のほぼ焦点位置に配置されている。そのため、発光部3から出射した蛍光は、反射鏡9の反射曲面に反射することで、その光路が制御される。発光部3の上面および側面にレーザ光の反射を防止する反射防止構造が形成されていてもよい。
【0068】
なお、発光部3を焦点位置からずれた位置に配置することで、意図的に照明光の照射範囲を広げてもよい。
【0069】
発光部3の蛍光体として、例えば、酸窒化物蛍光体(例えば、サイアロン蛍光体:SiAlON)、窒化物蛍光体(例えば、カズン蛍光体:CASN)、またはIII−V族化合物半導体ナノ粒子蛍光体(例えば、インジュウムリン:InP)を用いることができる。これらの蛍光体は、レーザ素子2から発せられた高い出力(および/または光密度)のレーザ光に対しての熱耐性が高く、レーザ照明光源に最適である。ただし、発光部3の蛍光体は、上述のものに限定されず、酸化物蛍光体や硫化物蛍光体など、その他の蛍光体であってもよい。
【0070】
この発光装置をヘッドランプとして用いるときは、ヘッドランプの照明光は、所定の範囲の色度を有する白色にしなければならないことが、法律により規定されている。そのため、発光部3には、照明光が白色となるように選択された蛍光体を含ませるようにする。
【0071】
例えば、青色、緑色および赤色の蛍光体を発光部3に含め、405nmのレーザ光を照射すると白色光が発生する。または、黄色の蛍光体(または緑色および赤色の蛍光体)を発光部3に含め、450nm(青色)のレーザ光(または、440nm以上490nm以下の波長範囲にピーク波長を有する、いわゆる青色近傍のレーザ光)を照射することでも白色光が得られる。
【0072】
発光部3の封止材は、例えば、ガラス材(無機ガラス、有機無機ハイブリッドガラス)、シリコーン樹脂等の樹脂材料である。ガラス材として低融点ガラスを用いてもよい。封止材は、励起光の波長である405nm付近の波長領域および蛍光体の発光スペクトル領域の波長領域において特に透明性の高いものが好ましく、レーザ光が高出力の場合には、耐熱性の高いものが好ましい。
【0073】
本実施形態では、蛍光体として、窒化物蛍光体であるCASN:Euおよび酸窒化物蛍光体であるCa−αSiAlON:Ceを使用し、封止材として低融点ガラスを使用した。これらを重量比で(CASN:Eu):(Ca−αSiAlON:Ce)=1:3となるように混合したものを、電気泳動により放熱板7上に堆積させ、10mm角、厚さ0.5mmの直方体の蛍光体堆積物を得た。さらにこの蛍光体堆積物の表面が覆われる程度に、低融点ガラスの粉末を被せ、低融点ガラスのガラス軟化点以上の温度で熱処理を行なうことで蛍光体堆積物を封止し、発光部を得た。
【0074】
発光部3は、放熱板7を介して金属ベース6により支持されている。具体的には、発光部3は、金属ベース6のレーザ素子2に対向する発光部支持面6a上に配置されている。発光部3は、レーザ素子2から出射されるレーザ光を受け、そのレーザ光により発光する。
【0075】
発光部支持面6aには、放熱板7を埋め込むための孔が設けられている。発光部3は、放熱板7に直接接触するように配置されている。放熱板7は、レーザ素子2から出射されたレーザ光の照射による、発光部3からの発熱を放熱する役目を担っている。
【0076】
放熱板7として銅を用いた。銅のサイズは20mm角、厚さ2mmの直方体を使用した。そして、金属ベース6として、放熱板7を埋めこむための孔を有したアルミブロックを使用した。その大きさは40mm角、厚さ5mmの直方体である。放熱板7と金属ベース6の孔との間には熱伝導性のエラストマーを充填し、レーザ光により照射された発光部3において発生した熱が放熱板7に伝導し、放熱板7に伝導した熱が金属ベース6に伝わりやすくなるようにした。さらに、孔を有している側の面は鏡面とした。
【0077】
金属ベース6の孔を有する側には、後述するようにレーザ光を照射し、反射させる必要があるため、熱に強く、レーザ光を高い反射率、少なくとも50%以上の反射率で反射する材料を使用した方がよい。また、照射位置のみ鏡面を有していればよいので、そのような条件を満たすものであれば他の材料であってもよい。
【0078】
(集光レンズ4)
集光レンズ4は、レーザ素子2から出射したレーザ光が発光部3に円形あるいは楕円形のスポットとして照射されるように、当該レーザ光を集光するためのレンズである。
【0079】
集光レンズ4の例としては、発光部3に対する凸面を有する両凸レンズ、平凸レンズ、凸メニスカスレンズ等が例示できる。
【0080】
なお、上述した例の他、発光部3の形状またはレーザ素子2の個数、レーザ素子2から出射されるレーザ光の配光特性に応じて、任意の軸を持つ凹面および凸面を有する独立したレンズの組合せ、任意の軸を持つ凸面および凸面を有する独立したレンズの組合せなどを採用しても良い。
【0081】
これにより、発光部3の形状またはレーザ素子2の個数、レーザ素子2から出射されるレーザ光の配光特性に応じて適切なレンズの組合せを採用することで、発光部3の発光効率を高めることができる。
【0082】
また、発光部3の形状またはレーザ素子2の個数、レーザ素子2から出射されるレーザ光の配光特性に応じて、任意の軸を持つ凹面および凸面を有するレンズを一体化した複合レンズ、任意の軸を持つ凸面および凸面を有する複合レンズを一体化したレンズを一体化した複合レンズなどを採用しても良い。
【0083】
これにより、光学系全体の部品点数を少なくし、光学系全体のサイズを小さくしつつ、発光部3の形状またはレーザ素子2の個数、レーザ素子2から出射されるレーザ光の配光特性に応じて適切な複合レンズを採用することで、発光部3の発光効率を高めることができる。
【0084】
本実施形態では、直径20mmの凸レンズを用いた。
【0085】
集光レンズ4は、集光レンズ支持部材8により支持されている。集光レンズ支持部材8には開口部8aが設けられている。レーザ素子2から出射されるレーザ光は、この開口部8aを通り、集光レンズ支持部材8のレーザ素子2側から発光部3側へ進行する。集光レンズ4は、集光レンズ支持部材8の開口部8aを覆いつつ、集光レンズ支持部材8の一主面上に配置されている。発光装置101では、集光レンズ4は、集光レンズ支持部材8の発光部3に対向する主面上に配置されているが、もちろん、集光レンズ支持部材8のレーザ素子2に対向する主面上に配置されていても構わない。
【0086】
集光レンズ4は、開口部8aを通過する、レーザ素子2から出射されたレーザ光を集光し、発光部3に照射する。
【0087】
(反射鏡9)
反射鏡9は、発光部3が発生させた蛍光を反射し、所定の立体角内を進む光線束(照明光)を形成する。
【0088】
また、反射鏡9は、発光部3に照射された励起光のうち、発光部3で反射や散乱された光も反射し、所定の立体角内を進む光線束(照明光)を形成する。ここで、照明光とは、最終的に発光装置101から放出されてくる光のことを指し、(1)発光部3から発生する蛍光のみで構成させる場合と、(2)発光部3から発生する蛍光と、発光部3に含まれる蛍光体の励起に使用されること無く、発光部3で反射や散乱された励起光と、の混色で構成される場合と、がある。この反射鏡9は、例えば、金属薄膜がその表面に形成された部材であってもよいし、そのものが金属製の部材であってもよい。
【0089】
反射鏡9は、回転軸を中心として図形(楕円、円、放物線)を回転させることによって形成される曲面の少なくとも一部をその反射面に含んでいるものであればよい。
【0090】
本実施形態では、放物線の対称軸を回転軸として当該放物線を回転させることによって形成される曲面(放物曲面)を、上記回転軸を含む平面で切断することによって得られる部分曲面をその反射面に含んでいる。
【0091】
このような形状の反射鏡9が、発光部3の、側面よりも面積の広い上面の上方にその一部が配置されている。すなわち、反射鏡9は、発光部3の上面を覆う位置に配置されている。別の観点から説明すれば、発光部3の側面の一部は、反射鏡9の開口部の方向を向いている。
【0092】
発光部3と反射鏡9との位置関係を上述のものにすることで、発光部3から発生する蛍光を狭い立体角内に効率的に投光することができ、その結果、蛍光の利用効率を高めることができる。
【0093】
また、反射鏡9には、レーザ素子2およびレーザ素子24の各々のレーザ光を透過または通過させる窓部9aおよび窓9bが形成されている。この窓部9aおよび窓9bは、開口部であってもよいし、レーザ光を透過可能な透明部材を含むものであってもよい。例えば、レーザ光を透過し、白色光(発光部3の蛍光)を反射するフィルターを設けた透明板を窓部9aおよび窓9bとして設けてもよい。この構成では、発光部3の蛍光が窓部9aおよび窓9bから漏れることを防止できる。
【0094】
(位置ずれ検出装置20)
位置ずれ検出装置20は、検知部(検知手段)21と、判定部(判定手段)22と、記憶部23と、レーザ素子24と、コリメータレンズ25と、ビームスプリッタ(ハーフミラー)26と、集光レンズ27と、蛍光カットフィルター(光機能フィルター)28と、レンズ29と、受光素子(受光部)30と、を有している。
【0095】
(検知部21)
検知部21は、発光装置101における、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を検知する。検知部21は、受光素子30と接続しており、受光素子30からその受光結果を受け取る。検知部21は、その受光結果を基に、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を検知する。具体的には、検知部21は、レーザ素子2から出射されたレーザ光が所望の照射面積により発光部3に照射されるよう、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を検知する。
【0096】
ここで、この「相対位置関係」とは、例えば、発光装置101のように、レーザ素子2、集光レンズ4および発光部3がこの順に配置されている場合、レーザ素子2と集光レンズ4との間の相対距離、集光レンズ4と発光部3との間の相対距離、および、レーザ素子2と発光部3との間の相対距離、のことである。
【0097】
このような「相対位置関係」には、その基準とすべき「基準相対位置関係」が設定されている。レーザ素子2から出射し、集光レンズ4を経由して集光されたレーザ光は、発光部3に照射されるが、この「基準相対位置関係」は、発光部3に照射される照射面積を調整するための基準となる。レーザ素子2、集光レンズ4および発光部3の間の「相対位置関係」が「基準相対位置関係」である場合、レーザ素子2から出射されるレーザ光は発光部3に所望の照射面積により照射される。レーザ素子2、集光レンズ4および発光部3は、同一の光軸上に並ぶように配置されている。「基準相対位置関係」は、レーザ素子2からのレーザ光が発光部3の所望の位置および照明面積により照射される際における、「相対位置関係」となる。
【0098】
(判定部22)
判定部22は、検知部21の検知結果と、レーザ素子2、集光レンズ4および発光部3の間の基準相対位置関係とを比較し、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係が基準相対位置関係から、ずれているか否かを判定する。
【0099】
判定部22は、検知部21からその検知結果である、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を受け取ると、記憶部23に予め記憶されている、レーザ素子2、集光レンズ4および発光部3の間の基準相対位置関係を示す基準相対位置関係情報を取得する。判定部22は、記憶部23から取得した基準相対位置関係情報が示す基準相対位置関係と、検知部21の検知結果とを比較し、上記判定を行なう。
【0100】
このようにして、判定部22は上記判定を行ない、その判定結果を位置ずれ調整装置40に出力する。
【0101】
なお、判定部22の判定結果については、検知部21により検知された相対位置関係が基準相対位置関係からどの程度ずれているか、具体的なずれ量を含んでいることが好ましい。この場合、後述する位置ずれ調整装置40は、この具体的なずれ量を用いて、検知部21により検知された相対位置関係を基準相対位置関係に引き戻すために必要な調整量を決定することが可能となる。
【0102】
(記憶部23)
記憶部23は、上述したように、レーザ素子2、集光レンズ4および発光部3の間の基準相対位置関係を示す基準相対位置関係情報を記憶する。記憶部23は、例えば、不揮発性の半導体メモリやハードディスク等を用いることができる。
【0103】
(レーザ素子24)
レーザ素子(レーザ光源)24は、レーザ素子2と同様、レーザ素子支持部材5により支持されている。具体的には、レーザ素子24は、レーザ素子支持部材5のレーザ素子支持面5a上に配置されており、発光部3を支持する金属ベース6に向け、レーザ光を出射する。
【0104】
レーザ素子24を駆動する駆動回路(図示省略)は、例えば、レーザ素子支持部材5に搭載され、レーザ素子24に駆動電流を供給する。レーザ素子24は、この駆動電流により、レーザ光を出射する。
【0105】
レーザ素子2とレーザ素子24とは共に、レーザ素子支持部材5に支持されており、これにより、レーザ素子2とレーザ素子24とは、お互いに独立して動くことはない。
【0106】
(コリメータレンズ25)
コリメータレンズ25は、レーザ素子24から出射されたレーザ光を平行光に変換する。レーザ素子24から出射されたレーザ光は、コリメータレンズ25に入射すると、平行光に変換され、ビームスプリッタ26に入射する。
【0107】
(ビームスプリッタ26)
ビームスプリッタ26は、コリメータレンズ25から出射された平行光が入射されると、そのまま透過し、集光レンズ27に向け、出射する。
【0108】
また、ビームスプリッタ26は、後述するように、金属ベース6から反射する反射光が入射されると、そのまま透過することなく、受光素子30に向け、反射する。
【0109】
(集光レンズ27)
集光レンズ27は、集光レンズ4と同様、集光レンズ支持部材8により支持されている。集光レンズ支持部材8にはさらに、開口部8bが設けられている。レーザ素子24から出射されるレーザ光は、この開口部8bを通り、集光レンズ支持部材8のレーザ素子24側から金属ベース6側へ進行する。集光レンズ27は、集光レンズ支持部材8の開口部8bを覆いつつ、集光レンズ支持部材8の一主面上に配置されている。発光装置101では、集光レンズ27は、集光レンズ支持部材8の金属ベース6に対向する主面上に配置されているが、もちろん、集光レンズ支持部材8のレーザ素子24に対向する主面上に配置されていても構わない。
【0110】
集光レンズ27は、開口部8bを通過する、レーザ素子24から出射されたレーザ光を集光し、金属ベース6に照射する。金属ベース6に照射されたレーザ光は、金属ベース6の発光部支持面6aにより反射し(図1のAで示す箇所)、集光レンズ27に向け、進行する。発光部支持面6aから反射したレーザ光は、集光レンズ27および開口部8bをこの順に通過し、ビームスプリッタ26に入射する。ビームスプリッタ26は、集光レンズ27から出射されたレーザ光が入射されると、受光素子30に向け、出射する。
【0111】
集光レンズ4と集光レンズ27とは共に、集光レンズ支持部材8により支持されており、これにより、集光レンズ4と集光レンズ27とは、お互いに独立して動くことはない。すなわち、集光レンズ4、集光レンズ27および集光レンズ支持部材8のうちのいずれかの1つが動いたとき、その1つと連動し、他の2つも動く。このため、それぞれが独立して動くことはない。
【0112】
(蛍光カットフィルター28)
蛍光カットフィルター28は、発光部3から発光された蛍光を遮断し、且つ、金属ベース6から反射したレーザ光を透過するフィルターである。蛍光カットフィルター28は、図1に示すように、受光素子30がレーザ光を受光する受光面側に配置されている。言い換えれば、蛍光カットフィルター28は、ビームスプリッタ26から受光素子30に向かうレーザ光の光軸上に配置されている。こうすることにより、後述する反射鏡9の窓9aや窓9bから漏れ出す蛍光が受光素子30に入射しないようにすることができるため、受光素子30の誤動作を防止することができる。
【0113】
(レンズ29)
レンズ29は、蛍光カットフィルター28を通過したレーザ光を受光素子30に集光するためのものである。
【0114】
(受光素子30)
受光素子30は、レンズ29から出射されたレーザ光が照射される。このレーザ光は、受光素子30の受光面に光スポットを形成する。受光素子30は、例えば、4つのフォトディテクタを用いており、各々の受光面に照射されたレーザ光を受光する。
【0115】
受光素子30は、このようにして受光したレーザ光の強度分布を検知部21に出力する。検知部21は、受光素子30から出力された強度分布を用いて、レーザ素子24、集光レンズ27および金属ベース6(の図1のAで示す箇所)の間における相対位置関係を検知する。
【0116】
ここで、位置ずれ検出装置20の、レーザ素子24、集光レンズ27および金属ベース6の間における相対位置関係と、レーザ素子2、集光レンズ4および発光部3の間における相対位置関係とは、同一のものとなる。なぜなら、レーザ素子2とレーザ素子24とは共に、同一のレーザ素子支持部材5により支持されており、集光レンズ4と集光レンズ27とは共に、同一の集光レンズ支持部材8により支持されており、発光部3は、金属ベース6により支持されているからである。すなわち、レーザ素子2が動けば、位置ずれ検出装置20のレーザ素子24も同じだけ同じ方向に動く。集光レンズ4が動けば、位置ずれ検出装置20の集光レンズ27も同じだけ同じ方向に動く。発光部3が動くということは、金属ベース6が動くことを意味する。
【0117】
このようにして検知部21は、受光素子30から出力されたレーザ光の強度を用いて、間接的に、レーザ素子2、集光レンズ4および発光部3の間における相対位置関係を検知することができる。
【0118】
(基準相対位置関係)
基準相対位置関係は、例えば、受光素子30の受光面における、光スポットの径が、ある大きさの場合における、レーザ素子2、集光レンズ4および発光部3の間における相対位置関係とすればよい。検知部21は、相対位置関係として、光スポットの径の大きさを検知する。判定部22は、その光スポットの径の大きさが、基準相対位置関係にある場合における光スポットの径の大きさから変化したとき、基準相対位置関係からのずれがあると判定すればよい。
【0119】
また、基準相対位置関係は、3つ以上の対象間の相対位置を対象にしている。このため、それら3つの基準相対位置関係における基準位置は1つに限らず、複数あってもよい。換言すれば、レーザ素子2からのレーザ光が、ある照射面積で発光部3に照射されるためには、レーザ素子2、集光レンズ4および発光部3の間における相対位置関係は、一通りには限らない。
【0120】
この基準相対位置関係から、何らかの衝撃により、レーザ素子2、集光レンズ4および発光部3のうちの一部品でも動き、それら2つの間における相対位置関係が基準相対位置関係からずれた場合、後述するように、位置ずれ調整装置40により、相対位置関係が基準相対位置関係に引き戻される。
【0121】
(位置ずれ調整装置40)
位置ずれ調整装置40は、アクチュエータ駆動回路41と、アクチュエータ42と、連結部材43と、を有している。
【0122】
(アクチュエータ駆動回路41)
アクチュエータ駆動回路41は、位置ずれ検出装置20の判定部22から判定結果を取得する。アクチュエータ駆動回路41は、この判定結果の取得により、レーザ素子2、集光レンズ4および発光部3の間における相対位置関係が基準相対位置関係からずれたことを認識する。
【0123】
アクチュエータ駆動回路41は、判定部22の判定結果に含まれるずれ量を抽出する。このずれ量から、アクチュエータ駆動回路41は、アクチュエータ42および連結部材43から構成された移動機構44による移動を駆動するための駆動信号を生成する。この駆動信号は、移動機構44による移動量を指示するためのものである。移動機構44は、この駆動信号により、その移動量を決定する。なお、移動量とは、移動機構44により、集光レンズ支持部材8が移動する量のことであり、水平方向における移動、および、鉛直方向における移動、のいずれであっても構わない。
【0124】
(アクチュエータ42および連結部材43)
アクチュエータ42は、電磁力により、その位置が変位する駆動機構を有し、連結部材43を介し、集光レンズ支持部材8に連結されている。アクチュエータ42は、連結部材43を用いて、集光レンズ支持部材8を移動させることができる。すなわち、上述したように、アクチュエータ42および連結部材43は、集光レンズ支持部材8を移動させるための移動機構44を構成している。
【0125】
アクチュエータ42は、アクチュエータ駆動回路41からの駆動信号を基に、集光レンズ支持部材8の移動量を決定し、その移動量に従い、集光レンズ支持部材8を移動させる。
【0126】
集光レンズ支持部材8の移動により、集光レンズ4も移動する。つまり、集光レンズ4の焦点位置も変位する。集光レンズ4の焦点位置を変化させることで、発光部3に照射されるレーザ光の照射面積を変化させることができる。
【0127】
なお、集光レンズ27は、金属ベース6で焦点が合うように動くが、集光レンズ4は発光部3で焦点が合うことを避けなければならない。言い換えると、発光部3での焦点がずれ、所望の照射面積になる場合の集光レンズ4の位置において、金属ベース6で焦点が合うように集光レンズ27の位置を設定しなければならない。
【0128】
ここで、アクチュエータ42が動く手段として電磁力を用いているがこれに限られるわけではない。位置ずれ検出装置20が位置ずれを検出したときに、集光レンズ4を支持する集光レンズ支持部材8を動かすことにより、発光部3に照射されるレーザ光を所望の照射面積にできるような速さで動く手段であればよい。例えばその他の手段としてはモータが挙げられる。
【0129】
(発光装置101の動作原理)
レーザ素子2から出射されたレーザ光は、集光レンズ支持部材8に設けられた開口部8aを通り、集光レンズ4に入射する。集光レンズ4を通過することにより、発光部3で所望のビーム形状になるように成形される。レーザ光は、集光レンズ4を通過した後、反射鏡9に設けられた、レーザ光を透過または通過させるための窓9aを通って、発光部3を照射する。発光部3は、放熱板7の上に配置されており、放熱板7は金属ベース6に設置されている。
【0130】
レーザ光が照射されると、発光部3から蛍光が放射される。しかし、一部のレーザ光は、発光部3で反射、散乱される。また、発光部3に照射されたレーザ光のうち、蛍光に変換されなかった一部のレーザ光は熱に変換され、この発生した熱の一部は放熱板7、金属ベース6の順に伝導する。これにより、発光部3の放熱が行われる。
【0131】
なお、発光部3に照射されたレーザ光は、発光部3により蛍光に変換されたり、発光部3で反射、散乱したりするが、これらの光を混合することで最終的に所望の照明光を得ることができる。
【0132】
(位置ずれ調整方法)
図2は、位置ずれ検出装置20および位置ずれ調整装置40による位置ずれ調整方法の処理手順を示すフローチャートである。
【0133】
図2に示すように、まず、位置ずれ検出装置20の検知部21は、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を検知する(ステップS101)。
【0134】
次に、位置ずれ検出装置20の判定部22は、検知部21から検知結果を受け取ると、記憶部23から基準相対位置関係を示す基準相対位置関係情報を取得する(ステップS102)。
【0135】
次に、判定部22は、検知部21の検知結果である、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係と、記憶部23から取得した基準相対位置関係情報が示す基準相対位置関係とを比較する(ステップS103)。そして、判定部22は、その比較結果から、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係が、基準相対位置関係からずれているか否かを判定する(ステップS104)。
【0136】
次に、位置ずれ調整装置40のアクチュエータ駆動回路41は、判定部22から判定結果を受け取ると、その判定結果に含まれる、具体的なずれ量を抽出する。そして、アクチュエータ駆動回路41は、そのずれ量を用いて、検知部21により検知された相対位置関係を基準相対位置関係に引き戻すために必要な調整量(引き戻し量)を算出する(ステップS105)。本ステップS105において、アクチュエータ駆動回路41は、その調整量を指示する駆動信号をアクチュエータ42に出力する。
【0137】
次に、位置ずれ調整装置40のアクチュエータ42は、アクチュエータ駆動回路41からの駆動信号により連結部材43を移動させる。その移動により、集光レンズ支持部材8を移動させ、そうすることにより、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を基準相対位置関係に引き戻し、相対位置関係の調整を実行する(ステップS106)。
【0138】
このようにして、位置ずれ検出装置20および位置ずれ調整装置40による位置ずれ調整方法が終了する。
【0139】
(発光装置101の効果)
発光部3へのレーザ光照射面積を一定にでき、発光部3からの蛍光の強度が時間に対して変化しないため、照明光のちらつき(フリッカー)を防止することができる。したがって、人の目を疲れにくくすることができる。
【0140】
〔実施形態2〕
本発明の他の実施形態について図3に基づいて説明すれば、以下のとおりである。図3は、本発明の実施形態2に係る発光装置102の概略構成を示す断面図である。なお、実施形態1と同様の部材に関しては、同じ符号を付し、その説明を省略する。
【0141】
発光装置102は、図3に示すように、発光部3と、放熱板7と、レーザ素子支持部材10と、金属ベース11と、集光レンズ支持部材12と、反射鏡13と、位置ずれ検出装置20aと、位置ずれ調整装置40と、を備えている。
【0142】
発光装置102が発光装置101と異なる点は、発光装置101のレーザ素子2およびレーザ素子24を1つのレーザ素子24aにより兼ねている点である。なお、レーザ素子支持部材10がレーザ素子支持部材5と異なる点は、1つのレーザ素子24aのみを支持する点である。金属ベース11が金属ベース6と異なる点は、金属ベース11の発光部支持面11aにレーザ光が照射されない点である。集光レンズ支持部材12が集光レンズ支持部材8と異なる点は、1つの集光レンズ27のみを支持する点である。反射鏡13が反射鏡9と異なる点は、1つのレーザ素子24aからのレーザ光を透過または通過する1つの窓13aのみを有する点である。
【0143】
発光装置102は、発光部3の発光に寄与するレーザ光を出射するレーザ素子と、位置ずれ検出装置20aが用いるレーザ光を出射するレーザ素子とを、1つのレーザ素子24aにより兼ねており、発光部3の発光に寄与せず、発光部3から反射したレーザ光を位置ずれ検出装置20aが用いる機構である。
【0144】
レーザ素子24aから出射されたレーザ光は、コリメータレンズ25により所望の形状になるように成形された後、ビームスプリッタ26を透過し、集光レンズ支持部材12に設けられた開口部12aを通って、集光レンズ27に入射する。
【0145】
集光レンズ27に入射した、レンズ素子24aのレーザ光は、発光部3に照射される。発光部3の発光に寄与せず、発光部3から反射したレーザ光は、集光レンズ27に入射後、ビームスプリッタ26で反射し、蛍光カットフィルター28に入射する。
【0146】
蛍光カットフィルター28を透過したレーザ光は、レンズ29に入射し、レンズ29により非点収差を付与され、受光素子30上に光スポットを形成する。受光素子30は、4つの各受光面に照射された光スポットを受光する。
【0147】
ここで、発光装置102においては、焦点を合わさずに発光部3での照射面積を所望の照射面積に保つことが目的であるため、受光素子30の4つの各受光面に照射された光スポットの強度分布は、焦点がずれた位置を示す強度分布を基準位置としなければならない。そのような基準位置を予め設定しておくことにより、基準位置に戻すような制御を行なうことができる。
【0148】
(発光装置102の効果)
本実施形態においては、2つのレーザ素子を用意する必要がなくなり、製造工程や費用、さらには装置全体の大きさを抑えることができる。
【0149】
〔実施形態3〕
本発明の他の実施形態について図4に基づいて説明すれば、以下のとおりである。図4は、本発明の実施形態3に係る発光装置103の概略構成を示す断面図である。発光装置103が、発光装置101や発光装置102と異なる点は、位置ずれ検出装置20および位置ずれ調整装置40や、実施形態2の位置ずれ検出装置20aおよび位置ずれ調整装置40に代えて、バネ等の弾性部材52および弾性部材53を用いた点である。
【0150】
発光装置103では、レーザ素子支持部材10と集光レンズ支持部材12との間に弾性部材52が接続されており、集光レンズ支持部材12と金属ベース51との間に弾性部材53が接続されている。
【0151】
弾性部材52は、レーザ素子支持部材10と集光レンズ支持部材12との間の相対位置関係を一定に保持する。同様に、弾性部材53は、集光レンズ支持部材12と金属ベース51との間の相対位置関係を一定に保持する。
【0152】
このため、実施形態1や実施形態2よりも簡素な構成により、発光部3へのレーザ光照射面積を一定にすることができる。
【0153】
〔実施形態4〕
本発明の他の実施形態について図5に基づいて説明すれば、以下のとおりである。図5は、本発明の実施形態4に係る発光装置104の概略構成を示す断面図である。なお、実施形態1〜3と同様の部材に関しては、同じ符号を付し、その説明を省略する。
【0154】
図5に示すように、発光装置104は、レーザ素子2と、発光部3と、集光レンズ4と、レーザ素子支持部材15と、金属ベース6と、放熱板7と、集光レンズ支持部材16と、反射鏡14と、位置ずれ検出装置20bと、位置ずれ調整装置40bと、を備えている。
【0155】
位置ずれ検出装置20bは、検知部21bと、判定部22bと、記憶部23bと、カメラ31と、カメラ32と、マーカー33と、マーカー34と、を有している。
【0156】
カメラ31は、集光レンズ支持部材16により支持されている。具体的には、カメラ31は、集光レンズ支持部材16に嵌め込まれており、反射鏡14のマーカー固定部14b上に配置されたマーカー33を撮像する。
【0157】
カメラ31は、例えば、CCDカメラを用いることができる。CCDカメラは、デジタルカメラ等のピント調整で用いられているパッシブ型のオートフォーカス機能を備えていてもよい。
【0158】
マーカー33は、上で述べたように、反射鏡14のマーカー固定部14b上に配置されている。マーカー33はさらに、カメラ31の撮像領域に含まれている。ここで、反射鏡14と金属ベース6とは、お互いからの位置がずれないように、予め固定されている。例えば、反射鏡14と金属ベース6とを一体化してもよいし、両者を他の同一の部材に固定しておいてもよい。これにより、マーカー33と発光部3との相対位置関係が固定される。
【0159】
カメラ31は、マーカー33を撮像し、その撮像結果を検知部21bに出力する。検知部21bは、カメラ31から出力された撮像結果を用いて、カメラ31とマーカー33との相対位置関係を検知する。
【0160】
上述したように、マーカー33と発光部3との相対位置関係は固定されている。したがって、カメラ31とマーカー33との相対位置関係から、カメラ31と発光部3との相対位置関係を導出することができる。一方、カメラ31は、集光レンズ支持部材16に固定されており、カメラ31と集光レンズ4との相対位置関係も固定されている。カメラ31とマーカー33との相対位置関係から、集光レンズ4とマーカー33との相対位置関係を導出することができる。
【0161】
すなわち、検知部21bは、これらのことから、カメラ31の撮像結果を用いて、集光レンズ4と発光部3との相対位置関係を導出することができる。
【0162】
カメラ32は、レーザ素子支持部材15により支持されている。具体的には、カメラ32は、レーザ素子支持部材15に嵌め込まれており、集光レンズ支持部材16上の配置されたマーカー34を撮像する。
【0163】
カメラ32は、カメラ31と同様、例えば、CCDカメラを用いることができる。CCDカメラは、デジタルカメラ等のピント調整で用いられているパッシブ型のオートフォーカス機能を備えていてもよい。
【0164】
マーカー34は、上で述べたように、集光レンズ支持部材16上に配置されている。マーカー34はさらに、カメラ32の撮像領域に含まれている。ここで、集光レンズ4は、集光レンズ支持部材16に嵌め込まれている。これにより、マーカー34と集光レンズ支持部材16との相対位置関係が固定される。
【0165】
カメラ32は、マーカー34を撮像し、その撮像結果を検知部21bに出力する。検知部21bは、カメラ32から出力された撮像結果を用いて、カメラ32とマーカー34との相対位置関係を検知する。
【0166】
マーカー34と集光レンズ4との相対位置関係は固定されている。したがって、カメラ32とマーカー34との相対位置関係から、カメラ32と集光レンズ4との相対位置関係を導出することができる。一方、カメラ32は、レーザ素子支持部材15に固定されており、カメラ32とレーザ素子2との相対位置関係も固定されている。カメラ32とマーカー34との相対位置関係から、レーザ素子2とマーカー34との相対位置関係を導出することができる。
【0167】
すなわち、検知部21bは、これらのことから、カメラ32の撮像結果を用いて、レーザ素子2と集光レンズ4との相対位置関係を検知することができる。
【0168】
図6(a)および(b)に、マーカー33およびマーカー34の一例を示す。カメラ31およびカメラ32は、例えば、これらマーカー33およびマーカー34に描かれている、白色部分と黒色部分とを撮像し、それらの間におけるコントラストの強度分布を、検知部21bに出力する。
【0169】
検知部21bは、発光装置104における、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を検知する。検知部21bは、カメラ31およびカメラ32と接続しており、上述したように、カメラ31の撮像結果およびカメラ32の撮像結果を、それぞれ、受け取る。検知部21bは、それらの撮像結果を基に、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を検知する。具体的には、検知部21は、レーザ素子2から出射されたレーザ光が所望の照射面積により発光部3に照射されるよう、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を検知する。
【0170】
判定部22bは、検知部21bの検知結果と、レーザ素子2、集光レンズ4および発光部3の間の基準相対位置関係とを比較し、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係が基準相対位置関係から、ずれているか否かを判定する。
【0171】
位置ずれ調整装置40bは、アクチュエータ駆動回路41bと、アクチュエータ42bと、連結部材43b1と、連結部材43b2と、を有している。
【0172】
アクチュエータ駆動回路41bは、判定部22bの判定結果に含まれるずれ量を抽出する。このずれ量から、アクチュエータ駆動回路41bは、アクチュエータ42b、連結部材43b1および連結部材43b2から構成された移動機構44bによる移動を駆動するための駆動信号を生成する。ここで、連結部材43b1は、アクチュエータ42bとレーザ素子支持部材15とを連結するものであり、連結部材43b2は、アクチュエータ42bと集光レンズ支持部材16とを連結するものである。したがって、この駆動信号は、移動機構44bによる移動量、すなわち、レーザ素子支持部材15および集光レンズ支持部材16の各々が移動する量を示す信号である。そして、その移動方向は、各々の、水平方向における移動、および、鉛直方向における移動、のいずれであっても構わない。
【0173】
なお、本実施形態では、位置ずれ検出装置20bは、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係の、基準相対位置関係からのずれを検出し、次に、位置ずれ調整装置40bは、位置ずれ検出装置20bの検出結果を用いて、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を基準相対位置関係に引き戻している。
【0174】
ここで、位置ずれ調整装置40bは、単に一回のみの引き戻し動作により、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を、基準相対位置関係に回復させる必要はない。例えば、複数回の引き戻し動作により、徐々に、基準相対位置関係に近づけていけばよい。そして、位置ずれ検出装置20bが位置ずれを検出しなくなるまで、複数回の引き戻し動作を行なえばよい。この場合、位置ずれ検出装置20bは、位置ずれ調整装置40bが引き戻し動作を行なう毎に、ずれを検出することになる。
【0175】
このような形態は、例えば、デジタルカメラ等のピント調整で用いられるパッシブ型のオートフォーカス機能、すなわち、実際に動かしてみて、ピントが合った点で動作を止めるカメラのピント合わせの如く実行される形態である。
【0176】
〔実施形態5〕
本発明の実施形態5は、反射型の発光装置に係る実施形態1を、透過型の発光装置に適用した形態である。以下、実施形態1と異なる点を説明する。
【0177】
本発明の実施形態5について図7に基づいて説明すれば、以下のとおりである。図7は、本発明の実施形態5に係る発光装置105の概略構成を示す断面図である。なお、実施形態1〜4と同様の部材に関しては、同じ符号を付し、その説明を省略する。
【0178】
図7に示すように、発光装置105は、レーザ素子2と、集光レンズ71と、光ファイバー72と、フェルール(光学部材)73と、発光部3と、レーザ素子支持部材17と、フェルール支持部材18と、発光部支持部材19と、位置ずれ検出装置20cと、位置ずれ調整装置40cと、を備えている。
【0179】
光ファイバー72は、レーザ素子2が発振したレーザ光を発光部3へと導く導光部材であり、複数の光ファイバーの束である。この光ファイバー72は、例えば、集光レンズ71を通して、レーザ素子2からレーザ光が入射される。光ファイバー72の先端は、フェルール73により保持され、フェルール支持部材18に支持されている。
【0180】
発光部3は、レーザ光を透過する透過部材を用いた発光部支持部材19により支持されている。光ファイバー72の先端から出射されたレーザ光は、発光部支持部材19を透過し、発光部3に照射される。
【0181】
位置ずれ検出装置20cは、検知部21cと、判定部22cと、記憶部23cと、レーザ素子24cと、コリメータレンズ25cと、ビームスプリッタ(ハーフミラー)26cと、受光素子30cと、反射部材35と、を有している。レーザ素子24cから出射されたレーザ光は、コリメータレンズ25cを通過し、ビームスプリッタ26cに入射する。ビームスプリッタ26cから出射されたレーザ光は、反射部材35に向かい、反射部材35により反射された後、ビームスプリッタ26cを通過し、受光素子30cに照射される。
【0182】
レーザ素子24cは、フェルール支持部材18に嵌め込まれており、一方、反射部材35は、発光部支持部材19に固定されている。位置ずれ検出装置20cは、このレーザ素子24cと反射部材35との相対位置関係を検知することにより、フェルール支持部材18により支持されたフェルール73、すなわち、光ファイバー72の先端と、発光部支持部材19により支持された発光部3との相対位置関係を検知する。
【0183】
〔実施形態6〕
本発明の実施形態6は、反射型の発光装置に係る実施形態4を、透過型の発光装置に適用した形態である。以下、実施形態4と異なる点を説明する。
【0184】
本発明の実施形態6について図8に基づいて説明すれば、以下のとおりである。図8は、本発明の実施形態6に係る発光装置106の概略構成を示す断面図である。なお、実施形態1〜5と同様の部材に関しては、同じ符号を付し、その説明を省略する。
【0185】
図8に示すように、発光装置106は、レーザ素子2と、集光レンズ71と、光ファイバー72と、フェルール73と、発光部3と、レーザ素子支持部材17と、フェルール支持部材18と、発光部支持部材19aと、位置ずれ検出装置20dと、位置ずれ調整装置40dと、を備えている。
【0186】
位置ずれ検出装置20dは、検知部21dと、判定部22dと、記憶部23dと、カメラ31dと、マーカー33dと、を有している。
【0187】
カメラ31dは、フェルール支持部材18に嵌め込まれており、一方、マーカー33dは、発光部支持部材19aに固定されている。位置ずれ検出装置20dは、このカメラ31dとマーカー33dとの相対位置関係を検知することにより、フェルール支持部材18により支持されたフェルール73、すなわち、光ファイバー72の先端と、発光部支持部材19aにより支持された発光部3との相対位置関係を検知する。
【0188】
上記の実施形態1〜6では、位置ずれ検出装置および位置ずれ調整装置を備えた発光装置について記載したが、位置ずれ検出装置および位置ずれ調整装置を発光装置から独立させてもよい。その場合は、位置ずれ検出装置および位置ずれ調整装置をそれぞれ、発光装置から脱着可能な形態とすればよい。
【0189】
〔本発明における集光の定義〕
上記の実施形態1〜6では、例えば、図1に示すように、レーザ素子2から出射されたレーザ光は、集光レンズ4を通過することにより、発光部3に向かって収束(集束、収斂)しつつ、発光部3に照射されている。すなわち、集光レンズ4は、レーザ素子2から出射された光を発光部3に向けて収束させるものであった。したがって、上記の実施形態1〜6においては、集光レンズ4の「集光」は、「光を狭める」、言い換えれば、「一点に集める」という意義を持つと言える。
【0190】
しかしながら、本発明における「集光」の意義は、このような「光を狭める」や「一点に集める」に限られるものではない。本発明における「集光」の意義は、要は、「所望の照射領域に光が照射されるようにする」ことのみであり、上で述べたような、「光を狭める」や「一点に集める」といった意義のみならず、「光を広げる」、より具体的には、「一点から広げる」といった意義や、「光の進行方向を変化させない」といった意義も含むものである。以下、後者の意義について、具体例を説明する。
【0191】
例えば、図9に、本発明に好適な半導体レーザ装置を示す。図9(a)は、半導体レーザ装置81と発光部3との位置関係を示す図であり、図9(b)は、半導体レーザ装置81の外観図である。また、図10は、図9(b)の半導体レーザ装置81の断面図である。
【0192】
図9(a)に示すように、半導体レーザ装置81は、発光部3に向かって、レーザ光を出射し、そのレーザ光が発光部3に照射される。半導体レーザ装置81は、図9(b)に示すように、レーザ光の出射方向側にキャップガラス84を備えており、このキャップガラス84を通して、半導体レーザ装置81の外部にレーザ光を出射する。
【0193】
図9(b)および図10に示すように、半導体レーザ装置81は、ステム82とキャップ83とからなるパッケージ内に、半導体レーザ素子87が封入されている。キャップ83の開口部には上述のキャップガラス84が融着されており、キャップガラス84は、半導体レーザ素子87から出射されるレーザ光をキャップ83の外部に取り出す機能を有している。そして、キャップガラス84およびキャップ83によって、パッケージ内に半導体レーザ素子87が気密封止されている。
【0194】
半導体レーザ素子87は、後述のヒートシンク88と共に、ステム82上に配置されたレーザ素子保持部材86に埋め込まれ、装填されている。レーザ素子保持部材86は、ステム82上に固定されており、半導体レーザ素子87とキャップガラス84との距離を一定に維持する。これにより、半導体レーザ素子87から出射されたレーザ光はキャップガラス84に確実に入射する。
【0195】
半導体レーザ素子87は、そのレーザ光出射面側を除き、金属等の熱伝導材料を用いたヒートシンク88に取り囲まれている。このヒートシンク88を通して、半導体レーザ素子87が発する熱は、レーザ素子保持部材86側に効率よく放熱される。
【0196】
ステム82には、2本のリード85が取り付けられており、それら2本のリード85を用いて、半導体レーザ素子87を駆動させるための駆動電流が半導体レーザ装置81の外部から供給されている。なお、図10に示すように、2本のリード85は、配線、レーザ素子保持部材86およびヒートシンク88を通して、レーザ素子保持部材86に装填された半導体レーザ素子87の2つの電極に、それぞれ電気的に接続されている。
【0197】
このような半導体レーザ装置81では、キャップガラス84は、本発明の「光学部材」の一例であり、半導体レーザ素子87は、本発明の「励起光源」の一例である。この場合、半導体レーザ素子87から出射されたレーザ光は、キャップガラス84により集光され、発光部3に照射される、と言える。
【0198】
半導体レーザ素子87から出射されたレーザ光は、半導体レーザ素子87の配向特性に従い、ある広がり角をもってキャップガラス84に入射する。キャップガラス84は、自身に入射したレーザ光をほぼ広げることなく、出射する。
【0199】
より具体的には、半導体レーザ素子87から出射されたレーザ光は、キャップガラス84に入射する際、キャップガラス84の界面において、キャップガラス84とその周囲の気体(例えば、キャップ83内に封入された乾燥空気)のそれぞれの屈折率に応じて屈折し、その広がり角度が変化する。キャップガラス84内では、レーザ光は、その広がり角度を維持しつつ、進行する。
【0200】
このレーザ光は、キャップガラス84内を進行し、キャップガラス84から出射する際、再び、キャップガラス84の界面において、キャップガラス84とその周囲の気体のそれぞれの屈折率に応じて屈折し、その広がり角度が再び変化する。
【0201】
半導体レーザ装置81においては、半導体レーザ素子87から出射された後、このような2度にわたる広がり角度の変化を経たレーザ光が、図9に示したように、発光部3に照射される。
【0202】
すなわち、ここでの「集光」の意義は、上記実施の形態1〜6の場合のような、「光を狭める」や「一点に集める」というものではない。上述したような、「光を広げる」、「一点から広げる」、そして、「光の進行方向を変化させない」といった意義となる。
【0203】
このようにして、本発明における「集光」の意義は、「所望の照射領域に光が照射されるようにする」ということであると言える。
【0204】
〔発光装置のその他の構成例〕
本発明の発光装置は、車両用前照灯や、その他の照明装置に適用されてもよい。本発明の照明装置の一例として、ダウンライトを挙げることができる。ダウンライトは、家屋、乗物などの構造物の天井に設置される照明装置である。その他にも、本発明の照明装置は、車両および他の移動物体(例えば、人間・船舶・航空機・潜水艇・ロケットなど)のヘッドランプとして実現されてもよいし、サーチライト、プロジェクタ、ダウンライト以外の室内照明器具(スタンドランプなど)として実現されてもよい。特に、プロジェクタが振動のあるような環境(例えば、車のような移動体)の中で使用される場合、そのプロジェクタの光源である発光装置に本発明を適用することは、非常に有効である。
【0205】
発光部への励起光照射面積を一定にでき、発光部からの蛍光の強度が時間に対して変化しないため、照明光を対象物に照射した時のスペックルの発生を抑制できるとともに、照明光のちらつきを防止することができる。したがって、人の目が疲れにくくすることができる。
【0206】
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
【産業上の利用可能性】
【0207】
本発明は、発光部への照射面積を一定に保つことができ、特に照明装置に好適である。
【符号の説明】
【0208】
2 レーザ素子(励起光源、半導体レーザ)
4 集光レンズ(光学部材)
24、24a、24c レーザ素子
20、20a、20b、20c、20d 位置ずれ検出装置
21、21a、21b、21c、21d 検知部(検知手段)
22、22a、22b、22c、22d 判定部(判定手段)
30、30c 受光素子(受光部)
40、40b、40c 位置ずれ調整装置
52、53 弾性部材
73 フェルール(光学部材)
101、102、103、104、105、106 発光装置

【特許請求の範囲】
【請求項1】
励起光源から出射された励起光を、光学部材を通して発光部に集光し、当該発光部を発光させる発光装置における、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を検知する検知手段と、
上記検知手段の検知結果と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係において基準とすべき基準相対位置関係とを比較し、上記励起光源、上記光学部材および上記発光部の間の、上記検知手段の検知の際における相対位置関係が、上記基準相対位置関係から、ずれているか否かを判定する判定手段と
を備えることを特徴とする位置ずれ検出装置。
【請求項2】
上記基準相対位置関係は、上記発光部に集光される励起光に関する、上記発光部上における照射領域の面積あるいは当該照射領域の上記発光部上における位置のうちの少なくとも一方を基に、予め設定されていることを特徴とする請求項1に記載の位置ずれ検出装置。
【請求項3】
上記励起光源を支持する励起光源支持面および上記発光部を支持する発光部支持面のいずれか一方の面側から他方の面側に向かってレーザ光を出射するレーザ光源と、
上記レーザ光源から出射されたレーザ光のうち、上記他方の面側から反射されて上記一方の面側に戻る戻り光を受光する受光部と
をさらに備え、
上記検知手段は、自身の検知結果として、上記受光部から、上記戻り光の、上記受光部上での焦点形状を取得し、
上記判定手段は、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を上記基準相対位置関係にしたときにおける、上記受光部上の焦点形状である基準焦点形状と、上記検知手段により取得された上記受光部上での焦点形状と、を比較し、それら2つの焦点形状の間に変化があった場合、上記ずれているという判定を行なうことを特徴とする請求項1または2に記載の位置ずれ検出装置。
【請求項4】
上記レーザ光源は、上記発光装置の上記励起光源として用いられており、
上記発光部から発光された光を遮断し、且つ、上記戻り光を透過する光機能フィルターをさらに備え、
上記光機能フィルターは、上記受光部の、光を受光する受光面側に配置されていることを特徴とする請求項3に記載の位置ずれ検出装置。
【請求項5】
上記励起光源を支持する励起光源支持部材あるいは上記光学部材を支持する光学部材支持部材のうちの少なくとも一方に配置されたカメラと、
上記カメラの撮像領域に含まれるマーカーと
をさらに備え、
上記マーカーは、上記励起光源支持部材に配置されたカメラの撮像領域に含まれ、且つ、上記光学部材支持部材に配置されたマーカー、あるいは、上記光学部材支持部材に配置されたカメラの撮像領域に含まれ、且つ、上記発光部を支持する発光部支持部材に配置されたマーカー、のうちの少なくとも一方を含み、
上記検知手段は、自身の検知結果として、上記カメラにより上記マーカーを撮像した撮像結果を取得し、
上記判定手段は、上記カメラと上記マーカーとの間の相対位置関係を上記基準相対位置関係にしたときにおける、上記カメラによる撮像結果と、上記検知手段により取得された撮像結果と、を比較し、それら2つの撮像結果の間に変化があった場合、上記ずれているという判定を行なうことを特徴とする請求項1または2に記載の位置ずれ検出装置。
【請求項6】
励起光を出射する励起光源と、
上記励起光源から出射された励起光を集光する光学部材と、
上記光学部材により集光された励起光により発光する発光部と、
上記励起光源、上記光学部材および上記発光部の間の相対位置関係におけるずれを検出する位置ずれ検出装置と、
上記位置ずれ検出装置により検出されたずれを調整する位置ずれ調整装置と
を備え、
上記位置ずれ検出装置は、
上記励起光源、上記光学部材および上記発光部の間の相対位置関係を検知する検知手段と、
上記検知手段の検知結果と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係において基準とすべき基準相対位置関係とを比較し、上記励起光源、上記光学部材および上記発光部の間の、上記検知手段の検知の際における相対位置関係が、上記基準相対位置関係から、ずれているか否かを判定する判定手段と
を有し、
上記位置ずれ調整装置は、上記位置ずれ検出装置によりずれの検出が行なわれたときに、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を上記基準相対位置関係に引き戻すことにより、上記位置ずれ検出装置により検出されたずれを調整することを特徴とする発光装置。
【請求項7】
上記基準相対位置関係は、上記発光部に集光される励起光に関する、上記発光部上における照射領域の面積あるいは当該照射領域の上記発光部上における位置のうちの少なくとも一方を基に、予め設定されていることを特徴とする請求項6に記載の発光装置。
【請求項8】
上記位置ずれ調整装置は、上記励起光源、上記光学部材あるいは上記発光部のうちの少なくとも1つの位置を移動させる移動機構を含むことを特徴とする請求項6または7に記載の発光装置。
【請求項9】
上記移動機構は、上記励起光源および上記発光部を固定し、上記光学部材を移動させることを特徴とすることを特徴とする請求項8に記載の発光装置。
【請求項10】
励起光を出射する励起光源と、
上記励起光源から出射された励起光を集光する光学部材と、
上記光学部材により集光された励起光により発光する発光部と、
上記励起光源、上記光学部材および上記発光部の間の相対位置関係を保持する弾性部材と
を備えることを特徴とする発光装置。
【請求項11】
上記発光部から発光された光を反射する反射鏡をさらに備えることを特徴とする請求項6〜10のいずれか1項に記載の発光装置。
【請求項12】
上記励起光源は、レーザ光源であることを特徴とする請求項6〜11のいずれか1項に記載の発光装置。
【請求項13】
上記レーザ光源は、半導体レーザ光源であることを特徴とする請求項12に記載の発光装置。
【請求項14】
励起光源から出射された励起光を、光学部材を通して発光部に集光し、当該発光部を発光させる発光装置における、上記励起光源、上記光学部材および上記発光部の間の相対位置関係におけるずれを検出する位置ずれ検出工程と、
上記位置ずれ検出工程にて検出されたずれを調整する位置ずれ調整工程と
を含み、
上記位置ずれ検出工程は、
上記励起光源、上記光学部材および上記発光部の間の相対位置関係を検知する検知工程と、
上記検知工程での検知結果と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係において基準とすべき基準相対位置関係とを比較し、上記励起光源、上記光学部材および上記発光部の間の、上記検知工程での検知の際における相対位置関係が、上記基準相対位置関係から、ずれているか否かを判定する判定工程と、を含み、
上記位置ずれ調整工程は、上記位置ずれ検出工程にてずれの検出が行なわれたときに、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を上記基準相対位置関係に引き戻すことにより、上記位置ずれ検出工程にて検出されたずれを調整することを特徴とする位置ずれ調整方法。
【請求項15】
請求項6〜13のいずれか1項に記載の発光装置を備えることを特徴とする照明装置。
【請求項16】
請求項6〜13のいずれか1項に記載の発光装置を備えることを特徴とするプロジェクタ。
【請求項17】
請求項6〜13のいずれか1項に記載の発光装置を備えることを特徴とする車両用前照灯。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2013−39868(P2013−39868A)
【公開日】平成25年2月28日(2013.2.28)
【国際特許分類】
【出願番号】特願2011−177215(P2011−177215)
【出願日】平成23年8月12日(2011.8.12)
【出願人】(000005049)シャープ株式会社 (33,933)
【Fターム(参考)】