説明

内燃機関

【課題】従来の構造を変更することなく所望の熱伝導率を有する金属製シリンダブロック及びシリンダヘッドにより構成される内燃機関を提供する。
【解決手段】
エンジンブロック10には、金属製のシリンダブロック11及び金属製のシリンダヘッド13が組みつけられている。シリンダブロック11とシリンダヘッド13との間、及びシリンダブロック11とエンジンブロック10との間にはそれぞれ絶縁体30が介在されている。そして、シリンダブロック11の自由電子を上下方向に移動させることにより、燃焼室16を形成するシリンダブロック11上方の電子密度を制御する電子密度制御手段がシリンダブロック11に近接して設けられている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は金属製のシリンダブロック及びシリンダヘッドを有する内燃機関に関する。
【背景技術】
【0002】
内燃機関は、大きくはシリンダブロックと、このシリンダブロックの上方に組み付けられるシリンダヘッドとによって構成されている。そして、このシリンダブロック及びシリンダヘッドは、その軽量化等を目的として、アルミニウムなどの金属にて形成されている(例えば、特許文献1参照)。こうした内燃機関においては、シリンダブロックのシリンダに収容されるピストンが混合気の燃焼に伴って往復動し、この往復動がコネクティングロッド等を通じて機関出力に変換される。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2008−63998号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、4サイクル内燃機関の燃焼行程は、吸気行程・圧縮行程・爆発行程・排気行程に分けられる。ここで、吸気行程及び排気行程においては、内燃機関を区画形成するシリンダヘッド及びシリンダブロックの熱伝導率を高めることにより、燃焼室の燃焼熱が速やかに放熱されるようにして吸気効率を高くする必要がある。一方、爆発行程及び圧縮行程においては、燃焼室の熱伝導率を低下させて、燃焼熱の燃焼室外部への放熱を抑制することにより、燃焼熱の機関出力への変換効率を高くする必要がある。このように、燃焼室を形成するシリンダブロック及びシリンダヘッドは、燃料を効率よく燃焼するために、所定の熱伝導率を有するものとすることが望まれる。
【0005】
しかしながら、燃焼室を形成するシリンダブロックやシリンダヘッドの材料や構造を変更することによって、これを所望の熱伝導率を有するものにしようとすると、従来の構造を大きく変更せざるをえない。
【0006】
本発明は、上記実情に鑑みてなされたものであり、従来の構造を変更することなく所望の熱伝導率を有する金属製シリンダブロック及びシリンダヘッドにより構成される内燃機関を提供することを目的とする。
【課題を解決するための手段】
【0007】
以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1に記載の発明は、ピストンを往復動可能に収容するシリンダが内部に形成される金属製のシリンダブロックと、同シリンダブロックの上端に組みつけられて前記ピストンの頂面とともに燃焼室を区画形成する金属製のシリンダヘッドと、同シリンダヘッド及び前記シリンダブロックが組みつけられるエンジンブロックにより構成される内燃機関において、前記シリンダブロックと前記シリンダヘッドとの間、及び前記シリンダブロックと前記エンジンブロックとの間は、それぞれ絶縁体が介在されることにより電気的に絶縁されており、前記シリンダブロックに近接して同シリンダブロックの自由電子を上下方向に移動させることにより前記燃焼室を形成する前記シリンダブロック上方の電子密度を制御する電子密度制御手段とを備えることを要旨とする。
【0008】
同構成によれば、燃焼室を形成するシリンダブロック上方の電子密度を高くすることにより同燃焼室の熱伝導率を高くすることができる一方、同シリンダブロック上方の電子密度を低下させることにより同燃焼室の熱伝導率を低下させることができる。このようにシリンダブロックの電子密度を制御することによって、燃焼室の熱伝導率を制御することができるようになる。したがって、シリンダブロックについて従来の構造を変更することなく、所望の熱伝導率を得ることができるようになる。
【0009】
請求項2に記載の発明は、ピストンを往復動可能に収容するシリンダが内部に形成される金属製のシリンダブロックと、同シリンダブロックの上端に組みつけられて前記ピストンの頂面とともに燃焼室を区画形成する金属製のシリンダヘッドと、同シリンダヘッド及び前記シリンダブロックが組みつけられるエンジンブロックにより構成される内燃機関において、前記シリンダヘッドは前記シリンダブロックと電気的に接続され、前記シリンダブロックと前記エンジンブロックとの間、及び前記シリンダヘッドと前記エンジンブロックとの間は、それぞれ絶縁体が介在されることにより電気的に絶縁されており、前記シリンダブロックに近接して同シリンダブロックの自由電子を上下方向に移動させることにより前記燃焼室を形成する前記シリンダブロック上方及び前記シリンダヘッドの電子密度を制御する電子密度制御手段とを備えることを要旨とする。
【0010】
同構成によれば、燃焼室を形成するシリンダブロック上方及びシリンダヘッドの電子密度を高くすることにより同燃焼室の熱伝導率を高くすることができる一方、同シリンダブロック上方及びシリンダヘッドの電子密度を低下させることにより同燃焼室の熱伝導率を低下させることができる。このようにシリンダブロック及びシリンダヘッドの電子密度を制御することによって、燃焼室の熱伝導率を制御することができるようになる。したがって、シリンダブロック及びシリンダヘッドについて従来の構造を変更することなく、所望の熱伝導率を得ることができるようになる。
【0011】
請求項3に記載の発明は、請求項1または2に記載の内燃機関において、前記電子密度制御手段は、吸気行程及び排気行程において前記シリンダブロック上方の電子密度を高くすることを要旨とする。
【0012】
吸気行程及び排気行程においては、吸気効率を高くするために、燃焼熱によって上昇した燃焼室の温度を速やかに低下させることが望ましい。この点、同構成によれば、吸気行程及び排気行程においては、シリンダブロック上方の電子密度を高くすることにより、燃焼室の熱伝導率を高くすることができるようになる。したがって、燃焼熱の放熱を促進することによって速やかに燃焼室の温度を低下させ、吸気効率を高くすることができるようになる。
【0013】
請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の内燃機関において前記電子密度制御手段は、圧縮行程及び爆発行程において前記シリンダブロック上方の電子密度を低下させることを要旨とする。
【0014】
圧縮行程及び爆発行程においては、燃焼熱の機関出力への変換効率を高くすることができるよう、燃焼室の熱伝導率を低下させることが望ましい。この点、同構成によれば、圧縮行程及び爆発行程においてはシリンダブロック上方の電子密度を低下させることによって燃焼室の熱伝導率を低下させることができるようになる。したがって、燃焼熱の燃焼室外部への放熱を抑制することができるようになるため、燃焼熱の機関出力への変換効率を高くすることができるようになる。
【0015】
請求項5に記載の発明は、請求項4に記載の内燃機関において、前記電子密度制御手段は、点火プラグによる点火開始から所定期間が経過するまでは前記シリンダブロック上方の電子密度を高くすることを要旨とする。
【0016】
燃焼室の温度が高くなるなどして、ノッキングが発生することがある。この点、同構成によれば、点火プラグにより燃料に点火されて、火炎がシリンダブロックに伝播する所定期間は、シリンダブロック上方の電子密度を高くすることによって、燃焼室の熱伝導率を高くすることができる。したがって、火炎がシリンダブロックに伝播する期間は燃焼室の熱伝導率を高くすることにより、燃焼熱の燃焼室外部への放熱を促進し、燃焼室の温度を低下させることができるようになる。このため、ノッキングの発生を抑制することができるようになる。
【0017】
請求項6に記載の発明は、請求項1または2に記載の内燃機関において、内燃機関の機関温度を検出する機関温度検出手段を有し、同機関温度が第1の機関温度未満であるときには、前記電子密度制御手段は前記シリンダブロック上方の電子密度を低下させることを要旨とする。
【0018】
機関温度が第1の機関温度未満であるときには、燃焼室から排出される排気を浄化する排気浄化触媒の温度も低く、その排気浄化機能が低下してしまうおそれがある。また、燃焼室の温度が低いときには、燃焼室に導入された燃料の霧化が促進されず、排気性状が悪化するおそれがある。この点、同構成によれば、機関温度が第1の機関温度未満であるときには、吸気行程、爆発行程、圧縮行程及び排気行程のいずれにおいてもシリンダブロック上方の電子密度を低下させることによって、燃焼室の熱伝導率を低下させることができるようになる。したがって、燃焼熱の放熱を抑制して排気温度を上昇させることができる。このため、排気浄化触媒の機能の低下を抑制することができるようになる。また、燃焼室の早期暖機を図ることができるようになる。
【0019】
請求項7に記載の発明は、請求項6に記載の内燃機関において、前記機関温度が、前記第1の機関温度より高い温度に設定された第2の機関温度未満であり、且つ前記第1の機関温度以上であるときには、前記電子密度制御手段は前記シリンダブロック上方の電子密度を高くすることを要旨とする。
【0020】
同構成によれば、機関温度が第2の機関温度未満であるときには、シリンダブロック上部の電子密度を高くして、その熱伝導率を高くすることにより冷却水の温度を早期に上昇させることができる。このため、内燃機関の早期暖機を図ることができるようになる。
【0021】
請求項8に記載の発明は、請求項1または2に記載の内燃機関において、内燃機関の機関温度を検出する機関温度検出手段を有し、同機関温度が所定温度より高いときには、前記電子密度制御手段は前記シリンダブロック上方の電子密度を高くすることを要旨とする。
【0022】
機関温度が所定温度よりも高いときには、排気温度が上昇することにより、排気浄化触媒の劣化が促進されるおそれがある。この点、同構成によれば、機関温度が所定温度以上であるときにはシリンダブロック上部の電子密度を高くして、燃焼室の熱伝導率を高くするようにしている。このため、燃焼室にて発生した熱は、主に冷却水に伝導されることによってその放熱が促進されるため、燃焼室の排気温度が好適に低下するようになる。この結果、排気浄化触媒の温度を低下させて、排気浄化触媒の劣化を抑制することができるようになる。また、燃料噴射量を増量のみによって触媒温度の過度の上昇を抑制する構成と比較して、燃料噴射量の増量の必要がなりもしくはこの増量程度が小さくなるため、燃料消費量の増加を抑制することができるようになる。
【0023】
請求項9に記載の発明は、請求項1または2に記載の内燃機関において、燃焼室に導入される燃料を正・負に帯電させる燃料帯電手段を有し、同燃料帯電手段は、前記シリンダブロック上方が正に帯電しているときには、燃料を正に帯電させ、前記シリンダブロック上方が負に帯電しているときには燃料を負に帯電させることを要旨とする。
【0024】
同構成によれば、燃焼室と燃料はほぼ等しい電荷に帯電するため、燃焼室に導入された燃料は燃焼室中央に集まるようになる。このため、点火プラグの近傍に可燃な濃い混合気を偏在させた状態での燃焼、いわゆる成層燃焼を実行することができるようになる。
【0025】
請求項10に記載の発明は、請求項1または2に記載の内燃機関において、前記電子密度制御手段は、機関負荷が所定値未満であるときには、前記シリンダブロック上方の電子密度を低下させることを要旨とする。
【0026】
機関負荷が所定値未満であるときには、必要以上の吸気が燃焼室に導入されることを抑制することを目的としてスロットルバルブの開度が絞られるようになるため、ポンピングロスに起因して、燃料消費量が増大する傾向がある。この点、同構成によれば、機関負荷が所定値未満であるときには、燃焼室の熱伝導率を低下させることによって、燃焼室の温度を上昇させ、吸気効率を低下させることができるようになる。このように、吸気効率を低下させると、燃焼室に吸気が導入され難くなる。したがって、機関負荷が所定値未満であるときであってもスロットルバルブの開度を大きくすることができるため、ポンピングロスを低下させて燃料消費量の増大を抑制することができるようになる。
【図面の簡単な説明】
【0027】
【図1】本実施の形態にかかる内燃機関の模式図。
【図2】第1の実施の形態にかかる内燃機関の模式図。
【図3】燃焼室の温度と圧力の関係を示すグラフ及び各行程と吸気バルブ及び排気バルブの駆動態様との関係をしめすグラフ。
【図4】他の実施の形態にかかる誘電分極のモード設定の手順を示すフローチャート。
【図5】他の実施の形態にかかる内燃機関の模式図。
【発明を実施するための形態】
【0028】
(第1の実施の形態)
以下、この発明にかかる内燃機関の制御装置を具体化した一実施の形態について図1〜図3を参照して説明する。
【0029】
まず、図1及び図2を参照して、本実施の形態にかかる内燃機関の全体構成について説明する。
同図1及び図2に示されるように本実施の形態にかかる内燃機関では、ピストン12が往復動可能に収容されるシリンダブロック11の上端にシリンダヘッド13が組みつけられている。そして、このシリンダブロック11及びシリンダヘッド13は、エンジンブロック10に組みつけられている。エンジンブロック10、シリンダブロック11及びシリンダヘッド13は、アルミニウム合金により形成されているとともに、金属製ボルトで組みつけられることによって電気的に接続されている。そして、これらシリンダブロック11上方、シリンダヘッド13及びピストン12の頂面によって燃焼室16が形成されている。
【0030】
また、シリンダブロック11とエンジンブロック10との間には、ウォータジャケット9が形成されている。このウォータジャケット9の内部には、機関冷却を目的とした冷却水が循環されている。
【0031】
さらに、シリンダブロック11には、この冷却水の水温ThWを測定する水温センサ73、及び異常燃焼により生じるノッキングの発生を検出するノックセンサ75が取り付けられている。
【0032】
一方、シリンダヘッド13には、この燃焼室16の内部にむけて、具体的にはピストン12の頂面近傍に向けて直接燃料を噴射する燃料噴射弁14が設けられるとともに、燃焼室16に存在する混合気の点火を行う点火プラグ15が設けられている。また、シリンダヘッド13には、吸気バルブ19及び排気バルブ20が取り付けられている。この吸気バルブ19及び排気バルブ20は、吸気通路17及び排気通路18と燃焼室16とをそれぞれ連通・遮断する。そして、吸気バルブ19及び排気バルブ20にはそれらの駆動態様を変更する可変動弁機構50,51がそれぞれ設けられている。なお、吸気バルブ19及び排気バルブ20は、これら可変動弁機構50,51によってその駆動態様が、所定のリフトプロフィールをもって開閉駆動される。
【0033】
また、吸気通路17には、スロットルバルブ23が設けられている。このスロットルバルブ23は、モータ23aによってその開度が調節されることにより、燃焼室16に導入される吸入空気量を調量する。この調量された吸入空気は、吸気バルブ19の開弁によって燃焼室16に供給されて燃料噴射弁14から噴射供給された燃料と混合される。この混合気は、点火プラグ15によって点火されることにより燃焼される。このような燃焼によってピストン12が押し下げられることにより、クランクシャフト21が回転する。このクランクシャフト21の回転角であるクランク角及びクランクシャフトの回転速度である機関回転速度は回転速度センサ72により検出される。
【0034】
そして燃焼により発生した排気は、排気バルブ20が開弁されると排気通路18に排出される。この排気は、排気通路18に設けられた排気浄化触媒24を通じて浄化された後、外部に排出される。なお、この排気浄化触媒24は、理論空燃比近傍での燃焼が行われる状態において、排気中の炭化水素(HC)や一酸化炭素(CO)を酸化するとともに同排気中の窒素酸化物(NOx)を還元して排気を浄化する作用を有している。また、この排気浄化触媒24にはその温度を検出する触媒温度センサ74が取り付けられている。
【0035】
これら可変動弁機構50,51、燃料噴射弁14、点火プラグ15、スロットルバルブ23のモータ23aの駆動状態は、いずれも電子制御装置60によって制御される。また、この電子制御装置60には回転速度センサ72、水温センサ73及び触媒温度センサ74等の各種センサが接続されるとともに、これらセンサの検出値が同電子制御装置60に取り込まれる。
【0036】
次に、このエンジンブロック10、シリンダブロック11及びシリンダヘッド13について図2を参照して詳細に説明する。同図2に示されるように、本実施の形態における内燃機関では、エンジンブロック10とシリンダヘッド13との間、及びエンジンブロック10とシリンダブロック11との間には、絶縁体30が介在されている。この絶縁体30は、エンジンブロック10とシリンダヘッド13、及びエンジンブロック10とシリンダブロック11を電気的に絶縁している。さらに、この絶縁体30は、シリンダブロック11の周囲を覆うように形成されており、シリンダブロック11とウォータジャケット9の冷却水とを電気的に絶縁している。そして、シリンダブロック11の下端に近接して誘電分極31が取り付けられている。なお、この誘電分極31の具体例としては、例えばアルミニウムなどの電気伝導率の高い材料が挙げられる。
【0037】
誘電分極31は、電子制御装置60にて印加される電圧を制御する図示しない電源回路に接続されている。この電源回路に印加される電圧を変更することによって、誘電分極31の電荷が制御される。
【0038】
電子制御装置60は、このように誘電分極31の電荷を制御することによって、シリンダブロック11上方及びシリンダヘッド13(以下、燃焼室16とする)の自由電子の電子密度(以下、電子密度とする)を制御する。なお、この電源回路に通電させるための電源として、例えば車両の各部に電力を供給する図示しない蓄電池(バッテリ)を用いることができる。
【0039】
次に、誘電分極31の電荷と燃焼室16の電子密度の制御方法について説明する。同図2に示されるように、誘電分極31がモード1にあるときは、誘電分極31は正に帯電される。このときは、静電誘導によりシリンダブロック11の自由電子はシリンダブロック11下方に移動するため、燃焼室16の電子密度は低下するようになる。したがって、燃焼室16の熱伝導率は低下する。
【0040】
一方、誘電分極31がモード2にあるときは、誘電分極31は負に帯電される。このときは、静電誘導によりシリンダブロック11の自由電子はシリンダブロック11上方に移動するようになるため、燃焼室16の電子密度は高くなる。したがって、燃焼室16の熱伝導率は高くなる。
【0041】
次に、内燃機関の運転時における誘電分極31の具体的な制御方法について図3を参照して説明する。
同図3に示されるように、排気行程では排気バルブ20が開弁されるとともに吸気バルブ19が閉弁されて、排気は排気通路18に排出される。次の吸気行程では、吸気バルブ19が開弁されるとともに排気バルブ20が閉弁される。そして、これら排気行程及び吸気行程においては、誘電分極31はモード2に移行して負に帯電する。その結果、シリンダブロック11の自由電子はシリンダブロック11上方に移動して燃焼室16の電子密度及び熱伝導率は高くなる。このため爆発行程にて発生した熱の放熱は促進されて燃焼室16の吸入空気の温度は低下する。従って、吸気効率を高くすることができるとともに、図3のP−V線図に示されるように、負の仕事量、すなわちポンピングロスを減少させることができるようになる。
【0042】
次に、行程が圧縮行程に移行すると、吸気バルブ19及び排気バルブ20は閉弁される。そして、この圧縮行程後半に燃料噴射が行われ、その後混合気の点火が行われることにより、行程は爆発行程に移行する。これら圧縮行程及び爆発行程においては、吸気バルブ19及び排気バルブ20のいずれも閉弁されるとともに、誘電分極31はモード1に移行して正に帯電する。すなわち、シリンダブロック11の自由電子はシリンダブロック11下方に移動する。このため、燃焼室16の電子密度及び熱伝導率は低下する。したがって、燃焼室16にて発生した熱の放熱は抑制されて燃焼室16の温度上昇が促進されるため、図3のP−V線図に示されるように、正の仕事量を増大させることができ、燃焼熱の機関出力への変換効率を高くすることができるようになる。
【0043】
このように、吸気行程及び排気行程においては吸気効率を向上させる一方、圧縮行程及び爆発行程においては燃焼室16の温度を上昇させるためには、燃焼室16の吸気行程及び排気行程おける熱伝導率と、圧縮行程及び爆発行程における熱伝導率とを異ならせる必要がある。そこで、本実施の形態においては、上述のように誘電分極31を制御することによって、燃焼室16の熱伝導率を所望のものとすることができるようになる。
【0044】
以上説明した第1の実施の形態によれば、以下の作用効果を奏することができる。
(1)本実施の形態によれば、燃焼室16を形成するシリンダブロック11上方の電子密度を高くすることにより燃焼室16の熱伝導率を高くすることができる一方、シリンダブロック11上方の電子密度を低下させることにより燃焼室16の熱伝導率を低下させることができる。このようにシリンダブロック11の電子密度を制御することによって、燃焼室16の熱伝導率を制御することができるようになる。したがって、シリンダブロック11及びシリンダヘッド13について従来の構造を変更することなく、所望の熱伝導率を得ることができるようになる。
【0045】
(2)本実施の形態によれば、吸気行程及び排気行程においては、燃焼室16の電子密度を高くすることにより、その熱伝導率を高くすることができるようになる。したがって、燃焼熱の放熱を促進することによって速やかに燃焼室16の温度を低下させ、吸気効率を高くすることができるようになる。
【0046】
(3)本実施の形態によれば、圧縮行程及び爆発行程においては、燃焼室16の電子密度を低下させることによって、この熱伝導率を低下させることができるようになる。したがって、燃焼熱の燃焼室16外部への放熱を抑制することができるようになるため、燃焼熱の機関出力への変換効率を高くすることができるようになる。
(第2の実施の形態)
この発明にかかる第2の実施の形態について第1の実施形態との相違点を中心に説明する。なお、第1の実施の形態と同様の構成には同一の符号を付すことにより詳細な説明を省略する。
【0047】
冷間始動時など、燃焼室16の温度が低いときには、排気浄化触媒24の温度がその機能を発揮することのできる温度以下となり、排気性状が悪化するおそれがある。また、燃焼室16に導入された燃料の霧化が促進されず、排気性状が悪化するおそれがある。このときは、燃焼室16の早期暖機を図るとともに、排気浄化触媒24の早期暖機を図る必要がある。そして、燃焼室16及び排気浄化触媒24の温度が上昇して排気性状が悪化するおそれがなくなった後は、内燃機関全体の早期暖機を図る必要が生じる。
【0048】
そこで、本実施の形態においては、水温センサ73により検出される水温ThWに応じて誘電分極31のモードを変更するようにしている。以下、このように水温ThWに応じて設定される誘電分極31のモードの設定処理手順について図4を参照して説明する。
【0049】
図4の処理が開始されると、まず水温ThWが所定温度T1未満であるか否かが判断される(ステップS100)。水温ThWが所定温度T1未満であると判断されたとき(ステップS100:NO)は、誘電分極31はモード1に移行する(ステップS104)。その結果、誘電分極31が正に帯電して、燃焼室16の電子密度及び熱伝導率は低下するため、燃焼室16にて発生した熱の放熱は抑制されるようになる。したがって燃焼室16にて発生した熱によって燃焼室16の早期暖機を図ることができる。また燃焼室16が暖機されることによって排気温度を上昇させることができるようになる結果、排気浄化触媒24の触媒温度の早期暖機を図ることができるようになる。
【0050】
一方、水温ThWが所定温度T1以上であると判断されたとき(ステップS100:YES)は、次に水温ThWが所定温度T1より高い温度に設定された所定温度T2未満であるか否かが判断される(ステップS101)。水温ThWが所定温度T2以上であると判断されたとき(ステップS101:NO)は、内燃機関の暖機は完了したと考えられるため、行程に応じて誘電分極31のモードが設定される(ステップS102)。この場合における誘電分極31のモードの設定態様は、第1の実施の形態と同様である。
【0051】
一方、水温ThWが所定温度T2未満であると判断されたとき(ステップS101:YES)、すなわち水温ThWが所定温度T1以上であり、且つ所定温度T2未満であるときは、誘電分極31はモード2に移行する(ステップS103)。このときは、誘電分極31が負に帯電されることにより、燃焼室16の電子密度及び熱伝導率は高くなるため、燃焼室16にて発生した熱の放熱が促進される。このため、燃焼室16にて発生した熱が冷却水に伝導されて、内燃機関の早期暖機を図ることができるようになる。
【0052】
以上説明した第2の実施の形態によれば、以下の作用効果を奏することができるようになる。
(4)本実施の形態によれば、水温ThWが所定温度T1未満であるときには、燃焼室16の熱伝導率を低下させることによって、燃焼熱の放熱を抑制して排気温度を上昇させることができるようになる。このため、排気浄化触媒24を早期に暖機させることができるようになり、排気浄化触媒24の機能の低下を抑制することができるようになる。また、燃焼室16の早期暖機を図ることができるようになる。
【0053】
(5)本実施の形態によれば、水温ThWが所定温度T1以上であり、且つ所定温度T2未満であるときには、燃焼室16の熱伝導率を高くすることにより冷却水の水温ThWを早期に上昇させることができる。このため、内燃機関の早期暖機を図ることができるようになる。
(第3の実施の形態)
この発明にかかる第3の実施の形態について第1の実施形態との相違点を中心に説明する。なお、第1の実施の形態と同様の構成には同一の符号を付すことにより詳細な説明を省略する。
【0054】
燃料噴射弁14には、この燃料噴射弁14の燃料に図示しない絶縁体を介在して電圧を印加する荷電電極32が取り付けられている。この荷電電極32から印加される電圧が制御されることにより、燃料噴射弁14の燃料の電荷は正もしくは負に制御される。なお、荷電電極32に印加される電圧は、図示しない電源回路を通じて電子制御装置60により制御される。
【0055】
ところで、燃焼室16に噴射された燃料は、その一部が燃焼室16に付着して燃焼に供されない場合がある。そして、このように燃焼室16に付着した燃料が排出されると、排気性状が悪化するおそれがある。そこで、本実施の形態においては、燃焼室16に噴射される燃料と燃焼室16の電荷がほぼ等しくなるよう、荷電電極32を通じて燃料噴射弁14の燃料を帯電させることによって、噴射燃料の燃焼室16への付着を抑制するようにしている。
【0056】
次に、図5を参照して荷電電極32の制御態様について説明する。誘電分極31がモード1にあるときは、燃焼室16の電子密度は低下するため、燃焼室16は正に帯電する。このときは、電子制御装置60は、荷電電極32を通じて燃料噴射弁14の燃料を正に帯電させる。
【0057】
一方、誘電分極31がモード2にあるときは燃焼室16の電子密度は高くなるため、燃焼室16は負に帯電する。このときは、電子制御装置60は、荷電電極32を通じて燃料噴射弁14の燃料を負に帯電させる。
【0058】
以上説明した第3の実施の形態によれば、以下の作用効果を奏することができるようになる。
(6)本実施の形態によれば、燃焼室16と燃料はほぼ等しい電荷に帯電するため、燃焼室16に導入された燃料は、燃焼室16の壁面等に付着することなく燃焼室16の中央に集まるようになる。このため、点火プラグ15の近傍に可燃な濃い混合気を偏在させた状態での燃焼、いわゆる成層燃焼を実行することができるようになる。
(第4の実施の形態)
この発明にかかる第4の実施の形態について第1の実施形態との相違点を中心に説明する。なお、第1の実施の形態と同様の構成には同一の符号を付すことにより詳細な説明を省略する。
【0059】
機関回転速度が高くなる機関高負荷時など、燃焼室16の温度が過度に上昇することがある。このように燃焼室16の温度が上昇すると、排気温度が過度に上昇して排気浄化触媒24の劣化が促進されるおそれがある。そこで、電子制御装置60は、水温センサ73により検出される水温ThWが所定温度T3以上になると、燃料噴射量を増量するようにしている。このように増量された燃料は、燃焼に供されることなく排出されて、燃焼室16、排気通路18及び排気浄化触媒24において気化するようになる。電子制御装置60は、このような燃料の気化熱によって燃焼室16や排気浄化触媒24の温度を低下させるようにしている。
【0060】
しかし、このように燃料噴射量を増量すると、空燃比がリッチとなり、排気性状の悪化を招くおそれがある。そこで、本実施の形態においては、電子制御装置60は、水温ThWが所定水温T3以上であるときには、誘電分極31をモード1に移行するとともに、このような燃料噴射量の増量を禁止するようにしている。すなわち、誘電分極31がモード1に移行すると、燃焼室16の熱伝導率が高くなり、燃焼室16の放熱が促進される。この結果、燃焼室16の温度は速やかに低下するようになるため、排気温度も低下するようになる。このため、燃料噴射量を増量しなくても排気温度の過度の上昇を抑制することができるようになる。
【0061】
以上説明した第4の実施の形態によれば、以下の作用効果を奏することができるようになる。
(7)本実施の形態によれば、水温ThWが所定温度T3以上であるときには燃焼室16の熱伝導率を高くするようにしているため、燃焼室16にて発生した熱の放熱を促進して、燃焼室16の温度を低下させることができるようになる。したがって、排気浄化触媒24の劣化を抑制することができるようになる。
【0062】
なお、以上説明した実施の形態は次のようにその形態を適宜変更した態様にて実施することができる。
・スロットルバルブ23の開度が所定開度以下であることを条件として、誘電分極31がモード1に移行するようにしてもよい。すなわち、アイドル運転時などにおいては、燃焼室16に必要以上の吸気が導入されることを抑制すべく、スロットルバルブ23の開度が絞られるため、ポンピングロスが発生し、燃料消費量が増大する傾向にある。この点、本実施の形態によれば、スロットルバルブ23の開度が所定開度以下であるとき、換言すれば機関負荷が所定値以下のときには、誘電分極31がモード1に移行することによって燃焼室16の熱伝導率が低下するため、燃焼室16に発生した熱の放熱が抑制される。したがって、吸入空気温度が上昇するため、吸気効率が低下する。この結果、スロットルバルブ23の開度を絞ることなく燃焼室16に導入される吸気量を減少させることができるようになり、燃料消費量の増大を抑制することができるようになる。
【0063】
・第1の実施の形態においては、誘電分極31のモードを適宜変更するようにしたが、本発明はこれに限られるものではない。例えば、誘電分極31をモード2に固定することもできる。本実施の形態においても、上記(1)及び(2)に準じた作用効果を奏することができるようになる。この場合において、誘電分極31をモード1に固定するようにしてもよい。本実施の形態によれば、上記(1)及び(3)に準じた作用効果を奏することができるようになる。
【0064】
・第1の実施の形態においては、全ての行程において、誘電分極31のモードを制御するようにしたが、本発明はこれに限られるものではない。例えば、圧縮行程及び爆発行程において、誘電分極31の制御を停止するようにしてもよい。本実施の形態においても、上記(1)及び(2)に準じた作用効果を奏することができるようになる。また、吸気行程及び排気行程において誘電分極31の制御を停止するようにしてもよい。この場合は、上記(1)及び(3)に準じた作用効果を奏することができるようになる。
【0065】
・第1の実施の形態においては、吸気行程中に吸気バルブ19が開弁するとともに、排気行程中に排気バルブ20が開弁するようにしたが、本発明はこれに限られるものではなく、可変動弁機構50,51により、吸排気バルブの開弁時期を各行程と非同期となるようにしてもよい。この場合は、吸気バルブ19及び排気バルブ20の少なくとも一方が開弁される期間には誘電分極31をモード2に設定するとともに、これ以外の期間には誘電分極31をモード1となるように設定する。例えば、可変動弁機構50,51によって、吸気バルブ19及び排気バルブ20のいずれか一方、又はそれらの双方のバルブタイミングを可変とするようにして吸排気バルブのバルブオーバーラップ量を拡大するようにバルブタイミングを制御するようにすることができる。すなわち、吸気バルブ19のバルブタイミングの進角、排気バルブ20のバルブタイミングの遅角、或いはその双方を行うようにすることができる。そして、吸気バルブ19及び排気バルブ20のいずれかが開弁される期間、及び吸気バルブ19と排気バルブ20の双方が開弁される期間において、誘電分極31がモード2に移行するようにして、燃焼室16の電子密度が高くなるようにすることができる。本実施の形態によれば、吸排気バルブのバルブオーバーラップが増大するため、より多くの排気が吸気系に吹き戻されるようになり、内部EGR量を増大させることでNOx排出量の低減を図ることができるようになる。これに加えて、誘電分極31がモード2に移行することによって、燃焼室16の温度低下が促進されるため、吸気効率を高くすることができるようになる。
【0066】
・第1の実施の形態においては、吸気行程及び排気行程において誘電分極31はモード2に移行するようにしたが、本発明はこれに限られない。例えば、爆発行程においてノックセンサ75によりノッキングの発生を検出したときには、点火プラグ15による点火が実行されてから火炎がシリンダブロックに伝播するまでの所定期間は、モード1に移行するようにしてもよい。本実施の形態によれば、点火プラグ15により点火が実行されてから火炎がシリンダブロック11に伝播するまでの期間は、誘電分極31がモード1に移行することにより燃焼室16の温度を低下させることができるようになる。したがって、ノッキングの発生を抑制することができるようになる。
【0067】
・第2の実施の形態においては、水温ThWに応じて誘電分極31のモードを変更するようにしたが、本発明はこれに限られない。例えば、排気浄化触媒24の触媒温度を触媒温度センサ74により直接検出するようにして、排気浄化触媒24の触媒温度が所定の触媒温度以上であるときに誘電分極31がモード1に移行するようにしてもよい。本実施の形態によれば、燃焼室16の放熱が促進されることによって排気温度が低下するため、触媒温度を低下させることができるようになる。したがって、排気浄化触媒24の劣化を抑制することができるようになる。
【0068】
・第2の実施の形態においては、水温ThWが所定温度T1未満であるときには誘電分極31はモード1に移行するようにしたが、本発明はこれに限られない。すなわち水温ThWが所定温度T1未満であると判断されたときに、誘電分極31をモード2に移行するようにしてもよい。また、モードの変更を停止するようにしてもよい。本実施の形態においても、上記(4)に準じた作用効果を奏することができるようになる。
【0069】
・第3の実施の形態では、燃焼室16の電荷に応じて燃料の電荷を変更するようにしたが、本発明はこれに限られない。例えば、燃料噴射弁14の燃料を正に帯電させるよう予め設定してもよい。燃料噴射が実行される圧縮行程後期は、燃焼室16は正に帯電している。このため、本実施の形態においても、上記(6)に準じた作用効果を奏することができるようになる。
【0070】
・上記実施の形態においては、エンジンブロック10とシリンダヘッド13との間、及びエンジンブロック10とシリンダブロック11との間に絶縁体30を介在させるようにしたが、本発明はこれに限られない。例えば、これに加えて、シリンダブロック11とシリンダヘッド13との間に絶縁体30を介在させて、これらを電気的に絶縁するようにしてもよい。本実施の形態においても、シリンダブロック11の自由電子の移動を制御することによって、燃焼室16の熱伝導率を制御することができるようになる。また、この場合において、シリンダブロック11とシリンダヘッド13との間に介在させた絶縁体30に近接して誘電分極31を取り付けるようにしてもよい。本実施の形態によれば、燃焼室16を形成するシリンダブロック11上方の電子密度を高くすることにより燃焼室16の熱伝導率を高くすることができる一方、シリンダブロック11上方の電子密度を低下させることにより燃焼室16の熱伝導率を低下させることができる。このようにシリンダブロック11の電子密度を制御することによって、燃焼室16の熱伝導率を制御することができるようになる。したがって、シリンダブロック11について従来の構造を変更することなく、所望の熱伝導率を得ることができるようになる。
【0071】
・上記実施の形態においては、燃焼室16部の温度と相関のあるパラメータとして水温ThWを用いるようにしたが、本発明はこれに限られるものでなく、潤滑油温度等、燃焼室16の温度と相関のある他のパラメータを用いることもできる。
【0072】
・上記実施の形態においては、燃料噴射弁14から燃焼室16に直接燃料を噴射する内燃機関を例示したが、この発明は燃料噴射弁14から吸気通路17に燃料を噴射する内燃機関、または燃焼室16に直接燃料を噴射する燃料噴射弁と吸気通路17に燃料を噴射する燃料噴射弁とを備えた内燃機関に具体化することもできる。
【符号の説明】
【0073】
9…ウォータジャケット、10…エンジンブロック、11…シリンダブロック、12…ピストン、13…シリンダヘッド、14…燃料噴射弁、15…点火プラグ、16…燃焼室、17…吸気通路、18…排気通路、19…吸気バルブ、20…排気バルブ、21…クランクシャフト、23…スロットルバルブ、23a…モータ、24…排気浄化触媒、30…絶縁体、31…誘電分極(電子密度制御手段)、32…荷電電極(燃料帯電手段)、50…可変動弁機構、51…可変動弁機構、60…電子制御装置(電子密度制御手段、燃料帯電手段)、72…回転速度センサ、73…水温センサ(機関温度検出手段)、74…触媒温度センサ、75…ノックセンサ。

【特許請求の範囲】
【請求項1】
ピストンを往復動可能に収容するシリンダが内部に形成される金属製のシリンダブロックと、同シリンダブロックの上端に組みつけられて前記ピストンの頂面とともに燃焼室を区画形成する金属製のシリンダヘッドと、同シリンダヘッド及び前記シリンダブロックが組みつけられるエンジンブロックにより構成される内燃機関において、
前記シリンダブロックと前記シリンダヘッドとの間、及び前記シリンダブロックと前記エンジンブロックとの間は、それぞれ絶縁体が介在されることにより電気的に絶縁されており、
前記シリンダブロックに近接して同シリンダブロックの自由電子を上下方向に移動させることにより前記燃焼室を形成する前記シリンダブロック上方の電子密度を制御する電子密度制御手段とを備える
ことを特徴とする内燃機関。
【請求項2】
ピストンを往復動可能に収容するシリンダが内部に形成される金属製のシリンダブロックと、同シリンダブロックの上端に組みつけられて前記ピストンの頂面とともに燃焼室を区画形成する金属製のシリンダヘッドと、同シリンダヘッド及び前記シリンダブロックが組みつけられるエンジンブロックにより構成される内燃機関において、
前記シリンダヘッドは前記シリンダブロックと電気的に接続され、
前記シリンダブロックと前記エンジンブロックとの間、及び前記シリンダヘッドと前記エンジンブロックとの間は、それぞれ絶縁体が介在されることにより電気的に絶縁されており、
前記シリンダブロックに近接して同シリンダブロックの自由電子を上下方向に移動させることにより前記燃焼室を形成する前記シリンダブロック上方及び前記シリンダヘッドの電子密度を制御する電子密度制御手段とを備える
ことを特徴とする内燃機関。
【請求項3】
請求項1または2に記載の内燃機関において、
前記電子密度制御手段は、吸気行程及び排気行程において前記シリンダブロック上方の電子密度を高くする
ことを特徴とする内燃機関。
【請求項4】
請求項1〜3のいずれか一項に記載の内燃機関において
前記電子密度制御手段は、圧縮行程及び爆発行程において前記シリンダブロック上方の電子密度を低下させる
ことを特徴とする内燃機関。
【請求項5】
請求項4に記載の内燃機関において、
前記電子密度制御手段は、点火プラグによる点火開始から所定期間が経過するまでは前記シリンダブロック上方の電子密度を高くする
ことを特徴とする内燃機関。
【請求項6】
請求項1または2に記載の内燃機関において、
内燃機関の機関温度を検出する機関温度検出手段を有し、同機関温度が第1の機関温度未満であるときには、前記電子密度制御手段は前記シリンダブロック上方の電子密度を低下させる
ことを特徴とする内燃機関。
【請求項7】
請求項6に記載の内燃機関において、
前記機関温度が、前記第1の機関温度より高い温度に設定された第2の機関温度未満であり、且つ前記第1の機関温度以上であるときには、前記電子密度制御手段は前記シリンダブロック上方の電子密度を高くする
ことを特徴とする内燃機関。
【請求項8】
請求項1または2に記載の内燃機関において、
内燃機関の機関温度を検出する機関温度検出手段を有し、同機関温度が所定温度より高いときには、前記電子密度制御手段は前記シリンダブロック上方の電子密度を高くする
ことを特徴とする内燃機関。
【請求項9】
請求項1または2に記載の内燃機関において、
燃焼室に導入される燃料を正・負に帯電させる燃料帯電手段を有し、同燃料帯電手段は、前記シリンダブロック上方が正に帯電しているときには、燃料を正に帯電させ、前記シリンダブロック上方が負に帯電しているときには燃料を負に帯電させる
ことを特徴とする内燃機関。
【請求項10】
請求項1または2に記載の内燃機関において、
前記電子密度制御手段は、機関負荷が所定値未満であるときには、前記シリンダブロック上方の電子密度を低下させる
ことを特徴とする内燃機関。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−261404(P2010−261404A)
【公開日】平成22年11月18日(2010.11.18)
【国際特許分類】
【出願番号】特願2009−114003(P2009−114003)
【出願日】平成21年5月8日(2009.5.8)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】