説明

分光測定装置及び分光測定方法

【課題】本発明は、測定精度を向上する。
【解決手段】本発明は、光源2から照射されて照射面IFで反射した光を2次元配列された複数のレンズ6Aで集光し、該レンズ6Aを透過した光をそれぞれプリズム10Aで分光して所定帯域ごとにイメージャ11で受光するようにしたことにより、複数の領域で反射した光を分光して受光するので、複数の領域における測定対象の成分量を測定することができ、かくして測定精度を向上することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は分光測定装置及び分光測定方法に関し、例えば皮膚の成分量を測定する場合に好適なものである。
【背景技術】
【0002】
従来、所定帯域の光を皮膚(肌)に照射し、該皮膚で反射された光を分光して重回帰分析することにより、皮膚における測定対象の成分量を測定するようになされた分光測定装置が提案されている(例えば、特許文献1参照)。
【0003】
また、光源から出射された光を積分球の内面で拡散反射させて均一な光として皮膚に照射するようになされた分光測定装置も提案されている(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平11−299743号公報
【特許文献2】特開2000−350702公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで上述した分光測定装置では、光を照射する領域が限られているため、その領域での皮膚における測定対象の成分量しか測定することができず、位置によってばらつきがある成分量を測定する場合、局所的な領域での成分量しか測定できないのでばらつきを考慮することができず、精度よく測定ができないといった問題があった。
【0006】
本発明は以上の点を考慮してなされたもので、測定精度を向上し得る分光測定装置及び分光測定方法を提案しようとするものである。
【課題を解決するための手段】
【0007】
かかる課題を解決するため本発明においては、分光測定装置であって、照射手段により照射される所定波長域の光が照射対象において反射した光を集光する2次元配置された複数のレンズと、複数のレンズをそれぞれ透過した光を所定波長域ごとに分光する分光手段と、分光手段を通過した所定波長域ごとの光をそれぞれ別々に受光する受光手段と、受光手段によって得られた受光結果を用いて照射対象における測定対象の成分量を算出する算出手段とを有する。
【0008】
また本発明においては、分光測定方法であって、照射手段により照射される所定波長域の光が照射対象において反射した光が2次元配置された複数のレンズで集光され、該集光された光が分光手段によって所定波長域ごとに分光された光をそれぞれ別々に受光する受光ステップと、受光ステップによって得られた受光結果を用いて照射対象における測定対象の成分量を算出する算出ステップとを有する。
【0009】
これにより、複数のレンズにそれぞれ入射した光を分光して取得し、取得結果を用いて照射対象における測定対象の成分量を領域ごとに別々に算出するので、複数の領域における測定対象の成分量を算出することができる。
【発明の効果】
【0010】
以上のように本発明によれば、複数のレンズにそれぞれ入射した光を分光して取得し、取得結果を用いて照射対象における測定対象の成分量を領域ごとに別々に算出するので、複数の領域における測定対象の成分量を算出することができ、かくして測定精度を向上し得る分光測定装置及び分光測定方法を実現できる。
【図面の簡単な説明】
【0011】
【図1】分光測定装置の構成を示す概略図である。
【図2】皮膚での反射を示す概略図である。
【図3】マイクロレンズアレイ及び空間変調器の構成を示す概略図である。
【図4】マイクロプリズムアレイ及びイメージャの構成を示す概略図である。
【図5】制御分析部の構成を示す概略図である。
【図6】CPUの機能的構成を示す概略図である。
【図7】モードに応じた空間変調器の設定を示す概略図である。
【図8】成分量検出モードにおける空間変調器の制御を示す概略図である。
【図9】色成分検出モードにおける空間変調器の制御を示す概略図である。
【図10】制御分析処理手順を示すフローチャートである。
【発明を実施するための形態】
【0012】
以下、発明を実施するための形態について説明する。なお、説明は以下の順序とする。
<1.実施の形態>
<2.他の実施の形態>
【0013】
<1.実施の形態>
[1−1.分光測定装置の構成]
図1において、本一実施の形態による分光測定装置1を示す。この分光測定装置1は、光源2、ミラー3、ハーフミラー4、ポラライザ5、マイクロレンズアレイ6、ハーフミラー7、空間変調器8、ポラライザ9、マイクロプリズムアレイ10、イメージャ11、ディテクタアレイ12及び制御分析部13によって構成される。
【0014】
光源2は、有機EL(Electro Luminescence)照明、LED(Light Emitting Diode)照明、レーザ、キセノンランプ、水銀ランプ、白色蛍光灯などが適応され、均一なスペクトラムの白色光を出射する。特に、光源2として太陽光のスペクトラムに近い所定面積を有する有機EL照明を適応することにより、該有機EL照明から面照射で広範囲に一様に照明することができる。
【0015】
光源2から出射された光は、ミラー3で反射されてハーフミラー4に導かれる。ハーフミラー4は、所定の割合で光を透過及び反射するようになされており、ミラー3で反射されて到達した光のうちのハーフミラー4を透過した光が照射面IFに照射される。
【0016】
照射面IFに人の皮膚20が配置された場合、図2に示すように、皮膚20に照射された光L1は、表皮21の表面で反射する光(以下、これを表面反射光とも呼ぶ)L2と、皮膚20の内部に入射する光とに分かれる。
【0017】
皮膚20の内部に入射した光は、表皮21と真皮22との間で乱反射して皮膚表面から出射する光(以下、これを内部散乱光とも呼ぶ)L3と、表皮21と真皮22との間で吸収される光と、表皮21と真皮22との界面で正反射して皮膚表面から出射する光(以下、これを内部反射光とも呼ぶ)L4とに分かれる。
【0018】
皮膚20に照射された光L1が平行光であった場合、表面反射光L2及び内部反射光L4は、平行光としてハーフミラー4に導かれる。一方、内部散乱光L3は、光L1が表皮21と真皮22との間で乱反射されるので、乱反射した位置を点光源とみなした拡散光としてハーフミラー4に導かれる。
【0019】
照射面IFから到達した光のうちハーフミラー4で反射された光は、ポラライザ5に入射する。ポラライザ5は、入射した光のうちの直線偏光成分だけを通過させ、通過させた光をマイクロレンズアレイ6に導く。
【0020】
マイクロレンズアレイ6は、図3(A)に示すように、多数のレンズ6Aが2次元的(格子状)に配置された構造となっており、各レンズ6Aに入射した平行光を集光すると共に、入射した拡散光を平行光に変換してハーフミラー7に導く。なお、図3では説明の便宜上、ハーフミラー7を省略している。
【0021】
ハーフミラー7(図1)は、例えば入射した光の90%を透過し、10%を反射する特性を有しており、透過した光を空間変調器8に導くと共に、反射した光をディテクタアレイ12に導く。
【0022】
空間変調器8は、図3(B)に示すように、マイクロレンズアレイ6の各レンズ6Aに対してそれぞれ複数の画素が上下方向に配置された2次元配列の液晶素子が適応される。本実施の形態においては、各レンズ6Aに対してそれぞれ上下方向に7画素8A〜8Gが配置された場合について説明するが、これはあくまでも一例であり、他の画素数が設定されていてもよいものである。
【0023】
空間変調器8は、レンズ6Aに平行光PLが入射した際に、該レンズ6Aによって平行光PLが集光された光が上下方向に配列された7画素8A〜8Gのうちの中央の画素8Dにだけ入射するような位置に配置される。すなわち、マイクロレンズアレイ6と空間変調器8とは、レンズ6Aの焦点距離だけ離れて配置される。
【0024】
また空間変調器8は、レンズ6Aに拡散光DLが入射した際に、拡散光DLが該レンズ6Aに集光された平行光が上下方向に配列された7画素8A〜8Gの全てに入射されるように、レンズ6Aの直径と7画素8A〜8Gの上下方向長さとがほぼ同じとされる。
【0025】
空間変調器8は、後述するように、制御分析部13の制御に基づいて、画素8A〜8Gに対する電圧を切り替えることにより、液晶の配向状態が変化し、該画素8A〜8Gを通過する光の偏光方向を変化させる。
【0026】
空間変調器8を通過した光はポラライザ9に入射する。ポラライザ9は、所定の偏光方向の光を透過してマイクロプリズムアレイ10に導き、それ以外の偏光方向の光を遮断するようになされている。
【0027】
マイクロプリズムアレイ10は、図4(A)に示すように、空間変調器8の画素数と同数のプリズム10Aが2次元(格子状)に配列される。プリズム10Aは、入射された光の波長が短いほど界面での光が曲がる角度(屈折率)が大きいため、屈折率の差によって複数の波長成分に分光してイメージャ11に導く。
【0028】
イメージャ11は、図4(B)に示すように、マイクロプリズムアレイ10の各プリズム10Aに対して例えば左右方向に7画素が配置された2次元配列の撮像素子が適応される。すなわちマイクロプリズムアレイ10のプリズム10Aにより分光された光が、所定波長帯域ごとに7つの異なる画素に照射されるようになされている。
【0029】
従って分光測定装置1は、マイクロレンズアレイ6の各レンズ6Aを透過した光が空間変調器8で上下方向に7つの光に分けられ、7つに分けられた光がマイクロプリズムアレイ10で左右方向に波長帯域ごとに7つの光に分けられる。これにより、マイクロレンズアレイ6における各レンズ6Aを透過した光は、イメージャ11における7×7=49画素にわたって受光されることになる。
【0030】
このようにして分光測定装置1は、マイクロレンズアレイ6の各レンズ6Aに入射された光をそれぞれイメージャ11の異なる画素で受光するようになされているので、照射面IFにおけるレンズ6Aの数と同数の領域の分光を一度に取得することができる。
【0031】
イメージャ11は、マイクロプリズムアレイ10で分光された光を受光すると、その受光結果を制御分析部13に送出する。
【0032】
一方、ハーフミラー7で反射した光は、ディテクタアレイ12に照射される。ディテクタアレイ12は、例えば、空間変調器8と同数の画素数でなる撮像素子が適応される。
【0033】
ディテクタアレイ12は、マイクロレンズアレイ6からの距離が該マイクロレンズアレイ6から空間変調器8までの距離と同じとなる位置に配置される。またディテクタアレイ12は、それぞれの画素が空間変調器8の各画素と対応する位置に配置される。
【0034】
ディテクタアレイ12は、それぞれの画素で光を受光すると、その受光結果を制御分析部13に送出する。
【0035】
制御分析部13は、イメージャ11から供給される受光結果に基づいて、照射面IFに配置された照射対象における測定対象の成分量を算出する。また制御分析部13は、ディテクタアレイ12から供給された受光結果に基づいて、空間変調器8の各画素に印可する電圧を制御する。
【0036】
[1−2.制御分析部の構成]
制御分析部13は、図5に示すように、制御を司るCPU(Central Processing Unit)31に対して各種ハードウェアを接続することにより構成される。
【0037】
具体的にはROM(Read Only Memory)32、CPU31のワークメモリとなるRAM(Random Access Memory)33、ユーザの操作に応じた命令を入力する操作入力部34、インターフェイス部35、表示部36及び記憶部37がバス38を介して接続される。
【0038】
ROM32には、照射面IFから到来する光のうちの対象とすべき光のみをイメージャ11で受光して測定対象の成分量を分析するプログラム(以下、これを制御分析プログラムとも呼ぶ)が格納される。
【0039】
インターフェイス部35は、専用伝送路を介して空間変調器8、イメージャ11及びディテクタアレイ12と接続され、有線又は無線の伝送路を介して他の装置と接続可能とされる。
【0040】
表示部36には、液晶ディスプレイ又はELディスプレイ等が適用される。また記憶部37には、HD(Hard Disc)に代表される磁気ディスクもしくは半導体メモリ又は光ディスク等が適用される。USB(Universal Serial Bus)メモリやCF(Compact Flash)メモリ等のようにリムーバブルメモリ(可搬型メモリ)が適用されてもよい。
【0041】
CPU31は、ROM32に格納される複数のプログラムのうち、操作入力部34から与えられる命令に対応するプログラムをRAM33に展開し、該展開したプログラムにしたがってインターフェイス部35、表示部36又は記憶部37を適宜制御する。
【0042】
[1−3.制御分析処理]
CPU31は、操作入力部34から測定対象の成分量を算出すべき命令に対応する制御分析プログラムをRAM33に展開した場合、図6に示すように、駆動制御部41、空間制御部42、算出部43及び表示制御部44として機能する。
【0043】
駆動制御部41は、予め設定されたモード、又は操作入力部34から指定されるモードを決定する。モードとして、この実施の形態では、皮膚20内の成分(メラニン、ヘモグロビン)の量(濃度)を検出する成分量検出モード、又は皮膚20の色成分量を検出する色成分検出モードが設定される。
【0044】
(1)成分量検出モード
ところで、内部散乱光L3(図2)は、表皮21内部で乱反射して皮膚表面から出射した光であるため、表皮21に含まれるメラニンやヘモグロビンなどの成分量(濃度)が反映される。すなわち内部散乱光L3を受光することによりメラニンやヘモグロビンなどの成分量(濃度)を算出し得る。
【0045】
そこで駆動制御部41は、成分量検出モードが選択された場合、イメージャ11に対して内部散乱光L3だけを照射するように空間変調器8を設定する。具体的に、駆動制御部41は、図7(A)に示すように、レンズ6Aから画素8A〜8Gに照射される光のうちの中央に配置された画素8Dを透過した光だけがポラライザ9によって遮断され、それ以外の画素8A〜8C、8E〜8Gを透過した光がポラライザ9を透過するように、画素8A〜8Gの配向方向を切り替える。
【0046】
駆動制御部41は、光源2に対して照射光量等の照射条件を設定し、該照射条件の光を照射するよう光源2を駆動させる。また駆動制御部41は、イメージャ11及びディテクタアレイ12に対して露光時間等の受光条件を設定し、該受光条件で照射面IFに配置された皮膚20から反射した光を受光させる。
【0047】
空間制御部42は、ディテクタアレイ12で受光することにより得られる受光結果を取得すると、該受光結果から空間変調器8の画素8A〜8Gに照射される光の強度を検出する。
【0048】
そして空間制御部42は、表面反射光L2及び内部反射光L4をポラライザ9で遮断させ、内部散乱光L3のみをポラライザ9で透過させるように空間変調器8を調整する。
【0049】
ここで、表面反射光L2及び内部反射光L4がレンズ6Aの光軸と平行でかつ平行光でレンズ6Aに入射した場合、該レンズ6Aで集光された表面反射光L2及び内部反射光L4がディテクタアレイ12における画素8Dと対応する画素に集光する。
【0050】
また点光源から出射された光とみなせる内部散乱光L3は、レンズ6Aで集光されてディテクタアレイ12における画素8A〜8Gとそれぞれ対応する画素に略均一に照射される。
【0051】
従ってディテクタアレイ12は、表面反射光L2及び内部反射光L4がレンズ6Aの光軸と平行でかつ平行光でレンズ6Aに入射した場合、画素8Dと対応する画素の輝度値がその他の画素と比べて高い値となる。
【0052】
しかしながら、図8(A)に示すように、表面反射光L2及び内部反射光L4がレンズ6Aの光軸に対して所定角度をなして該レンズ6Aに入射した場合、該レンズ6Aで集光された表面反射光L2及び内部反射光L4が例えば空間変調器8における画素8Eに集光する。
【0053】
この場合、ディテクタアレイ12での受光結果では、画素8Eに対応する画素の輝度値がその他の画素に比べて高い値となる。このとき空間制御部42は、ディテクタアレイ12で得られた受光結果から、空間変調器8における画素8Eに表面反射光L2及び内部反射光L4が集光していると判断する。
【0054】
そして空間制御部42は、レンズ6Aから画素8A〜8Gに照射される光のうちの画素8Eを透過した光がポラライザ9によって遮断され、それ以外の画素8A〜8D、8F〜8Gを透過した光がポラライザ9を透過するように、画素8A〜8Gの配向方向を切り替える。
【0055】
また図8(B)に示すように、表面反射光L2及び内部反射光L4がレンズ6Aの光軸に平行でかつ収束光として該レンズ6Aに入射した場合、該レンズ6Aで集光された表面反射光L2及び内部反射光L4が例えば空間変調器8における画素8C〜8Eに照射される。
【0056】
この場合、ディテクタアレイ12での受光結果では、画素8C〜8Eに対応する画素の輝度値がその他の画素に比べて高い値となる。このとき空間制御部42は、ディテクタアレイ12で得られた受光結果から、空間変調器8における画素8C〜8Eに表面反射光L2及び内部反射光L4が照射されていると判断する。
【0057】
そして空間制御部42は、レンズ6Aから画素8A〜8Gに照射される光のうちの画素8C〜8Eを透過した光がポラライザ9によって遮断され、それ以外の画素8A〜8B、8F〜8Gを透過した光がポラライザ9を透過するように、画素8A〜8Gの配向方向を切り替える。
【0058】
さらに図8(C)に示すように、表面反射光L2及び内部反射光L4がレンズ6Aの光軸に平行でかつ発散光として該レンズ6Aに入射した場合、該レンズ6Aで集光された表面反射光L2及び内部反射光L4が例えば空間変調器8における画素8C〜8Eに照射される。
【0059】
この場合、ディテクタアレイ12での受光結果では、画素8C〜8Eに対応する画素の輝度値がその他の画素に比べて高い値となる。このとき空間制御部42は、ディテクタアレイ12で得られた受光結果から、空間変調器8における画素8C〜8Eに表面反射光L2及び内部反射光L4が照射されていると判断する。
【0060】
そして空間制御部42は、レンズ6Aから画素8A〜8Gに照射される光のうちの画素8C〜8Eを透過した光がポラライザ9によって遮断され、それ以外の画素8A〜8B、8F〜8Gを透過した光がポラライザ9を透過するように、画素8A〜8Gの偏光方向を切り替える。
【0061】
このようにして空間制御部42は、表面反射光L2及び内部反射光L4をポラライザ9で遮断させ、内部散乱光L3のみをポラライザ9を透過させてイメージャ11で受光させる。
【0062】
ここで、皮膚20で反射した表面反射光L2及び内部反射光L4は、該皮膚20が平面でないため、場所ごとに角度のずれ、発散光、収束光など異なった特性を示す。
【0063】
これに対応して空間制御部42は、皮膚20における複数の領域でそれぞれ反射して各レンズ6Aを透過した光ごとに、角度のずれ、発散光、収束光などに応じた空間変調器8の画素制御を行う。
【0064】
これにより空間制御部42は、場所ごとに異なった特性を示す光が入射された場合であっても、角度のずれ、発散光、収束光などに応じた画素制御をそれぞれの位置ごとに行い、それぞれの位置ごとに最適化することができる。
【0065】
算出部43は、イメージャ11で受光することにより得られる受光結果を取得すると、該受光結果に基づいて皮膚20の成分量を算出する。
【0066】
具体的には算出部43は、イメージャ11から取得した受光結果を用いて、各レンズ6Aにそれぞれ対応する領域ごとの、例えばメラニン、ヘモグロビンの成分量(濃度)をランベルト・ベールの法則に基づく吸光式を重回帰分析して算出する。なおヘモグロビンは、酸化ヘモグロビン及び還元ヘモグロビンを別々に算出してもよい。
【0067】
算出部43は、算出したメラニン、ヘモグロビンの成分量を、算出した領域及び算出した時点の日時と対応付けて記憶部37に記憶する。
【0068】
表示制御部44は、算出部43によって成分量が算出された場合、又は操作入力部34から成分量を提示すべき命令があった場合、記憶部37に記憶される成分量と領域とを対応付けた表示画面を表示部36に表示する。
【0069】
(2)色成分検出モード
ところで表面反射光L2及び内部反射光L4は、皮膚20で正反射した光であるため、該皮膚20の色に関する情報を有している。すなわち表面反射光L2及び内部反射光L4をイメージャ11で受光することにより皮膚20の成分に応じた肌色成分量や該皮膚20に塗布された化粧品の成分に応じた色成分量を算出し得る。
【0070】
そこで駆動制御部41は、色成分検出モードが選択された場合、イメージャ11に対して内部散乱光L3が照射しないように空間変調器8を設定する。具体的には、駆動制御部41は、図7(B)に示すように、レンズ6Aから画素8A〜8Gに照射される光のうちの画素8Dを透過した光だけがポラライザ9によって透過され、それ以外の画素8A〜8C、8E〜8Gを透過した光がポラライザ9で遮断されるように、画素8A〜8Gの配向方向を設定する。
【0071】
なお、実際には画素8Dを透過した光には内部散乱光L3の一部が含まれるが、表面反射光L2及び内部反射光L4と比べて少なく、無視できるものである。
【0072】
駆動制御部41は、光源2に対して照射光量等の照射条件を設定し、該照射条件の光を照射するよう光源2を駆動させる。また駆動制御部42は、イメージャ11及びディテクタアレイ12に対して露光時間等の受光条件を設定し、該受光条件で照射面IFに配置された皮膚20から反射した光を受光させる。
【0073】
空間制御部42は、ディテクタアレイ12で受光することにより得られる受光結果を取得すると、該受光結果を基に、内部散乱光L3をポラライザ9で遮断させ、表面反射光L2及び内部反射光L4をポラライザ9から透過させるように空間変調器8を調整する。
【0074】
例えば、図9(A)に示すように、表面反射光L2及び内部反射光L4がレンズ6Aの光軸に対して所定角度をなして該レンズ6Aに入射した場合、空間制御部42は、ディテクタアレイ12で得られた受光結果から、空間変調器8における画素8Eに表面反射光L2及び内部反射光L4が集光していると判断する。
【0075】
そして空間制御部42は、レンズ6Aから画素8A〜8Gに照射される光のうちの画素8A〜8D、8F〜8Gを透過した光がポラライザ9によって遮断され、画素8Eを透過した光がポラライザ9を透過するように、画素8A〜8Gの配向方向を切り替える。
【0076】
また図9(B)に示すように、表面反射光L2及び内部反射光L4がレンズ6Aの光軸に平行でかつ収束光として該レンズ6Aに入射した場合、空間制御部42は、ディテクタアレイ12で得られた受光結果から、空間変調器8における例えば画素8C〜8Eに表面反射光L2及び内部反射光L4が照射されていると判断する。
【0077】
そして空間制御部42は、レンズ6Aから画素8A〜8Gに照射される光のうちの画素8A〜8B、8F〜8Gを透過した光がポラライザ9に遮断され、画素8C〜8Eを透過した光がポラライザ9を透過するように、画素8A〜8Gの配向方向を切り替える。
【0078】
さらに図9(C)に示すように、表面反射光L2及び内部反射光L4がレンズ6Aの光軸に平行でかつ発散光として該レンズ6Aに入射した場合、空間制御部42は、ディテクタアレイ12で得られた受光結果から、例えば空間変調器8における画素8C〜8Eに表面反射光L2及び内部反射光L4が照射されていると判断する。
【0079】
そして空間制御部42は、レンズ6Aから画素8A〜8Gに照射される光のうちの画素8A〜8B、8F〜8Gを透過した光がポラライザ9によって遮断され、画素8C〜8Eを透過した光がポラライザ9を透過するように、画素8A〜8Gの配向方向を切り替える。
【0080】
このようにして空間制御部42は、内部散乱光L3をポラライザ9で遮断させ、表面反射光L2及び内部反射光L4をポラライザ9で透過させてイメージャ11で受光させる。
【0081】
算出部43は、イメージャ11から取得した受光結果を用いて、マイクロレンズアレイ6における各レンズ6Aにそれぞれ対応する領域ごとの、波長に基づく色成分量を算出し、該色成分量を算出した領域及び算出した時点の日時と対応付けて記憶部37に記憶する。
【0082】
表示制御部44は、算出部43によって色成分量が算出され、又は操作入力部34から色成分量を提示すべき命令があった場合、記憶部37に記憶される色成分量に基づき選択された色成分量を示す表示画面を表示部36に表示する。
【0083】
[1−4.制御分析処理手順]
次に上述した制御分析処理の手順について図10に示すフローチャートを用いて説明する。CPU31は、ルーチンRT1の開始ステップから入って次のステップSP1に移り、成分量検出モード、又は色成分検出モードを設定し、次のステップSP2に移る。
【0084】
ステップSP2においてCPU31は、設定されたモードに応じて、レンズ6Aを透過した光のうちのイメージャ11で受光する光以外をポラライザ9で遮断するように空間変調器8の画素8A〜8Gの配向方向を設定し、次のステップSP3に移る。
【0085】
ステップSP3においてCPU31は、光源2から光を出射させ、次のステップSP4で、照射面IFとして配置された皮膚20で反射した光をディテクタアレイ12で受光し、次のステップSP5に移る。
【0086】
ステップSP5においてCPU31は、ディテクタアレイ12で受光して得られた受光結果に基づいて、イメージャ11で受光すべき光だけがポラライザ9を透過しているか否かを判断し、否定結果が得られるとステップSP6に移る。
【0087】
ステップSP6においてCPU31は、ディテクタアレイ12で受光して得られた受光結果に基づいて、イメージャ11で受光すべき光だけがポラライザ9を透過するように、空間変調器8の画素8A〜8Gの配向方向を再設定し、ステップSP4に戻る。
【0088】
一方、ステップSP5で肯定結果が得られるとCPU31はステップSP7に移り、照射面IFとして配置された皮膚20で反射した光のうちの受光すべき光をイメージャ11で受光し、次のステップSP8に移る。
【0089】
ステップSP8においてCPU31は、イメージャ11で受光して得られる受光結果を基に、各モードで設定された測定対象の成分量を、レンズ6Aに対応する領域ごとにそれぞれ算出し、該算出結果を記憶部37に記憶し、次のステップSP9に移る。
【0090】
ステップSP9においてCPU31は、記憶部37に記憶される成分量を領域ごとに対応付けた表示画面を表示部36に表示し、次のステップに移って処理を終了する。
【0091】
[1−5.実施例]
(実施例1)肌の状態測定
分光測定装置1は、例えば操作入力部34の操作に応じて成分量検出モードを設定し、光源2から出射した光を照射面IFに配置されたユーザの顔全体に照射させ、該顔全体におけるそれぞれの領域で反射した光をマイクロレンズアレイ6の各レンズ6Aでそれぞれ集光する。
【0092】
分光測定装置1は、皮膚20の表皮21内で散乱した内部散乱光L3のみをポラライザ9で透過させてイメージャ11で受光し、受光結果からメラニン、ヘモグロビンの成分量を算出し、顔全体にわたるメラニン、ヘモグロビンの成分量を表示部36に表示する。
【0093】
これによりユーザは、顔全体にわたるメラニン、ヘモグロビンの成分量の分布を確認することができ、日焼け、しみ、そばかすなどの肌の状態を容易に確認することができる。さらに分光測定装置1は、記憶部37に記憶された過去のメラニン、ヘモグロビンの成分量を表示することにより、メラニン、ヘモグロビンの成分量の変化状態も確認させることができる。
【0094】
また分光測定装置1は、例えば顔全体にわたるメラニン、ヘモグロビンの成分量の分布に応じて、最適な化粧品の見積もりをユーザに提供するサービスや、インターネットを介して取得した紫外線情報を基に日焼け止めの選択を行うサービスを提供することもできる。
【0095】
(実施例2)ファンデーションの塗り具合の測定
分光測定装置1は、例えば操作入力部34の操作に応じて色成分検出モードを設定し、光源2から出射した光を照射面IFに配置されたユーザの顔全体に照射させ、該顔全体におけるそれぞれの領域で反射した光をマイクロレンズアレイ6の各レンズ6Aでそれぞれ集光する。
【0096】
分光測定装置1は、皮膚20で正反射した表面反射光L2及び内部反射光L4をポラライザ9で透過させてイメージャ11で受光して例えば肌色成分量を算出し、顔全体にわたる肌色成分量の分布を表示部36に表示する。
【0097】
これによりユーザは、ファンデーションの塗り具合や左右のアンバランスなどを容易に確認することができる。さらに分光測定装置1は、成分量検出モードに設定してメラニン、ヘモグロビンの成分量を算出して肌色成分量の分布と共に表示することにより、しみやそばかすなどの位置も合わせて確認させることができ、しみやそばかすなどの隠れ具合なども確認させることができる。
【0098】
また分光測定装置1は、例えば顔全体にわたるファンデーションの塗り具合から、個人の化粧技術のアシストや、しわ、しみ、そばかすなどを考慮した化粧技術のアシストなどのサービスを提供することもできる。
【0099】
(実施例3)化粧品のトータル測定
分光測定装置1は、例えば操作入力部34の操作に応じて色成分検出モードを設定し、光源2から出射した光を照射面IFに配置されたユーザの顔全体に照射させ、該顔全体におけるそれぞれの領域で反射した光をマイクロレンズアレイ6の各レンズ6Aでそれぞれ集光する。
【0100】
分光測定装置1は、皮膚20で正反射した表面反射光L2及び内部反射光L4をポラライザ9で透過させてイメージャ11で受光して幅広いスペクトルの色成分量を算出し、顔全体にわたる例えば口紅、アイシャドー、チークなどの分布を表示部36に表示する。これによりユーザは、化粧のトータル的な塗り具合を容易に確認することができる。
【0101】
また分光測定装置1は、例えば顔全体にわたる化粧の塗り具合から、個人の化粧技術のアシストや、プロのメイクアーティストの色使いなどのサービスを提供することもできる。
【0102】
[1−6.動作及び効果]
以上の構成において、分光測定装置1は、光源2から照射されて照射面IFで反射した光をマイクロレンズアレイ6における2次元配列された複数のレンズ6Aでそれぞれ集光する。そして分光測定装置1は、複数のレンズ6Aを透過した光をそれぞれマイクロプリズムアレイ10のプリズム10Aで分光して所定帯域ごとにイメージャ11で受光するようにした。
【0103】
これにより分光測定装置1は、照射面IFにおける複数の領域で反射した光を1回で同時に測定することができるので、1箇所で測定した場合に比べて、広範囲でかつ複数の領域の対象の成分量を測定することができ、測定精度を向上することができる。また複数の領域を1回で同時に測定するので、小型化することができる。
【0104】
また分光測定装置1は、レンズ6Aを透過した光のうちのポラライザ9を通過させる範囲を切り替える空間調整器8が設けられる。そして分光測定装置1は、照射面IFで正反射する光及び散乱する光のどちらか一方をイメージャ11で受光するように、空間調整器8を切り替えるようにした。
【0105】
これにより分光測定装置1は、測定対象の成分量が反映された正反射する光、又は散乱する光のどちらか一方だけをイメージャ11で受光することができるので、より測定精度を向上させることができる。
【0106】
さらに分光測定装置1は、空間変調器8に照射される光を検出するディテクタアレイ12を設け、該ディテクタアレイ12で検出された受光結果に基づいてポラライザ9を透過させる光の範囲を空間変調器8により変更するようにした。
【0107】
これにより分光測定装置1は、マイクロレンズアレイ6におけるレンズ6Aに対して光軸と平行に光が入射しなかった場合であっても、ポラライザ9を透過させる光の範囲を空間変調器8で変更するので、透過すべき光を透過し、遮断すべき光を遮断することができる。
【0108】
また、複数の領域での分光を受光する分光測定装置1においては、照射面IFに凹凸がある場合、該照射面IFで正反射する光の反射方向が一定にならないが、それぞれのレンズ6Aを透過した光ごとに透過させる光を調整できるので、特に有用である。
【0109】
以上の構成によれば、光源2から照射されて照射面IFで反射した光を2次元配列された複数のレンズ6Aで集光し、該レンズ6Aを透過した光をそれぞれプリズム10Aで分光して所定帯域ごとにイメージャ11で受光するようにした。
【0110】
これにより分光測定装置1は、複数の領域で反射した光を分光して受光するので、広範囲でかつ複数の領域における測定対象の成分量を測定することができ、1箇所で測定する場合と比して、測定精度を向上することができる。
【0111】
<2.他の実施の形態>
上述した実施の形態においては、マイクロレンズアレイ6を透過した光の一部をハーフミラー7で反射させてディテクタアレイ12で受光することにより、空間変調器8に照射される光を検出し、イメージャ11で受光する光を空間変調器8で制御するようにした場合について述べた。
【0112】
本発明はこれに限らず、例えばハーフミラー7及びディテクタアレイ12を設けることなく、イメージャ11で受光する光を空間変調器8で制御するようにしてもよい。具体的には、レンズ6Aを透過した光のすべてをポラライザ9で透過するように空間変調器8を設定し、該全ての光をイメージャ11で受光する。
【0113】
そして、イメージャ11で受光した受光結果に応じて、ポラライザ9で透過させるべき光を透過させ、ポラライザ9で遮断させるべき光を遮断させるように、空間変調器8を切り替えるようにする。これにより、ハーフミラー7及びディテクタアレイ12を設けることなく、イメージャ11で受光すべき光だけを受光することができる。
【0114】
上述した実施の形態においては、ディテクタアレイ12として空間変調器8と同数の画素数でなる撮像素子が適応された場合について述べた。本発明はこれに限らず、ディテクタアレイ12として例えば空間変調器8の画素数と同数のフォトディテクタが設けられるようにしてもよい。
【0115】
上述した実施の形態においては、ポラライザ5で光の偏光方向を直線偏光にし、空間変調器8で偏光方向を切り替え、ポラライザ9で透過又は遮断することにより、イメージャ11で受光する光を切り替えるようにした場合について述べた。
【0116】
本発明はこれに限らず、照射面IFで正反射した光及び散乱した光の一方をイメージャ11で受光することができる構成であれば、他の構成であってもよい。
【0117】
上述した実施の形態においては、レンズ6Aの光軸に平行でかつ平行光でない表面反射光L2及び内部反射光L4が入射した場合、空間変調器8における画素8A〜8Gの配向方向を切り替えて表面反射光L2及び内部反射光L4をポラライザ9で透過させるようにした場合について述べた。本発明はこれに限らず、レンズ6Aの光軸に平行でかつ平行光でない表面反射光L2及び内部反射光L4が入射した場合、表面反射光L2及び内部反射光L4をレンズ6Aの光軸に平行でかつ平行光な光に変換してからレンズ6Aに入射させるようにしてもよい。
【0118】
例えば、ガルバノミラーを設けてレンズ6Aの光軸に対して平行となるように光の角度を変更するようにしてもよい。またレンズ6Aの前方に可変焦点のコリメータレンズを設け、レンズ6Aに入射する光のコリメートを調整するようにしてもよい。さらにレンズ6Aの前方にMEMS(Micro Electro Systems)を設け、空間的に局所的な位置を変化させるようにしてもよい。
【0119】
上述した実施の形態においては、照射面IFに皮膚20が配置され、該皮膚20の成分を測定するようにした場合について述べた。本発明はこれに限らず、例えば、サンプルから発せられる蛍光を測定する蛍光顕微鏡に適応してもよい。また野菜などの鮮度を測定するセンサとして適応してもよいし、さらにコンクリートの状態の測定、空気中のガスの測定、土壌の測定などの装置に適応してもよい。
【0120】
上述した実施の形態においては、皮膚20で正反射した表面反射光L2及び内部反射光L4を受光して色成分量を算出するようにした場合について述べた。本発明はこれに限らず、例えば、光源2から出射させる光を皮膚20に所定角度の入射角で照射し、光路差に基づいて表面反射光L2及び内部反射光L4の一方だけを受光して色成分量を算出するようにしてもよい。
【0121】
上述した実施の形態においては、選択されたモードに応じて空間変調器8を予め設定してからディテクタアレイ12の受光結果に応じて再設定するようにした場合について述べた。本発明はこれに限らず、ディテクタアレイ12の受光結果及び選択されたモードに応じて空間変調器8を設定するようにしてもよい。
【0122】
上述した実施の形態においては、空間変調手段としてポラライザ5、空間変調器8及びポラライザ9を設けるようにした場合について述べた。本発明はこれに限らず、照射面IFから到来する平行光及び散乱光のうち一方をイメージャ11に照射させるものであればよい。
【0123】
さらに上述した実施の形態においては、CPU31がROM32に格納されている制御分析プログラムに従い、上述した制御分析処理を行うようにした場合について述べた。本発明はこれに限らず、記憶媒体からインストールしたり、インターネットからダウンロードした制御分析プログラムに従って上述した制御分析処理を行うようにしても良い。またその他種々のルートによってインストールした制御分析プログラムに従って上述した制御分析処理を行うようにしても良い。
【0124】
さらに上述した実施の形態においては、レンズとしてレンズ6A、分光手段としてマイクロプリズムアレイ10、受光部としてイメージャ11が設けられるようにした場合について述べた。本発明はこれに限らず、その他種々の構成でなるレンズ、分光手段、受光手段を設けるようにしても良い。
【産業上の利用可能性】
【0125】
本発明は、生物実験、医薬の創製又は患者の経過観察などのバイオ産業上において利用可能である。
【符号の説明】
【0126】
1……分光測定装置、2……光源、3……ミラー、4、7……ハーフミラー、5、9……ポラライザ、6……マイクロレンズアレイ、8……空間変調器、10……マイクロプリズムアレイ、11……イメージャ、12……ディテクタアレイ、13……制御分析部、20……皮膚、21……表皮、22……真皮、31……CPU、32……ROM、33……RAM、34……操作入力部、35……インターフェイス部、36……表示部、37……記憶部、38……バス、41……駆動制御部、42……空間制御部、43……算出部。

【特許請求の範囲】
【請求項1】
照射手段により照射される所定波長域の光が照射対象において反射した光を集光する2次元配置された複数のレンズと、
上記複数のレンズをそれぞれ透過した光を所定波長域ごとに分光する分光手段と、
上記分光手段を通過した所定波長域ごとの光をそれぞれ別々に受光する受光手段と、
上記受光手段によって得られた受光結果を用いて上記照射対象における測定対象の成分量を算出する算出手段と
を有する分光測定装置。
【請求項2】
上記複数のレンズを透過した光が通過する範囲をそれぞれ変更する空間変調手段
をさらに有し、
上記分光手段は、
上記空間変調部を透過した光をそれぞれ波長域ごとに分光する
請求項1に記載の分光測定装置。
【請求項3】
上記空間変調手段は、
上記照射対象において正反射した光又は散乱した光の一方を遮断し、他方を透過させる
請求項2に記載の分光測定装置。
【請求項4】
上記レンズを透過した上記正反射した光及び上記散乱した光の上記空間変調手段における照射位置を検出する検出手段と、
上記照射位置に応じて上記空間変調手段における上記範囲を変更する制御手段と
をさらに有する請求項3に記載の分光測定装置。
【請求項5】
上記照射対象は人体表面である
請求項4に記載の分光測定装置。
【請求項6】
照射手段により照射される所定波長域の光が照射対象において反射した光が2次元配置された複数のレンズで集光され、該集光された光が分光手段によって所定波長域ごとに分光された光をそれぞれ別々に受光する受光ステップと、
上記受光ステップによって得られた受光結果を用いて上記照射対象における測定対象の成分量を算出する算出ステップと
を有する分光測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2011−164022(P2011−164022A)
【公開日】平成23年8月25日(2011.8.25)
【国際特許分類】
【出願番号】特願2010−29086(P2010−29086)
【出願日】平成22年2月12日(2010.2.12)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】