説明

反射防止フィルム、その製造方法及び画像表示装置

【課題】 耐擦傷性に優れ、低コストで量産性に優れた反射防止フィルム、その製造方法、この反射防止フィルムを用いた偏光板及び画像表示装置を提供する。
【解決手段】 有機ポリマーの透明基材フィルム上に直接または間接に、アルコキシシラン化合物またはその加水分解物を含有する塗布液により形成される低屈折率層を設け、該低屈折率層の表面にフレームプラズマ処理を行なうことを特徴とする反射防止フィルムの製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、反射防止フィルム、その製造方法、偏光板及び画像表示装置に関する。
【背景技術】
【0002】
従来、耐擦傷性に優れた金属酸化物薄膜による反射防止フィルムを作製する方法として、種々の提案がなされており、反射膜自身の硬度を改善する方法、基材フィルムと反射膜の密着性を改善する方法が提案されている。
【0003】
例えば、特許番号第3435262号には、ゾルゲル方式の塗布液の状態で光照射する技術が記載されており、また、低屈折率層の処方改善や、密着層を設ける、ハードコート層の処方改善等の多くの技術が、耐擦傷性を改善する技術として提案されている。特開2002−182004号、同2004−52028号、特許第3508342号、特開2002−139602号、同2002−282777号、その他反射防止フィルムの多くの特許の明細書中に、有機ポリマーの透明基材フィルム上または有機ポリマーハードコート層上に、薬品処理、機械的処理、コロナ放電処理、火炎処理、紫外線照射処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理、混酸処理、アルカリ処理及びオゾン酸化処理の表面処理を行ない、基材と反射防止膜の密着性を良好にする技術が知られているが、不十分であった。
【0004】
一方、低屈折率層はその屈折率を低くする程、反射率を低下させることができ、特開平6−3501号、同6−345487号、特許第3272111号、特開平11−6902号、特開2001−233611号、同2003−201443号、同2003−145686号等に低屈折率層中に空隙を設けることで低屈折率層の屈折率を低くする技術が提案されているが、空隙を設けると低屈折率層の強度・密着性が低下し、耐擦傷性が低下する問題があった。
【0005】
特許文献1〜4には、一般フィルム、反射防止フィルムに対するフレームプラズマ処理(火炎処理)の使用が知られているが、この方法は基材(フィルム)の表面を改質して、その上に設ける薄膜層との密着性を向上させるのが目的であり、本発明の提案する低屈折率層の表面を改質する方法とは異なり、本発明の効果が得られることは予測できなかった。
【特許文献1】特開平7−314629号公報
【特許文献2】特開平6−255042号公報
【特許文献3】特開2001−9979号公報
【特許文献4】特開2000−356714号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明の目的は、耐擦傷性に優れ、低コストで量産性に優れた反射防止フィルム、その製造方法、この反射防止フィルムを用いた偏光板及び画像表示装置を提供することにある。
【課題を解決するための手段】
【0007】
本発明の上記目的は、以下の手段によって達成される。
【0008】
(請求項1)
有機ポリマーの透明基材フィルム上に直接または間接に、アルコキシシラン化合物またはその加水分解物を含有する塗布液により形成される低屈折率層を設け、該低屈折率層の表面にフレームプラズマ処理を行なうことを特徴とする反射防止フィルムの製造方法。
【0009】
(請求項2)
前記透明基材フィルムと低屈折率層の間に、活性エネルギー線硬化樹脂を主成分とするハードコート層を設けることを特徴とする請求項1に記載の反射防止フィルムの製造方法。
【0010】
(請求項3)
前記アルコキシシラン化合物の50%以上が、テトラエトキシシランであることを特徴とする請求項1または2に記載の反射防止フィルムの製造方法。
【0011】
(請求項4)
前記アルコキシシラン化合物またはその加水分解物を含有する塗布液が、空隙を有するシリカ系微粒子を含有することを特徴とする請求項1〜3のいずれか1項に記載の反射防止フィルムの製造方法。
【0012】
(請求項5)
前記空隙を有するシリカ系微粒子が、中空球状のシリカ系微粒子であることを特徴とする請求項4に記載の反射防止フィルムの製造方法。
【0013】
(請求項6)
前記透明基材フィルムがセルロースエステルフィルムであることを特徴とする請求項1〜5のいずれか1項に記載の反射防止フィルムの製造方法。
【0014】
(請求項7)
長尺な有機ポリマーの透明基材フィルムの片面上に直接または間接に、アルコキシシラン化合物またはその加水分解物を含有する塗布液により形成される低屈折率層を設けた後、冷却手段を有するローラー表面に少なくとも部分的に低屈折率層の反対面を巻き付けるようにしてローラー上を搬送し、巻き付けた部分またはその前後の低屈折率層表面を加熱する加熱手段を設けることを特徴とする反射防止フィルムの製造方法。
【0015】
(請求項8)
長尺な有機ポリマーの透明基材フィルムの片面上に直接または間接に、アルコキシシラン化合物またはその加水分解物を含有する塗布液により形成される低屈折率層を設けた後、ローラー搬送する工程を設け、搬送中の低屈折率層表面を加熱する加熱手段を複数箇所設けることを特徴とする反射防止フィルムの製造方法。
【0016】
(請求項9)
複数の前記加熱手段の間に、送風による冷却手段を有することを特徴とする請求項8に記載の反射防止フィルムの製造方法。
【0017】
(請求項10)
前記加熱手段が、フレームプラズマであることを特徴とする請求項7〜9のいずれか1項に記載の反射防止フィルムの製造方法。
【0018】
(請求項11)
前記加熱手段が、300〜800℃の表面温度を持つ金属性の加熱ローラーであることを特徴とする請求項7〜9のいずれか1項に記載の反射防止フィルムの製造方法。
【0019】
(請求項12)
請求項1〜11のいずれか1項に記載の反射防止フィルムの製造方法により製造されることを特徴とする反射防止フィルム。
【0020】
(請求項13)
請求項12に記載の反射防止フィルムを最表面に使用することを特徴とする画像表示装置。
【発明の効果】
【0021】
本発明により、耐擦傷性に優れ、低コストで量産性に優れた反射防止フィルム、その製造方法、この反射防止フィルムを用いた偏光板及び画像表示装置を提供することができる。
【発明を実施するための最良の形態】
【0022】
本発明者は鋭意検討の結果、有機ポリマーの透明基材フィルム上に直接または間接に、アルコキシシラン化合物またはその加水分解物を含有する塗布液により形成される低屈折率層を設け、該低屈折率層の表面にフレームプラズマ処理を行なう反射防止フィルムの製造方法により、耐擦傷性に優れ、低コストで量産性に優れた反射防止フィルムの製造方法が得られることを見出した。
【0023】
また、長尺な有機ポリマーの透明基材フィルムの片面上に直接または間接に、アルコキシシラン化合物またはその加水分解物を含有する塗布液により形成される低屈折率層を設けた後、冷却手段を有するローラー表面に少なくとも部分的に低屈折率層の反対面を巻き付けるようにしてローラー上を搬送し、巻き付けた部分またはその前後の低屈折率層表面を加熱する加熱手段を設ける反射防止フィルムの製造方法、または、長尺な有機ポリマーの透明基材フィルムの片面上に直接または間接に、アルコキシシラン化合物またはその加水分解物を含有する塗布液により形成される低屈折率層を設けた後、ローラー搬送する工程を設け、搬送中の低屈折率層表面を加熱する加熱手段を複数箇所設ける反射防止フィルムの製造方法により、耐擦傷性に優れ、低コストで量産性に優れた反射防止フィルムの製造方法が得られることを見出した。
【0024】
これらの効果については、アルコキシシラン化合物またはその加水分解物を含有する塗布液により形成される低屈折率層を200℃以上の高温にすることで、ゾルゲル反応を促進し、ガラス質に近づけることで、膜自身の強度をアップすると共に、低屈折率層に接する層との密着性を改善するものと推定している。特に、低屈折率層に接する層が有機ポリマーの場合は、高温により低屈折率層と接する部分が軟化・溶融に近い状態となって密着性が改善されていると推定している。
【0025】
以下本発明を詳細に説明する。
【0026】
〔加熱手段、冷却手段〕
本発明において低屈折率層表面の加熱に用いられる加熱手段は、低屈折率層表面を200〜500℃に加熱することができる加熱手段が好ましく、具体的には、遠赤外線ヒーター、マイクロ波(好ましくは波長を低屈折率層組成物の吸収波長に合わせる)、フレームプラズマ処理(火炎処理)、加熱ローラー接触(直接、間接)、高温ガス(空気)吹き付けが挙げられる。なかでも、フレームプラズマ処理、加熱ローラー接触が好ましい。
【0027】
加熱手段は、加熱のON/OFFが制御可能(使用電源のON/OFF、燃焼ガスの供給ON/OFF、フィルムへの距離の調節によるON/OFF等)であることが好ましい。また、温度調節機能(電熱消費電力調整、燃焼ガスの供給調整、フィルムへの距離の調節、フィルムとの接触伝熱の搬送方向の距離の調節、温度検出手段、フィードバック制御手段)を有していることが、安定した耐擦傷性を得るために好ましい。
【0028】
加熱手段によるフィルム加熱部の搬送方向の距離は、冷却手段の搬送方向の距離に対して1/3以下とすることが好ましい。加熱手段は一定の搬送方向の距離を空けて、複数箇所設けることが好ましい。好ましくは、2〜20箇所、より好ましくは3〜10箇所である。
【0029】
上記複数の加熱手段と加熱手段の間には冷却手段を設けることが好ましい。冷却手段は、低屈折率層の表面加熱終了時に、低屈折率層の反対表面温度を150℃以下に維持することができる冷却手段であることが好ましい。冷却媒体としては、液体(水が好ましい)、気液循環溶媒(フレオンガス、アンモニア等)、気体(空気、ガス。空気が好ましい)が挙げられる。
【0030】
冷却方式としては、直接にフィルムを冷却する方式(空冷が好ましい)、冷却したローラーをフィルムに接触させる方式(水、空冷、気液循環溶媒がそれぞれ好ましい)が好ましい。最も好ましくは、空冷のみを使用することであり、複数部分を空冷することが好ましい。
【0031】
安定した本発明の効果を得るためには、冷却に使用する空気温度は、−20〜80℃が好ましく、0〜50℃とすることがより好ましい。
【0032】
低屈折率層表面の加熱時には、フィルムの反対面を冷却する手段を設け、加熱終了後にもフィルムの反対面を冷却する手段を継続して設けることが好ましい。
【0033】
上記は、本発明の効果を安定して、最良の状態で得るために好ましい。
【0034】
(フレームプラズマ処理)
フレームプラズマ処理とは、表面処理をしようとするフィルムの表面にバーナーにより火炎(フレーム)処理を行うことでプラズマを発生させ表面処理を行うもので、例えばパラフィン系ガス(都市ガス、天然ガス、メタンガス、プロパンガス、ブタンガス等)のような燃焼ガスとこれに混合された酸化性ガス、例えば空気や酸素(また、助燃剤や酸化剤等を用いる場合もある)からなる混合ガスを燃焼させ、この火炎で表面を処理することである。
【0035】
以下、本発明の一実施の形態について、表面処理装置1の概略構成図である図1に基づいて説明する。
【0036】
この装置は、長尺の低屈折率層を有する支持体2(以下、低屈折率層を有する支持体を単に支持体という)を連続搬送する搬送手段3(図1においては、搬送手段3の一部を記載している)と、搬送手段3によって連続搬送される支持体2に対して物理的表面処理を行う表面処理装置1を有している。この支持体2は、表面処理装置1によって表面処理された後、次工程へ送られる。
【0037】
表面処理装置1は、連続搬送される支持体2に対して、物理的表面処理を施す装置であり、本実施の形態においては、フレームプラズマ処理(火炎処理)を行う装置である。この表面処理装置1は、支持体2の移動とともに回転する回転冷却ドラム11と、回転冷却ドラム11に巻架されている支持体2に対してプラズマ処理を行うプラズマ処理手段(本実施の形態においては、フレームプラズマ処理を施すために燃焼ガスを燃やすプラズマ処理手段である。詳細は図2で後述する)12と、フレームプラズマ処理が施される支持体2とプラズマ処理手段12との間に電界を生じせしめる電界生成手段13と、プラズマ処理手段12の燃焼ガスに不活性ガスを導入する導入手段14と、プラズマ処理手段12によるフレームプラズマ処理に先立ち支持体2に対して除電処理を施す前除電手段15と、プラズマ処理手段12によってフレームプラズマ処理が施された支持体2に対して除電処理を施す後除電手段16とを有している。
【0038】
回転冷却ドラム11は、その周面に搬送手段によって搬送される支持体2を巻架するとともに、支持体2の移動とともに回転するローラーであり、いわゆる、バックアップローラーである。したがって、支持体2は、この回転冷却ドラム11に接して、矢示の方向へ走行する。なお、この回転冷却ドラム11は、その内部に冷却水(プラズマ処理手段12によって発せられる炎の温度より低い約40℃の水)が流れ、券架されている支持体2を冷却する機能も有している。
【0039】
プラズマ処理手段12は、回転冷却ドラム11に巻架されている支持体2に対してプラズマ処理、詳細には、フレームプラズマ処理を施す手段である。プラズマ処理手段12が供給される燃焼ガスを燃やすことにより、発生したプラズマが支持体2の表面(低屈折率層面)に衝突し、支持体2の表面を加熱、改質、いわゆる、エッチングが行われる。このプラズマ処理手段12は、回転冷却ドラム11に所定の間隔を隔てて対向して設けることにより、支持体2との間隔を一定に保つようにしている。
【0040】
電界生成手段13は、フレームプラズマ処理が施される支持体2、すなわち、回転冷却ドラム11に巻架されている支持体とプラズマ処理手段12との間に均一な電界を生じせしめる手段である。本実施の形態では、プラズマ処理手段12(詳細には、プラズマ処理手段12の誘電体)をアース(接地)するとともに、電源から回転冷却ドラム11(詳細には、回転冷却ドラム11の誘電体)に電圧を与えることにより、電界を生成するように構成しているが、フレームプラズマ処理される前の支持体2にコロナ放電等の帯電手段によって印加し、支持体2を均一に帯電させることにより、電界を生成するようにしてもよい。この電界生成手段13によって支持体2に印加する(回転冷却ドラム11を介して印加する)電圧は、交流であっても直流であってよいが、高周波の交流が好ましく、また、正負電圧どちらであってもよい。なお、この電界生成手段13による支持体2の帯電量を絶対値で500V以上にすることにより、支持体2の損傷の抑制や改質効果の向上を図ることができ、好ましい。
【0041】
このように、本実施の形態では、連続搬送される支持体2に対してフレームプラズマ処理を施す際に、電界を生じさせながら行うので、発生したプラズマ(特に、後述する不活性ガスのプラズマ)を効率的に支持体2へ衝突させることができ、改質効果の向上を図ることができる。
【0042】
導入手段14は、プラズマ処理手段12の燃焼ガス(例えば、都市ガス、天然ガス、プロパンガス)に不活性ガスを導入する手段である。導入される不活性ガスは、ヘリウム(He)より質量の大きいネオン(Ne)以降の不活性ガス(以下、特に断らない限り、単に、不活性ガスという)、例えば、ネオン(Ne)、アルゴン(Ar)、キセノン(Xe)等であり、特に、安価なアルゴン(Ar)が好ましい。導入手段14によって不活性ガスが導入された燃焼ガスは、プラズマ処理手段12へと供給され、プラズマ処理手段12で燃焼されることにより、不活性ガスプラズマを発生させることができる。なお、本実施の形態の導入手段14は、燃焼ガスに不活性ガスを混合することにより、燃焼ガスに不活性ガスを導入したが、連続搬送されている支持体2に同伴させることにより燃焼ガスに不活性ガスを導入してもよく、また、プラズマ処理手段12からでている炎の部分(フレーム部)に不活性ガスを衝突させることにより燃焼ガスに不活性ガスを導入してもよい。
【0043】
このように、本実施の形態では、連続搬送される支持体2に対してフレームプラズマ処理を施す際に、フレームプラズマ処理の燃焼ガスに、不活性ガス(ヘリウム(He)より質量の大きいネオン(Ne)以降の不活性ガス)を導入することにより、質量の大きいプラズマを発生させることができ、支持体2に対するエッチングを大きく行うことができ、アンカー効果をより大きく引き出すことができ、改質効果の向上を図ることができる。さらに、この場合、不活性ガスを導入しない場合に比して、プラズマ温度を低下させることができるとともに、支持体2のダメージをも低減させることができるという付随的な効果が得られる。
【0044】
前除電手段15は、プラズマ処理手段12によるフレームプラズマ処理に先立ち支持体2に対して除電処理を施す除電手段である。この前除電手段15は、プラズマ処理手段12に対して支持体2の搬送方向上流側に配置され、連続搬送されている支持体2の静電気等によって不均一な(プラス・マイナスの入り混じった)極性帯電(帯電ムラ)を除電する手段であり、これにより、フレームプラズマ処理を安定させることができる。すなわち、本発明者らの検討の結果、フレームプラズマ処理を施す支持体2に帯電ムラがあると、安定したフレームプラズマ処理を施すことができないという知見を得た。そのために、フレームプラズマ処理に先立ち除電処理を施すことが、安定したフレームプラズマ処理を施すことが有効的である。
【0045】
また、この前除電手段15としては、イオン風を吹き付ける送風(ブロアー)式除電器や除電ブラシ等の接触式除電器でもよいが、複数の正負イオン生成用除電電極と支持体2を挟む様にイオン吸引電極とを対向させた除電装置及び該除電装置の後に正負の直流式除電装置を設けた高密度除電器(例えば、特開平7−263173号公報参照)を用いることが好ましい。
【0046】
後除電手段16は、プラズマ処理手段12によってフレームプラズマ処理が施された支持体2に対して除電処理を施す除電手段である。この後除電手段16は、プラズマ処理手段12に対して支持体2の搬送方向下流側に配置され、フレームプラズマ処理中に帯電した支持体2の帯電ムラを除電する手段であり、これにより、次工程での静電気トラブルを防止することができる。
【0047】
なお、前除電手段15によるプラズマ処理に先立つ除電処理及び後除電手段16によるプラズマ処理後の除電処理は、フレームプラズマ処理のみならず、グロー放電処理を含めたプラズマ処理に適用することにより、安定したプラズマ処理を行うことができる。
【0048】
搬送手段3は、支持体2を連続搬送する手段であり、図1においては、その一部を示している。搬送手段3のローラー31、32は、回転冷却ドラム11に対して、支持体2の搬送方向上・下流側に、支持体2が回転冷却ドラム11に密着するように配置されたローラーである。搬送手段3のローラー33〜36(及びローラー32)は、表面処理装置1で表面処理された支持体2の表面処理された面を支持し、搬送するローラーである。
【0049】
一般的に、バーナーから出る火炎には外炎と内炎とがあり、外炎部は内炎部の未反応(燃焼しきれない)ガスが加熱された、通常薄い青色をした部分でいわゆるブルーのガス炎と言われており、温度が高い部分であり、ブルーでない火炎部が内炎で酸素供給が少ない温度の比較的低い部分である。
【0050】
この内炎の先端から30mm以内の火炎にはプラズマが多く発生しており、遮蔽板により炎を制限することで内炎の先端から30mm以内のところの制限した火炎で低屈折率層を有する支持体表面(低屈折率層側面)を処理することができ、これによるプラズマ処理が可能である。
【0051】
火炎をあてる時間は、処理しようとする支持体表面と火炎が接触する時間で0.001〜2秒以内である。好ましくは、0.01〜1秒以内である。長すぎる場合には、支持体表面が犯されすぎ、短いと酸化反応が起こりにくく接着性が向上しない。
【0052】
この目的で使用されるバーナーは、プラズマ処理を行おうとする支持体表面に均一に炎をあてることができればよい。またバーナーを複数配置するのは好ましい。
【0053】
上記火炎処理の燃焼ガスと酸化性ガスの混合比率は、ガスの種類によって異なるが、例えばプロパンガスと空気の場合にはプロパンガス/空気の好ましい混合比は、容量比で1/15〜1/22、好ましくは1/16〜1/19の範囲がよく、天然ガスと空気の場合には、1/6〜1/10、好ましくは1/7〜1/9である。内炎と外炎の大きさの比率は燃焼ガスの種類や酸化性ガスの種類、混合比、供給速度等により異なってくる。
【0054】
また、フレーム(火炎)プラズマ処理を行う装置についても、特開平9−355097号に記載されたものが好ましく用いられる。
【0055】
図2は、図1のプラズマ処理手段12の詳細図である。前述のように、バーナーから出る火炎には外炎と内炎とがあり、外炎部は内炎部の未反応(燃焼しきれない)ガスが加熱された、通常薄い青色をした部分でいわゆるブルーのガス炎と言われており、温度が高い部分であり、ブルーでない火炎部が内炎で酸素供給が少ない温度の比較的低い部分である。この外炎はプラズマ処理をするには不要な炎が多く、外炎が拡がると処理がコントロールできなくなるので、図2に示すような遮蔽板(外炎規制装置)Cを設置することにより、不要な外炎E′を遮蔽板(外炎規制装置)Cの外側に出して支持体から避け、有効炎(規制された炎)Gを低屈折率層を有する支持体2の表面(低屈折率層面)に当てることによって火炎処理をコントロールし、目的を達成する。図はバーナーB、外炎E、内炎I、遮蔽板の外側に遮蔽され広がった外炎E′、有効炎Gや有効処理孔(スリット)S等を、また有効処理孔(スリット)Sを通して有効炎Gを試料フィルムFの表面に当てる様子を示した。
【0056】
(加熱ローラー接触)
加熱ローラー接触は、ローラーを金属材質(ステンレス鋼、チタン)として、該ローラーを間接的に電熱ヒーター(ニクロム線、セラミックヒーター等)で加熱して温度コントロールする方式が好ましい。加熱ローラー接触方式は、イニシャルコスト、ランニングコストが低く、火炎を使用せず安全性に優れる。加熱ローラーの表面温度は、300〜800℃が好ましい。より好ましくは300〜500℃である。加熱ローラー表面のベスト温度はフィルム接触時間と密接な関係にあり、加熱直後の低屈折率層側の表面温度が200℃以上、裏面側の表面温度が80℃以下となるようにすることが好ましい。
【0057】
加熱ローラー接触方式の加熱・冷却手段の例を図3に示す。この装置では、複数の加熱ローラー41で加熱し、加熱ローラー間に設けた内部が水冷された回転冷却ローラー42と冷却風(空冷)43により、低屈折率層の反対面を冷却することができる。
【0058】
その他の加熱・冷却手段の例として、空気44をニクロム線ヒーター45に送り、熱風を、内部が水冷された回転冷却ドラム42に巻架されている低屈折率層付き支持体の低屈折率層面に当てる装置を図4に示す。図5は、空気44を遠赤外線セラミックヒーター46に送り、遠赤外線と熱風を、中空で内部にフィンを有し空冷された回転冷却ドラム47に巻架されている低屈折率層付き支持体の低屈折率層面に当てる装置である。
【0059】
〔透明基材フィルム〕
本発明で反射防止フィルムの基材として用いられる有機ポリマーの透明基材フィルムは特に限定はされないが、例えば、ポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートフタレートフィルム、セルロースアセテートプロピオネートフィルム(CAPフィルム)、セルローストリアセテート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体からなるフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン樹脂系フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルスルホンフィルム、ポリスルホン系フィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム、ポリアリレート系フィルムあるいはポリ乳酸系フィルム等を挙げることができるが、本発明には、セルローストリアセテートフィルム(TACフィルム)等のセルロースエステルフィルム、ポリカーボネート(以下PCと略すことがある)フィルム、シンジオタクティックポリスチレン系フィルム、ポリアリレート系フィルム、ノルボルネン樹脂系フィルム及びポリスルホン系フィルムが透明性、機械的性質、光学的異方性がない点等好ましく、特にセルロースエステルフィルム(CAPフィルム、TACフィルム)が、それらの中でも製膜性が容易で加工性に優れているため好ましく用いられ、特にTACフィルムを使用するのが好ましい。
【0060】
セルロースエステルフィルムを用いる場合、本発明の各塗布層塗設前にセルロースエステルフィルムがケン化処理されていてもよい。例えば、製膜後ケン化処理した後、活性エネルギー線硬化樹脂層を塗設し、さらにケン化処理をすることもできる。
【0061】
次に、TACフィルムの製膜法について述べるが、CAPも同様に製膜することができる。TACフィルムは一般的に、TACフレーク原料及び可塑剤をメチレンクロライドに溶解して粘稠液とし、これに可塑剤を溶解してドープとなし、エクストルーダーダイスから、エンドレスに回転するステンレス等の金属ベルト(バンドともいう)上に流延して、乾燥させ、生乾きの状態でベルトから剥離し、ロール等の搬送装置により、両面から乾燥させて巻き取り、製造される。PCフィルムについてもTACフィルムと同様に製膜することができる。
【0062】
上記可塑剤としては、リン酸エステルまたはカルボン酸エステルが好ましく用いられる。リン酸エステルとしては、トリフェニルフォスフェート(TPP)及びトリクレジルホスフェート(TCP)、ビフェニル−ジフェニルホスフェート、ジメチルエチルホスフェートが含まれる。カルボン酸エステルとしては、フタル酸エステル及びクエン酸エステルが代表的なものである。フタル酸エステルの例には、ジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)及びジエチルヘキシルフタレート(DEHP)、エチルフタリルエチルグリコレート等が用いられる。クエン酸エステルとしては、クエン酸アセチルトリエチル(OACTE)及びクエン酸アセチルトリブチル(OACTB)が用いられる。その他のカルボン酸エステルの例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。リン酸エステル系可塑剤(TPP、TCP、ビフェニル−ジフェニルホスフェート、ジメチルエチルホスフェート)、フタル酸エステル系可塑剤(DMP、DEP、DBP、DOP、DEHP)が好ましく用いられる。このほか、ポリ酢酸ビニル共重合体、脂肪族直鎖状ポリエステル、メチルメタクリレート系共重合物等の重量平均分子量1000〜100000の高分子化合物を高分子可塑剤として添加することができる。
【0063】
この中でもトリフェニルフォスフェート(TPP)、エチルフタリルエチルグリコレートが特に好ましく用いられる。可塑剤の添加量はフィルム中に通常2〜15質量%添加され、より好ましくは4〜8質量%になるよう添加することが望ましい。
【0064】
また、PCフィルムにも上記可塑剤を添加することができる。
【0065】
さらに本発明に有用な基材であるTACまたはPCフィルム中に、紫外線吸収剤を含有させることによって、耐光性に優れた偏光板用保護フィルムを得ることができる。本発明に有用な紫外線吸収剤としては、サリチル酸誘導体(UV−1)、ベンゾフェノン誘導体(UV−2)、ベンゾトリアゾール誘導体(UV−3)、アクリロニトリル誘導体(UV−4)、安息香酸誘導体(UV−5)または有機金属錯塩(UV−6)等があり、それぞれ(UV−1)としては、サリチル酸フェニル、4−t−ブチルフェニルサリチル酸等を、(UV−2)としては、2−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン等を、(UV−3)としては、2−(2′−ヒドロキシ−5′−メチルフェニル)−ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−5′−ジ−ブチルフェニル)−5−クロロベンゾトリアゾール等を、(UV−4)としては、2−エチルヘキシル−2−シアノ−3,3′−ジフェニルアクリレート、メチル−α−シアノ−β−(p−メトキシフェニル)アクリレート等を、(UV−5)としては、レゾルシノール−モノベンゾエート、2′,4′−ジ−t−ブチルフェニル−3,5−t−ブチル−4−ヒドロキシベンゾエート等を、(UV−6)としては、ニッケルビス−オクチルフェニルサルファミド、エチル−3,5−ジ−t−ブチル−4−ヒドロキシベンジルリン酸のニッケル塩等を挙げることができる。
【0066】
また、すべり性を改善するために、これら透明基材フィルムを製造する際のドープ中に、シリカ等の微粒子(平均粒径0.005〜0.2μm)を0.01〜0.5質量%添加することもできる。例えば日本アエロジル社製アエロジル200V、アエロジルR972V等を添加することができる。すべり性は鋼球での測定で、動摩擦係数0.4以下好ましくは0.2以下であることが望まれる。
【0067】
〔ハードコート層〕
本発明では、透明基材フィルムと後述する低屈折率層との間に活性エネルギー線硬化樹脂を主成分とするハードコート層を設けることが好ましい。本発明の反射防止フィルムのハードコート層は活性エネルギー線硬化樹脂を主成分として用いるので、以下ハードコート層を活性エネルギー線硬化樹脂層ともいう。活性エネルギー線硬化樹脂層とは紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂を主たる成分とする層をいう。
【0068】
(活性エネルギー線硬化樹脂)
ハードコート層に用いる活性エネルギー線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて活性エネルギー線硬化樹脂層が形成される。本発明ではハードコート層が、バインダーとしてアクリル系の活性エネルギー線硬化樹脂を主成分とすることが好ましい。活性エネルギー線硬化アクリレート系樹脂としては、例えば、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、エポキシアクリレート系樹脂、ポリオールアクリレート系樹脂等が挙げられる。
【0069】
アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物にさらに2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59−151110号に記載のものを用いることができる。
【0070】
例えば、ユニディック17−806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。
【0071】
紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることができ、特開昭59−151112号に記載のものを用いることができる。
【0072】
紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させて生成するものを挙げることができ、特開平1−105738号に記載のものを用いることができる。
【0073】
紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
【0074】
樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。
【0075】
これらの中で、バインダーの主成分として、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、トリメチロールエタン(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレートから選択されるアクリル系の活性エネルギー線硬化樹脂が好ましい。
【0076】
本発明において使用し得る紫外線硬化樹脂の市販品としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(旭電化(株)製);コーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(広栄化学(株)製);セイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業(株)製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー(株)製);RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(大日本インキ化学工業(株)製);オーレックスNo.340クリヤ(中国塗料(株)製);サンラッドH−601、RC−750、RC−700、RC−600、RC−500、RC−611、RC−612(三洋化成工業(株)製);SP−1509、SP−1507(昭和高分子(株)製);RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(東亞合成(株)製)等を適宜選択して利用できる。
【0077】
これら紫外線硬化性樹脂の光反応開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。光増感剤と共に使用してもよい。上記光反応開始剤も光増感剤として使用できる。また、エポキシアクリレート系の光反応開始剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることができる。紫外線硬化樹脂組成物に用いられる光反応開始剤また光増感剤は該組成物100質量部に対して0.1〜15質量部であり、好ましくは1〜10質量部である。
【0078】
活性エネルギー線硬化性樹脂組成物は塗布乾燥された後、活性エネルギー線、例えば、紫外線を照射し硬化する。
【0079】
こうして得た硬化皮膜層に、ブロッキングを防止するため、また対擦り傷性等を高めるために無機または有機の微粒子を加えることが好ましい。例えば、無機微粒子としては酸化珪素、酸化チタン、酸化アルミニウム、酸化錫、酸化亜鉛、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム等を挙げることができ、また有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等を挙げることができ、紫外線硬化性樹脂組成物に加えることができる。これらの微粒子粉末の平均粒径としては、0.005μm〜1μmが好ましく0.01〜0.1μmであることが特に好ましい。
【0080】
活性エネルギー線硬化樹脂組成物と微粒子粉末との割合は、樹脂組成物100質量部に対して、0.1〜10質量部となるように配合することが望ましい。
【0081】
このようにして形成された活性エネルギー線硬化樹脂を硬化させた層は、JIS B 0601に規定される中心線平均粗さRaが1〜50nmのクリアハードコート層であっても、Raが0.1〜1μm程度の防眩層であってもよい。
【0082】
ハードコート層の屈折率は、透明基材フィルムの屈折率に対して±0.005以内とすることが干渉ムラ防止のために好ましく、±0.002以内とすることより好ましい。
【0083】
透明基材フィルムとハードコート層の間には、密着層、接着層を設けてもよく、この場合は0.1μm以下の膜厚として本発明の効果の障害とならないようにしなくてはならない。支持体上にハードコート層を塗布する前処理として、火炎処理、コロナ放電、プラズマ加工を行ってもよい。これらのハードコート層層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法で塗設することができる。
【0084】
紫外線硬化性樹脂を光硬化反応により硬化させ、硬化皮膜層を形成するための光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、活性エネルギー線の照射量は、通常5〜500mJ/cm2、好ましくは5〜100mJ/cm2であるが、特に好ましくは20〜80mJ/cm2である。
【0085】
また、活性エネルギー線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、さらに好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30〜300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、若しくは2軸方向に張力を付与してもよい。これによってさらに平面性優れたフィルムを得ることができる。
【0086】
紫外線硬化樹脂層組成物塗布液には溶媒が含まれていてもよく、必要に応じて適宜含有し、希釈されたものであってもよい。塗布液に含有される有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中でもから適宜選択し、あるいはこれらを混合し利用できる。プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等を5質量%以上、より好ましくは5〜80質量%以上含有する上記有機溶媒を用いるのが好ましい。
【0087】
また、紫外線硬化樹脂層組成物塗布液には、特にシリコン化合物を添加することが好ましい。例えば、ポリエーテル変性シリコーンオイル等が好ましく添加される。ポリエーテル変性シリコーンオイルの数平均分子量は、例えば、1,000〜100,000、好ましくは、2,000〜50,000が適当であり、数平均分子量が1,000未満では、塗膜の乾燥性が低下し、逆に、数平均分子量が100,000を越えると、塗膜表面にブリードアウトしにくくなる傾向にある。
【0088】
シリコン化合物の市販品としては、DKQ8−779(ダウコーニング社製商品名)、SF3771、SF8410、SF8411、SF8419、SF8421、SF8428、SH200、SH510、SH1107、SH3749、SH3771、BX16−034、SH3746、SH3749、SH8400、SH3771M、SH3772M、SH3773M、SH3775M、BY−16−837、BY−16−839、BY−16−869、BY−16−870、BY−16−004、BY−16−891、BY−16−872、BY−16−874、BY22−008M、BY22−012M、FS−1265(以上、東レ・ダウコーニングシリコーン社製商品名)、KF−101、KF−100T、KF351、KF352、KF353、KF354、KF355、KF615、KF618、KF945、KF6004、シリコーンX−22−945、X22−160AS(以上、信越化学工業社製商品名)、XF3940、XF3949(以上、東芝シリコーン社製商品名)、ディスパロンLS−009(楠本化成社製)、グラノール410(共栄社油脂化学工業(株)製)、TSF4440、TSF4441、TSF4445、TSF4446、TSF4452、TSF4460(GE東芝シリコーン製)、BYK−306、BYK−330、BYK−307、BYK−341、BYK−344、BYK−361(ビックケミ−ジャパン社製)日本ユニカー(株)製のLシリーズ(例えばL7001、L−7006、L−7604、L−9000)、Yシリーズ、FZシリーズ(FZ−2203、FZ−2206、FZ−2207)等が挙げられ、好ましく用いられる。
【0089】
これらの成分は基材や下層への塗布性を高める。積層体最表面層に添加した場合には、塗膜の撥水、撥油性、防汚性を高めるばかりでなく、表面の耐擦り傷性にも効果を発揮する。これらの成分は、塗布液中の固形分成分に対し、0.01〜3質量%の範囲で添加することが好ましい。
【0090】
紫外線硬化性樹脂組成物塗布液の塗布方法としては、前述のものを用いることができる。塗布量はウェット膜厚として1〜40μmが適当で、好ましくは、3〜20μmである。また、ドライ膜厚としては前述のように1〜20μm、好ましくは1.5〜10μmである。
【0091】
紫外線硬化性樹脂組成物は塗布乾燥中または後に、紫外線を照射するのがよく、必要な活性エネルギー線の照射量を得るための照射時間としては、0.1秒〜1分程度がよく、紫外線硬化性樹脂の硬化効率または作業効率の観点から0.1〜10秒がより好ましい。また、これら活性エネルギー線照射部の照度は50〜150mW/m2であることが好ましい。ハードコート層を2層重層して塗布するときは重層した状態で紫外線を照射するのが好ましい。
【0092】
〔バックコート層〕
本発明においては、透明基材フィルムの片側にバックコート層を有することが好ましい。
【0093】
バックコート層の塗布組成物の一つ(バインダー)としてセルロースエステルを用いることがことが好ましい。セルロースエステルとしては、ニトロセルロース、セルロースアセテートプロピオネート、ジアセチルセルロース、セルロースアセテートブチレート、セルロースアセテートプロピオネート樹脂等のセルロースエステル系樹脂を用いることができる。中でもジアセチルセルロースが特に好ましい。
【0094】
その他のバインダーとして、例えば塩化ビニル/酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル/酢酸ビニル共重合体、塩化ビニル/塩化ビニリデン共重合体、塩化ビニル/アクリロニトリル共重合体、エチレン/ビニルアルコール共重合体、塩素化ポリ塩化ビニル、エチレン/塩化ビニル共重合体、エチレン/酢酸ビニル共重合体等のビニル系重合体あるいは共重合体、マレイン酸及び/またはアクリル酸の共重合体、アクリル酸エステル共重合体、アクリロニトリル/スチレン共重合体、塩素化ポリエチレン、アクリロニトリル/塩素化ポリエチレン/スチレン共重合体、メチルメタクリレート/ブタジエン/スチレン共重合体、アクリル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン/ブタジエン樹脂、ブタジエン/アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂等を用いることができる。
【0095】
アクリル樹脂としては、アクリペットMD、VH、MF、V(三菱レーヨン社製)、ハイパールM−4003、M−4005、M−4006、M−4202、M−5000、M−5001、M−4501(根上工業社製)、ダイヤナールBR−50、BR−52、BR−53、BR−60、BR−64、BR−73、BR−75、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−90、BR−93、BR−95、BR−100、BR−101、BR−102、BR−105、BR−106、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118等(三菱レーヨン社製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマー等が好ましく用いられる。
【0096】
バックコート層は、ハードコート層やその他の層を設けることで生じるカールを矯正するために設けられる。即ち、バックコート層を設けた面を内側にして丸まろうとする性質を持たせることにより、カールの度合いをバランスさせることができる。本発明の反射防止フィルムでは、バックコート層は好ましくはブロッキング防止層を兼ねて塗設され、バックコート層塗布組成物には、ブロッキング防止機能を持たせるために微粒子が添加される。バックコート層に添加されるこれらの微粒子としては、無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子は珪素を含むものがヘイズが低くなる点で好ましく、特に二酸化珪素、中でも中空シリカ系微粒子が好ましい。
【0097】
これらの微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。ポリマーの微粒子の例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することができる。
【0098】
これらの中でもでアエロジル200V、アエロジルR972Vがヘイズを低く保ちながら、ブロッキング防止効果が大きいため特に好ましく用いられる。
【0099】
バックコート層に含まれる微粒子は、バインダーに対して0.1〜50質量%好ましくは0.1〜10質量%であることが好ましい。バックコート層を設けた場合のヘイズの増加は1%以下であることが好ましく0.5%以下であることが好ましく、特に0.0〜0.1%であることが好ましい。
【0100】
バックコート層の塗布組成物の一つとして可塑剤を用いることが好ましい。可塑剤としては前記透明基材フィルムの項で述べた可塑剤を用いることができる。
【0101】
バックコート層に用いる有機溶媒は、溶媒としての機能の他に、アンチカール機能の付与がある。アンチカール機能の付与は、具体的には反射防止フィルム基材として用いる透明基材フィルムを溶解させる溶媒または膨潤させる溶媒を含む組成物を塗布することによって行われる。用いる有機溶媒としては、溶解させる溶媒または膨潤させる溶媒の混合物の他、さらに溶解させない溶媒を含む場合もあり、これらを透明基材フィルムのカール度合や樹脂の種類によって適宜の割合で混合した組成物及び塗布量を用いて行う。
【0102】
カール防止機能を強めたい場合は、用いる溶媒組成を溶解させる溶媒または膨潤させる溶媒の混合比率を大きくし、溶解させない溶媒の比率を小さくするのが効果的である。この混合比率は好ましくは(溶解させる溶媒または膨潤させる溶媒):(溶解させない溶媒)=10:0〜1:9で用いられる。
【0103】
このような混合組成物に含まれる、透明基材フィルムを溶解または膨潤させる溶媒としては、例えば、ジオキサン、アセトン、メチルエチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、トリクロロエチレン、メチレンクロライド、エチレンクロライド、テトラクロロエタン、トリクロロエタン、クロロホルム等がある。溶解させない溶媒としては、例えば、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノール、シクロヘキサノールまたは炭化水素類(トルエン、キシレン)等がある。
【0104】
これらの塗布組成物をグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、またはスプレー塗布、インクジェット塗布等を用いて透明基材フィルムの表面にウェット膜厚1〜100μmで塗布するのが好ましいが、特に5〜30μmであることが好ましい。
【0105】
バックコート層を塗設する順番は透明基材フィルムのハードコート層を塗設する前でも後でも構わないが、バックコート層がブロッキング防止層を兼ねる場合は先に塗設することが望ましい。また、2回以上に分けてバックコート層を塗布することもできる。
【0106】
〔低屈折率層〕
本発明の反射防止フィルムは、透明基材フィルム上に直接または間接に、アルコキシシラン化合物またはその加水分解物を含有する塗布液により形成される低屈折率層を有する。また、前述のように、透明基材フィルムと低屈折率層の間にハードコート層を設け、そのハードコート層上に直接または間接に設けた反射防止層(低屈折率層、高屈折率層、中屈折率層)の他に、透明導電層、帯電防止層、防汚層等をさらに形成することができる。本発明の反射防止フィルムは、中屈折率層、高屈折率層はなくてもよいが、ハードコート層上に中屈折率層、高屈折率層等のその他の光学層を介して低屈折率層を有することが好ましい。低屈折率層の下層が、有機ポリマー樹脂が主成分の場合に本発明が特に有効である。
【0107】
(アルコキシシラン化合物またはその加水分解物)
低屈折率層のバインダーとしては、各種ゾルゲル素材を用いることができる。このようなゾルゲル素材としては、金属アルコレート(シラン、チタン、アルミニウム、ジルコニウム等のアルコレート)、オルガノアルコキシ金属化合物及びその加水分解物を用いることができる。中でも、アルコキシシラン、オルガノアルコキシシラン及びその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。特に、アルコキシシラン化合物の50%以上が、テトラエトキシシランであることが好ましい。
【0108】
また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ−グリシジルオキシプロピルトリアルコキシシラン、γ−グリシジルオキシプロピルメチルジアルコキシシラン、β−(3,4−エポキジシクロヘキシル)エチルトリアルコキシシラン、γ−メタクリロイルオキシプロピルトリアルコキシシラン、γ−アミノプロピルトリアルコキシシラン、γ−メルカプトプロピルトリアルコキシシラン、γ−クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば、(ヘプタデカフルオロ−1,1,2,2−テトラデシル)トリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン等)、フルオロアルキルエーテル基含有シラン化合物を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化及び撥水・撥油性付与の点で好ましい。
【0109】
(空隙を有するシリカ系微粒子)
低屈折率層は、空隙(外殻層を有し内部が多孔質または空洞)を有するシリカ系微粒子、なかでも中空球状のシリカ系微粒子を含有することが好ましい。
【0110】
中空球状微粒子は、(I)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、または(II)内部に空洞を有し、かつ内容物が溶媒、気体または多孔質物質で充填された空洞粒子である。なお、低屈折率層には(I)複合粒子または(II)空洞粒子のいずれかが含まれていればよく、また双方が含まれていてもよい。
【0111】
なお、空洞粒子は内部に空洞を有する粒子であり、空洞は粒子壁で囲まれている。空洞内には、調製時に使用した溶媒、気体または多孔質物質等の内容物で充填されている。このような中空球状微粒子の平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあることが望ましい。使用される中空球状微粒子は、形成される透明被膜の厚さに応じて適宜選択され、形成される低屈折率層等の透明被膜の膜厚の2/3〜1/10の範囲にあることが望ましい。これらの中空球状微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)が好ましい。
【0112】
複合粒子の被覆層の厚さまたは空洞粒子の粒子壁の厚さは、1〜20nm、好ましくは2〜15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することができないことがあり、後述する塗布液成分である重合度の低いケイ酸モノマー、オリゴマー等が容易に複合粒子の内部に内部に進入して内部の多孔性が減少し、低屈折率の効果が十分得られないことがある。また、被覆層の厚さが20nmを越えると、前記ケイ酸モノマー、オリゴマーが内部に進入することはないが、複合粒子の多孔性(細孔容積)が低下し低屈折率の効果が十分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持できないことがあり、また厚さが20nmを越えても、低屈折率の効果が十分に現れないことがある。
【0113】
複合粒子の被覆層または空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また、シリカ以外の成分が含まれていてもよく、具体的には、Al23、B23、TiO2、ZrO2、SnO2、CeO2、P23、Sb23、MoO3、ZnO2、WO3等が挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF2、NaF、NaAlF6、MgF等からなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。シリカ以外の無機化合物としては、Al23、B23、TiO2、ZrO2、SnO2、CeO2、P23、Sb23、MoO3、ZnO2、WO3等との1種または2種以上を挙げることができる。このような多孔質粒子では、シリカをSiO2で表し、シリカ以外の無機化合物を酸化物換算(MOX)で表したときのモル比MOX/SiO2が、0.0001〜1.0、好ましくは0.001〜0.3の範囲にあることが望ましい。多孔質粒子のモル比MOX/SiO2が0.0001未満のものは得ることが困難であり、得られたとしても細孔容積が小さく、屈折率の低い粒子が得られない。また、多孔質粒子のモル比MOX/SiO2が、1.0を越えると、シリカの比率が少なくなるので、細孔容積が大きくなり、さらに屈折率が低いものを得ることが難しいことがある。
【0114】
このような多孔質粒子の細孔容積は、0.1〜1.5ml/g、好ましくは0.2〜1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。
【0115】
なお、このような多孔質粒子の細孔容積は水銀圧入法によって求めることができる。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。また多孔質物質としては、前記多孔質粒子で例表した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。
【0116】
このような中空球状微粒子の製造方法としては、例えば特開平7−133105号公報の段落番号[0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。具体的に、複合粒子が、シリカ、シリカ以外の無機化合物とからなる場合、以下の第1〜第3工程から中空球状微粒子は製造される。
【0117】
第1工程:多孔質粒子前駆体の調製
第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、または、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
【0118】
シリカ原料としては、アルカリ金属、アンモニウムまたは有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることができる。なお、アンモニウムのケイ酸塩または有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。
【0119】
また、シリカ以外の無機化合物の原料としては、アルカリ可溶の無機化合物が用いられる。具体的には、Al、B、Ti、Zr、Sn、Ce、P、Sb、Mo、Zn、W等から選ばれる元素のオキソ酸、該オキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができる。より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノケイ酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウムが適当である。
【0120】
これらの水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度には特に制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。当該シード粒子としては、特に制限はないが、SiO2、Al23、TiO2またはZrO2等の無機酸化物またはこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることができる。さらに前記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整した後、該シード粒子分散液中に前記化合物の水溶液を、上記したアルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行う必要はない。このようにしてシード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。
【0121】
上記したシリカ原料及び無機化合物原料はアルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、または、シード粒子上に析出して粒子成長が起る。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行う必要がない。
【0122】
第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MOX)に換算し、MOX/SiO2のモル比が、0.05〜2.0、好ましくは0.2〜2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積はほとんど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。空洞粒子を調製する場合、MOX/SiO2のモル比は、0.25〜2.0の範囲内にあることが望ましい。
【0123】
第2工程:多孔質粒子からのシリカ以外の無機化合物の除去
第2工程では、前記第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、または、陽イオン交換樹脂と接触させてイオン交換除去する。
【0124】
なお、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。このように多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することができる。
【0125】
また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られる、フッ素置換アルキル基含有シラン化合物を含有するケイ酸液または加水分解性の有機珪素化合物を添加してシリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5〜15nmの厚さであればよい。なおシリカ保護膜を形成しても、この工程での保護膜は多孔質であり厚さが薄いので、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。
【0126】
このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することができる。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく後述するシリカ被覆層を形成することができる。なお、除去する無機化合物の量が少ない場合は粒子が壊れることがないので必ずしも保護膜を形成する必要はない。
【0127】
また空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、該シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、該空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。
【0128】
上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持できる範囲で少ないことが好ましい。シリカ源の量が多すぎると、シリカ保護膜が厚くなりすぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては、一般式RnSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることができる。特に、フッ素置換したテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
【0129】
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
【0130】
多孔質粒子前駆体の分散媒が、水単独、または有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。なお、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。
【0131】
第3工程:シリカ被覆層の形成
第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に、フッ素置換アルキル基含有シラン化合物を含有する加水分解性の有機珪素化合物またはケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物またはケイ酸液等の重合物で被覆してシリカ被覆層を形成する。
【0132】
シリカ被覆層形成用に使用される加水分解性の有機珪素化合物としては、前記したような一般式RnSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることができる。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いらる。
【0133】
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
【0134】
多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の分散媒が水単独、または有機溶媒との混合溶媒であって、有機溶媒に対する水の比率が高い混合溶媒の場合には、ケイ酸液を用いて被覆層を形成してもよい。ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。
【0135】
ケイ酸液は、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中に添加され、同時にアルカリを加えてケイ酸低重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)表面に沈着させる。なお、ケイ酸液を上記アルコキシシランと併用して被覆層形成用に使用してもよい。被覆層形成用に使用される有機珪素化合物またはケイ酸液の添加量は、コロイド粒子の表面を十分被覆できる程度であればよく、最終的に得られるシリカ被覆層の厚さが1〜20nmとなるように量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。また前記シリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1〜20nmの範囲となるような量で、有機珪素化合物またはケイ酸液は添加される。
【0136】
次いで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体または多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。
【0137】
このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞できる程度であれば特に制限はなく、80〜300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化できないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率の効果が得られないことがある。
【0138】
このようにして得られた無機微粒子の屈折率は、1.42未満と低い。このような無機微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。
【0139】
外殻層を有し、内部が多孔質または空洞である中空球状シリカ系微粒子の低屈折率層塗布液中の含量(質量)比は、20〜60質量%が好ましい。低屈折率層の屈折率は、1.30〜1.50であることが好ましく、1.35〜1.49であることがより好ましい。従って、低屈折率化のためには中空球状シリカ系微粒子の含量(質量)比は、20質量%以上が好ましく、60質量%を超えるとマトリックス成分が少なくなり膜強度が不十分となる。
【0140】
また、低屈折率層の膜厚(nm)は、550/(4×低屈折率層の屈折率)×0.85〜550/(4×低屈折率層の屈折率)×1.15が好ましい。
【0141】
低屈折率層を塗布により形成する方法としては、溶剤に溶解したバインダー樹脂中に金属酸化物の粉末を分散し、塗布乾燥する方法、架橋構造を有するポリマーをバインダー樹脂として用いる方法、エチレン性不飽和モノマーと光重合開始剤を含有させ、活性エネルギー線を照射することにより層を形成する方法等を挙げることができる。
【0142】
本発明においては、ハードコート層を付与した透明基材フィルムの上に反射防止層を設け、該反射防止層の少なくとも一層が低屈折率層である。
【0143】
好ましい反射防止フィルムの構成を下記に示すが、これらに限定されるものではない。
【0144】
透明基材フィルム/ハードコート層/低屈折率層
透明基材フィルム/帯電防止層/ハードコート層/低屈折率層
透明基材フィルム/防眩性ハードコート層/低屈折率層
透明基材フィルム/帯電防止層/防眩性ハードコート層/低屈折率層
透明基材フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
透明基材フィルム/ハードコート層/高屈折率層/低屈折率層/高屈折率層/低屈折率層
透明基材フィルム/帯電防止層/ハードコート層/中屈折率層/高屈折率層/低屈折率層
透明基材フィルム/防眩性ハードコート層/中屈折率層/高屈折率層/低屈折率層
透明基材フィルム/防眩性ハードコート層/中屈折率層/高屈折率層/低屈折率層/防汚層
前記中屈折率層、高屈折率層については後述する。
【0145】
(フッ素系樹脂)
低屈折率層のバインダーとしては、熱または電離放射線により架橋するフッ素系樹脂(以下、「架橋前のフッ素系樹脂」ともいう)が好ましく用いられる。
【0146】
架橋前のフッ素系樹脂としては、含フッ素ビニルモノマーと架橋性基付与のためのモノマーから形成される含フッ素共重合体を好ましく挙げることができる。上記含フッ素ビニルモノマー単位の具体例としては、例えばフルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えば、ビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられる。架橋性基付与のためのモノマーとしては、グリシジルメタクリレートや、ビニルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、ビニルグリシジルエーテル等のように分子内に予め架橋性官能基を有するビニルモノマーの他、カルボキシル基やヒドロキシル基、アミノ基、スルホン酸基等を有するビニルモノマー(例えば、(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシアルキルビニルエーテル、ヒドロキシアルキルアリルエーテル等)が挙げられる。後者は共重合の後、ポリマー中の官能基と反応する基ともう1つ以上の反応性基を持つ化合物を加えることにより、架橋構造を導入できることが特開平10−25388号、同10−147739号に記載されている。架橋性基の例には、アクリロイル、メタクリロイル、イソシアナート、エポキシ、アジリジン、オキサゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシル、メチロール及び活性メチレン基等が挙げられる。含フッ素共重合体が、加熱により反応する架橋基、若しくは、エチレン性不飽和基と熱ラジカル発生剤若しくはエポキシ基と熱酸発生剤等の相み合わせにより、加熱により架橋する場合、熱硬化型であり、エチレン性不飽和基と光ラジカル発生剤若しくは、エポキシ基と光酸発生剤等の組み合わせにより、光(好ましくは紫外線、電子ビーム等)の照射により架橋する場合、電離放射線硬化型である。
【0147】
また上記モノマー加えて、含フッ素ビニルモノマー及び架橋性基付与のためのモノマー以外のモノマーを併用して形成された含フッ素共重合体を架橋前のフッ素系樹脂として用いてもよい。併用可能なモノマーには特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることができる。また、含フッ素共重合体中に、滑り性、防汚性付与のため、ポリオルガノシロキサン骨格や、パーフルオロポリエーテル骨格を導入することも好ましい。これは、例えば末端にアクリル基、メタクリル基、ビニルエーテル基、スチリル基等を持つポリオルガノシロキサンやパーフルオロポリエーテルと上記のモノマーとの重合、末端にラジカル発生基を持つポリオルガノシロキサンやパーフルオロポリエーテルによる上記モノマーの重合、官能基を持つポリオルガノシロキサンやパーフルオロポリエーテルと、含フッ素共重合体との反応等によって得られる。
【0148】
架橋前の含フッ素共重合体を形成するために用いられる上記各モノマーの使用割合は、含フッ素ビニルモノマーが好ましくは20〜70モル%、より好ましくは40〜70モル%、架橋性基付与のためのモノマーが好ましくは1〜20モル%、より好ましくは5〜20モル%、併用されるその他のモノマーが好ましくは10〜70モル%、より好ましくは10〜50モル%の割合である。
【0149】
含フッ素共重合体は、これらモノマーをラジカル重合開始剤の存在下で、溶液重合、塊状重合、乳化重合、懸濁重合法等の手段により重合することにより得ることができる。
【0150】
架橋前のフッ素系樹脂は、市販されており使用することができる。市販されている架橋前のフッ素系樹脂の例としては、サイトップ(旭硝子製)、テフロン(登録商標)AF(デュポン製)、ポリフッ化ビニリデン、ルミフロン(旭硝子製)、オプスター(JSR製)等が挙げられる。
【0151】
架橋したフッ素系樹脂を構成成分とする低屈折率層は、動摩擦係数が0.03〜0.15の範囲、水に対する接触角が90〜120度の範囲にあることが好ましい。
【0152】
架橋したフッ素系樹脂を構成成分とする低屈折率層は、前述のシリカ系微粒子を含有する。
【0153】
低屈折率層は、5〜50質量%のポリマーを含むことが好ましい。ポリマーは、シリカ系微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。ポリマーの使用量は、空隙を充填することなく低屈折率層の強度を維持できるように調整する。ポリマーの量は、低屈折率層の全量の10〜30質量%であることが好ましい。ポリマーでシリカ系微粒子(以下、単に微粒子ともいう)を接着するためには、(1)微粒子の表面処理剤にポリマーを結合させるか、(2)微粒子をコアとして、その周囲にポリマーシェルを形成するか、あるいは(3)微粒子間のバインダーとして、ポリマーを使用することが好ましい。(1)の表面処理剤に結合させるポリマーは、(2)のシェルポリマーまたは(3)のバインダーポリマーであることが好ましい。(2)のポリマーは、低屈折率層の塗布液の調製前に、微粒子の周囲に重合反応により形成することが好ましい。(3)のポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に、重合反応により形成することが好ましい。上記(1)〜(3)のうちの二つまたは全てを組み合わせて実施することが好ましく、(1)と(3)の組み合わせ、または(1)〜(3)全ての組み合わせで実施することが特に好ましい。(1)表面処理、(2)シェル及び(3)バインダーについて順次説明する。
【0154】
(1)表面処理
微粒子(特に無機微粒子)には、表面処理を実施して、ポリマーとの親和性を改善することが好ましい。表面処理は、プラズマ放電処理やコロナ放電処理のような物理的表面処理と、カップリング剤を使用する化学的表面処理に分類できる。化学的表面処理のみ、または物理的表面処理と化学的表面処理の組み合わせで実施することが好ましい。カップリング剤としては、オルガノアルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。微粒子がSiO2からなる場合は、シランカップリング剤による表面処理が特に有効に実施できる。具体的なシランカップリング剤の例としては、後述するシランカップリング剤が好ましく用いられる。
【0155】
カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施できる。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。
【0156】
(2)シェル
シェルを形成するポリマーは、飽和炭化水素を主鎖として有するポリマーであることが好ましい。フッ素原子を主鎖または側鎖に含むポリマーが好ましく、フッ素原子を側鎖に含むポリマーがさらに好ましい。ポリアクリル酸エステルまたはポリメタクリル酸エステルが好ましく、フッ素置換アルコールとポリアクリル酸またはポリメタクリル酸とのエステルが最も好ましい。シェルポリマーの屈折率は、ポリマー中のフッ素原子の含有量の増加に伴い低下する。低屈折率層の屈折率を低下させるため、シェルポリマーは35〜80質量%のフッ素原子を含むことが好ましく、45〜75質量%のフッ素原子を含むことがさらに好ましい。フッ素原子を含むポリマーは、フッ素原子を含むエチレン性不飽和モノマーの重合反応により合成することが好ましい。フッ素原子を含むエチレン性不飽和モノマーの例としては、フルオロオレフィン(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、フッ素化ビニルエーテル及びフッ素置換アルコールとアクリル酸またはメタクリル酸とのエステルが挙げられる。
【0157】
シェルを形成するポリマーは、フッ素原子を含む繰り返し単位とフッ素原子を含まない繰り返し単位からなるコポリマーであってもよい。フッ素原子を含まない繰り返し単位は、フッ素原子を含まないエチレン性不飽和モノマーの重合反応により得ることが好ましい。フッ素原子を含まないエチレン性不飽和モノマーの例としては、オレフィン(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート)、スチレン及びその誘導体(例えば、スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル(例えば、メチルビニルエーテル)、ビニルエステル(例えば、酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル)、アクリルアミド(例えば、N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド及びアクリロニトリルが挙げられる。
【0158】
後述する(3)のバインダーポリマーを併用する場合は、シェルポリマーに架橋性官能基を導入して、シェルポリマーとバインダーポリマーとを架橋により化学的に結合させてもよい。シェルポリマーは、結晶性を有していてもよい。シェルポリマーのガラス転移温度(Tg)が低屈折率層の形成時の温度よりも高いと、低屈折率層内のミクロボイドの維持が容易である。但し、Tgが低屈折率層の形成時の温度よりも高いと、微粒子が融着せず、低屈折率層が連続層として形成されない(その結果、強度が低下する)場合がある。その場合は、後述する(3)のバインダーポリマーを併用し、バインダーポリマーにより低屈折率層を連続層として形成することが望ましい。微粒子の周囲にポリマーシェルを形成して、コアシェル微粒子が得られる。コアシェル微粒子中に無機微粒子からなるコアが5〜90体積%含まれていることが好ましく、15〜80体積%含まれていることがさらに好ましい。二種類以上のコアシェル微粒子を併用してもよい。また、シェルのない無機微粒子とコアシェル粒子とを併用してもよい。
【0159】
(3)バインダー
バインダーポリマーは、飽和炭化水素またはポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることがさらに好ましい。バインダーポリマーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーポリマーを得るためには、二以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。2以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと(メタ)アクリル酸とのエステル(例えば、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例えば、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。ポリエーテルを主鎖として有するポリマーは、多官能エポシキ化合物の開環重合反応により合成することが好ましい。2以上のエチレン性不飽和基を有するモノマーの代わりまたはそれに加えて、架橋性基の反応により、架橋構造をバインダーポリマーに導入してもよい。架橋性官能基の例としては、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基及び活性メチレン基が挙げられる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタンも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。また、架橋基は、上記化合物に限らず上記官能基が分解した結果反応性を示すものであってもよい。バインダーポリマーの重合反応及び架橋反応に使用する重合開始剤は、熱重合開始剤や、光重合開始剤が用いられるが、光重合開始剤の方がより好ましい。光重合開始剤の例としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類がある。アセトフェノン類の例としては、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノン及び2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが挙げられる。ベンゾイン類の例としては、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインイソプロピルエーテルが挙げられる。ベンゾフェノン類の例としては、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノン及びp−クロロベンゾフェノンが挙げられる。ホスフィンオキシド類の例としては、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが挙げられる。
【0160】
バインダーポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に重合反応(必要ならばさらに架橋反応)により形成することが好ましい。低屈折率層の塗布液に、少量のポリマー(例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂)を添加してもよい。
【0161】
また、本発明に係る低屈折率層あるいは他の屈折率層には滑り剤を添加することが好ましく、滑り性を付与することによって耐傷性を改善することができる。滑り剤としては、シリコンオイルまたはワックス状物質が好ましく用いられる。例えば、下記一般式で表される化合物が好ましい。
【0162】
一般式 R1COR2
式中、R1は炭素原子数が12以上の飽和または不飽和の脂肪族炭化水素基を表す。アルキル基またはアルケニル基が好ましく、さらに炭素原子数が16以上のアルキル基またはアルケニル基が好ましい。R2は−OM1基(M1はNa、K等のアルカリ金属を表す)、−OH基、−NH2基、または−OR3基(R3は炭素原子数が12以上の飽和または不飽和の脂肪族炭化水素基、好ましくはアルキル基またはアルケニル基を表す)を表し、R2としては−OH基、−NH2基または−OR3基が好ましい。具体的には、ベヘン酸、ステアリン酸アミド、ペンタコ酸等の高級脂肪酸またはその誘導体、天然物としてこれらの成分を多く含んでいるカルナバワックス、蜜蝋、モンタンワックスも好ましく使用できる。特公昭53−292号公報に開示されているようなポリオルガノシロキサン、米国特許第4,275,146号明細書に開示されているような高級脂肪酸アミド、特公昭58−33541号公報、英国特許第927,446号明細書または特開昭55−126238号公報及び同58−90633号公報に開示されているような高級脂肪酸エステル(炭素数が10〜24の脂肪酸と炭素数が10〜24のアルコールのエステル)、そして米国特許第3,933,516号明細書に開示されているような高級脂肪酸金属塩、特開昭51−37217号公報に開示されているような炭素数10までのジカルボン酸と脂肪族または環式脂肪族ジオールからなるポリエステル化合物、特開平7−13292号公報に開示されているジカルボン酸とジオールからのオリゴポリエステル等を挙げることができる。
【0163】
例えば、低屈折率層に使用する滑り剤の添加量は0.01〜10mg/m2が好ましい。
【0164】
〔中屈折率層、高屈折率層〕
本発明においては、反射率の低減のために、透明基材フィルムまたはハードコート層を付与した透明基材フィルムと低屈折率層との間に、高屈折率層を設けることが好ましい。また、透明基材フィルムと高屈折率層との間に中屈折率層を設けることは、反射率の低減のためにさらに好ましい。高屈折率層の屈折率は、1.55〜2.30であることが好ましく、1.57〜2.20であることがさらに好ましい。中屈折率層の屈折率は、透明基材フィルムの屈折率と高屈折率層の屈折率との中間の値となるように調整する。中屈折率層の屈折率は、1.55〜1.80であることが好ましい。高屈折率層及び中屈折率層の厚さは、5nm〜1μmであることが好ましく、10nm〜0.2μmであることがさらに好ましく、30nm〜0.1μmであることが最も好ましい。高屈折率層及び中屈折率層のヘイズは、5%以下であることが好ましく、3%以下であることがさらに好ましく、1%以下であることが最も好ましい。高屈折率層及び中屈折率層の強度は、1kg荷重の鉛筆硬度でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
【0165】
中屈折率層、高屈折率層及び低屈折率層を有する反射防止積層体では、特開昭59−50401号に記載されているように、中屈折率層が下記数式(1)を、高屈折率層が下記数式(2)を、低屈折率層が下記数式(3)をそれぞれ満足することにより、反射防止積層体としての平均反射率をさらに下げる設計が可能となり好ましい。
【0166】
(hλ/4)×0.7<n33<(hλ/4)×1.3・・・数式(1)
数式(1)中でも、hは正の整数(一般に1、2または3)であり、n3は中屈折率層の屈折率であり、そして、d3は中屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
【0167】
(jλ/4)×0.7<n44<(jλ/4)×1.3・・・数式(2)
数式(2)中でも、jは正の整数(一般に1、2または3)であり、n4は高屈折率層の屈折率であり、そして、d4は高屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
【0168】
(kλ/4)×0.7<n55<(kλ/4)×1.3・・・数式(3)
数式(3)中でも、kは正の奇数(一般に1)であり、n5は低屈折率層の屈折率であり、そして、d5は低屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
【0169】
また、本発明においては、ハードコート層または高屈折率層に凹凸を付与して防眩性反射防止積層体とすることも好ましい。
【0170】
この他、透明支持体、ハードコート層(防眩層)、高屈折率層、低屈折率層、高屈折率層、低屈折率層の順の層構成も好ましい構成である。表面の低屈折率層に防眩性を付与することもでき、表面に防眩層を設けてもよい。
【0171】
本発明に用いられる高屈折率層及び中屈折率層は、(メタ)アクリレート化合物を重合成分とする重合体をバインダー成分として含有し、金属酸化物粒子を含むものが好ましく用いられる。
【0172】
高屈折率層及び中屈折率層に用いる金属酸化物粒子は、屈折率が1.80〜2.80であることが好ましく、1.90〜2.80であることがさらに好ましい。金属酸化物粒子の1次粒子の質量平均径は、1〜150nmであることが好ましく、1〜100nmであることがさらに好ましく、1〜80nmであることが最も好ましい。層中での金属酸化物粒子の質量平均径は、1〜200nmであることが好ましく、5〜150nmであることがより好ましく、10〜100nmであることがさらに好ましく、10〜80nmであることが最も好ましい。金属酸化物粒子の平均粒径は、20〜30nm以上であれば光散乱法により、20〜30nm以下であれば電子顕微鏡写真により測定される。金属酸化物粒子の比表面積は、BET法で測定された値として、10〜400m2/gであることが好ましく、20〜200m2/gであることがさらに好ましく、30〜150m2/gであることが最も好ましい。
【0173】
透明基材フィルムより屈折率が高い層すなわち、高屈折率層及び中屈折率層に用いられる金属酸化物粒子としては、Ti、Ta、Zr、Sn、Sb、Zn、Nb、In、Alから選択される少なくとも一種の元素を有する金属酸化物微粒子が好ましい。具体的には二酸化チタン(例、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造)、酸化錫、酸化インジウム、酸化亜鉛、及び酸化ジルコニウムが挙げられる。
【0174】
中屈折率層にはZr、Sn、Sb、Zn、Nb、Inから選択される少なくとも一種の元素を有する金属酸化物微粒子が帯電防止機能が付与でき好ましい。具体的にはITO、酸化アンチモンが好ましい。
【0175】
高屈折率層には酸化チタン微粒子、特にコアは酸化チタン(ルチル型、アナターゼ型、アモルファス型等、ルチル型の酸化チタンが好ましい)、シェルは酸化ジルコニウム、シリカまたはアルミナの酸化物から形成されるコアシェル構造の酸化チタン微粒子が好ましい。
【0176】
金属酸化物粒子は、これらの金属の酸化物を主成分とし、さらに他の元素を含むことができ、導電性を付与した微粒子も好ましく用いられる。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びS等が挙げられる。
【0177】
金属酸化物粒子は表面処理されていることが好ましい。表面処理は、無機化合物または有機化合物を用いて実施することができる。表面処理に用いる無機化合物の例としては、アルミナ、シリカ、酸化ジルコニウム及び酸化鉄が挙げられる。中でもアルミナ及びシリカが好ましい。表面処理に用いる有機化合物の例としては、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が挙げられる。中でも、シランカップリング剤が最も好ましい。
【0178】
具体的なシランカップリング剤の例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。
【0179】
また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。
【0180】
これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。
【0181】
2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。
【0182】
カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施できる。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。
【0183】
これらシランカップリング剤は予め必要量の水で加水分解されていることが好ましい。シランカップリング剤が加水分解されていると、前述の有機チタン化合物及び金属酸化物粒子の表面が反応しやすく、より強固な膜が形成される。また、加水分解されたシランカップリング剤を予め塗布液中に加えることも好ましい。この加水分解に用いた水も有機チタン化合物の加水分解/重合に用いることができる。
【0184】
本発明では2種類以上の表面処理を組み合わせて処理されていても構わない。金属酸化物粒子の形状は、米粒状、球形状、立方体状、紡錘形状あるいは不定形状であることが好ましい。2種類以上の金属酸化物粒子を高屈折率層あるいは中屈折率層に用いてもよい。
【0185】
高屈折率層及び中屈折率層中の金属酸化物粒子の割合は、5〜65体積%であることが好ましく、より好ましくは10〜60体積%であり、さらに好ましくは20〜55体積%である。
【0186】
上記金属酸化物粒子は、媒体に分散した分散体の状態で、高屈折率層及び中屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、ケトンアルコール(例、ジアセトンアルコール)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
【0187】
また金属酸化物粒子は、分散機を用いて媒体中に分散することができる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。
【0188】
本発明に用いられる高屈折率層及び中屈折率層は、(メタ)アクリレート化合物を重合成分とする重合体に併用して他のバインダーを用いることも好ましい態様である。他のバインダーとしては架橋構造を有するポリマーが好ましい。架橋構造を有するポリマーの例として、ポリオレフィン等の飽和炭化水素鎖を有するポリマー(以下、ポリオレフィンと総称する)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミド及びメラミン樹脂等の架橋物が挙げられる。中でも、ポリオレフィン、ポリエーテル及びポリウレタンの架橋物が好ましく、ポリオレフィン及びポリエーテルの架橋物がさらに好ましく、ポリオレフィンの架橋物が最も好ましい。また、架橋ポリマーがアニオン性基を有することはさらに好ましい。アニオン性基は無機微粒子の分散状態を維持する機能を有し、架橋構造はポリマーに皮膜形成能を付与して皮膜を強化する機能を有する。上記アニオン性基は、ポリマー鎖に直接結合していてもよいし、連結基を介してポリマー鎖に結合していてもよいが、連結基を介して側鎖として主鎖に結合していることが好ましい。
【0189】
アニオン性基の例としては、カルボン酸基(カルボキシル)、スルホン酸基(スルホ)及びリン酸基(ホスホノ)が挙げられる。中でも、スルホン酸基及びリン酸基が好ましい。ここで、アニオン性基は、塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは、解離していてもよい。アニオン性基とポリマー鎖とを結合する連結基は、−CO−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる二価の基であることが好ましい。好ましいバインダーポリマーである架橋ポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。この場合、コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96質量%であることが好ましく、4〜94質量%であることがさらに好ましく、6〜92質量%であることが最も好ましい。繰り返し単位は、2以上のアニオン性基を有していてもよい。
【0190】
アニオン性基を有する架橋ポリマーには、その他の繰り返し単位(アニオン性基も架橋構造も有しない繰り返し単位)が含まれていてもよい。その他の繰り返し単位としては、アミノ基または4級アンモニウム基を有する繰り返し単位及びベンゼン環を有する繰り返し単位が好ましい。アミノ基または4級アンモニウム基は、アニオン性基と同様に、無機微粒子の分散状態を維持する機能を有する。ベンゼン環は、高屈折率層の屈折率を高くする機能を有する。なお、アミノ基、4級アンモニウム基及びベンゼン環は、アニオン性基を有する繰り返し単位あるいは架橋構造を有する繰り返し単位に含まれていても、同様の効果が得られる。
【0191】
上記アミノ基または4級アンモニウム基を有する繰り返し単位を構成単位として含有する架橋ポリマーにおいて、アミノ基または4級アンモニウム基は、ポリマー鎖に直接結合していてもよいし、あるいは連結基を介し側鎖としてポリマー鎖に結合していてもよいが、後者がより好ましい。アミノ基または4級アンモニウム基は、2級アミノ基、3級アミノ基または4級アンモニウム基であることが好ましく、3級アミノ基または4級アンモニウム基であることがさらに好ましい。2級アミノ基、3級アミノ基または4級アンモニウム基の窒素原子に結合している基としては、アルキル基が好ましく、より好ましくは炭素数1〜12のアルキル基であり、さらに好ましくは炭素数1〜6のアルキル基である。4級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基または4級アンモニウム基とポリマー鎖とを結合する連結基は、−CO−、−NH−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる2価の基であることが好ましい。架橋ポリマーが、アミノ基または4級アンモニウム基を有する繰り返し単位を含む場合、その割合は、0.06〜32質量%であることが好ましく、0.08〜30質量%であることがさらに好ましく、0.1〜28質量%であることが最も好ましい。
【0192】
架橋ポリマーは、架橋ポリマーを生成するためのモノマーを配合して高屈折率層及び中屈折率層形成用の塗布液を調製し、塗布液の塗布と同時または塗布後に、重合反応によって生成させることが好ましい。架橋ポリマーの生成と共に、各層が形成される。アニオン性基を有するモノマーは、塗布液中で無機微粒子の分散剤として機能する。アニオン性基を有するモノマーは、無機微粒子に対して、好ましくは1〜50質量%、より好ましくは5〜40質量%、さらに好ましくは10〜30質量%使用される。また、アミノ基または4級アンモニウム基を有するモノマーは、塗布液中で分散助剤として機能する。アミノ基または4級アンモニウム基を有するモノマーは、アニオン性基を有するモノマーに対して、好ましくは3〜33質量%使用される。塗布液の塗布と同時または塗布後に、重合反応によって架橋ポリマーを生成する方法により、塗布液の塗布前にこれらのモノマーを有効に機能させることができる。
【0193】
本発明で、好ましく用いられるモノマーとしては、2個以上のエチレン性不飽和基を有するモノマーが最も好ましいが、その例としては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミド等が挙げられる。アニオン性基を有するモノマー、及びアミノ基または4級アンモニウム基を有するモノマーは市販のモノマーを用いてもよい。好ましく用いられる市販のアニオン性基を有するモノマーとしては、KAYAMARPM−21、PM−2(日本化薬(株)製)、AntoxMS−60、MS−2N、MS−NH4(日本乳化剤(株)製)、アロニックスM−5000、M−6000、M−8000シリーズ(東亞合成化学工業(株)製)、ビスコート#2000シリーズ(大阪有機化学工業(株)製)、ニューフロンティアGX−8289(第一工業製薬(株)製)、NKエステルCB−1、A−SA(新中村化学工業(株)製)、AR−100、MR−100、MR−200(第八化学工業(株)製)等が挙げられる。また、好ましく用いられる市販のアミノ基または4級アンモニウム基を有するモノマーとしてはDMAA(大阪有機化学工業(株)製)、DMAEA,DMAPAA(興人(株)製)、ブレンマーQA(日本油脂(株)製)、ニューフロンティアC−1615(第一工業製薬(株)製)等が挙げられる。
【0194】
ポリマーの重合反応は、光重合反応または熱重合反応を用いることができる。特に光重合反応が好ましい。重合反応のため、重合開始剤を使用することが好ましい。例えば、ハードコート層のバインダーポリマーを形成するために用いられる後述する熱重合開始剤、及び光重合開始剤が挙げられる。
【0195】
重合開始剤として市販の重合開始剤を使用してもよい。重合開始剤に加えて、重合促進剤を使用してもよい。重合開始剤と重合促進剤の添加量は、モノマーの全量の0.2〜10質量%の範囲であることが好ましい。塗布液(モノマーを含む無機微粒子の分散液)を加熱して、モノマー(またはオリゴマー)の重合を促進してもよい。また、塗布後の光重合反応の後に加熱して、形成されたポリマーの熱硬化反応を追加処理してもよい。
【0196】
中屈折率層及び高屈折率層には、比較的屈折率が高いポリマーを用いることが好ましい。屈折率が高いポリマーの例としては、ポリスチレン、スチレン共重合体、ポリカーボネート、メラミン樹脂、フェノール樹脂、エポキシ樹脂及び環状(脂環式または芳香族)イソシアネートとポリオールとの反応で得られるポリウレタンが挙げられる。その他の環状(芳香族、複素環式、脂環式)基を有するポリマーや、フッ素以外のハロゲン原子を置換基として有するポリマーも、屈折率が高く用いることができる。
【0197】
また、中、高屈折率層にはハードコート層の項で述べたシリコン化合物を添加することが好ましい。
【0198】
中、高屈折率層の希釈のための有機溶媒としては、水混和性の有機溶媒であることが好ましい。水混和性の有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(例えば、2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。
【0199】
反射防止層の各層は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、マイクログラビアコート法やエクストルージョンコート法により、塗布により形成することができる。
【0200】
本発明に係る高屈折率層組成であれば、高屈折率層を塗布、乾燥し、活性エネルギー線照射を行った後、低屈折率層を塗布するまでの間に、高屈折率層表面に対し製造装置の部材が接触する製造工程で製造されても輝点異物の発生が少ない。
【0201】
〔偏光板〕
本発明の反射防止フィルムを用いた偏光板について述べる。
【0202】
偏光板は一般的な方法で作製することができる。本発明の反射防止フィルムの裏面側をアルカリ鹸化処理し、処理した反射防止フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面にも該反射防止フィルムを用いても、別の偏光板保護フィルムを用いてもよい。本発明の反射防止フィルムに対して、もう一方の面に用いられる偏光板保護フィルムは面内リターデーションRoが590nmで、20〜70nm、Rtが70〜400nmの位相差を有していることが好ましい。これらは例えば、特開2002−71957号、特願2002−155395号記載の方法で作製することができる。あるいはさらにディスコチック液晶等の液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる偏光板保護フィルムを用いることが好ましい。例えば、特開2003−98348号記載の方法で光学異方性層を形成することができる。本発明の反射防止フィルムと組み合わせて使用することによって、平面性に優れ、安定した視野角拡大効果を有する偏光板を得ることができる。
【0203】
裏面側に用いられる偏光板保護フィルムとしては、市販の透明基材フィルムとして、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC8UCR−3(コニカミノルタオプト(株)製)等が好ましく用いられる。
【0204】
偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。該偏光膜の面上に、本発明の反射防止フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。
【0205】
〈画像表示装置〉
上記偏光板を画像表示装置に組み込むことによって、干渉ムラの少ない、種々の視認性に優れた画像表示装置を作製することができる。本発明の反射防止フィルムは反射型、透過型、半透過型LCDあるいはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられる。また、本発明の反射防止フィルムは干渉ムラが著しく少なく、プラズマディスプレイ、フィールドエミッションディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー等の各種表示装置にも好ましく用いられる。特に画面が30型以上の大画面の表示装置では、干渉ムラが少なく、長時間の鑑賞でも目が疲れないという効果があった。
【実施例】
【0206】
以下、実施例を用いて、本発明を具体的に説明するが、本発明はこれらの態様に限定されない。なお特に断りない限り、実施例中の「%」は「質量%」を表す。
【0207】
実施例1
〔セルロースエステルフィルムの作製〕
以下のセルロースエステル、可塑剤、紫外線吸収剤、微粒子及び溶媒を用いてセルロースエステル溶液(ドープ)を調製し、溶液流延製膜法にてセルロースエステルフィルムを作製した。
【0208】
セルロースエステル(セルローストリアセテート、アセチル基置換度2.9、Mn=160000、Mw/Mn=1.8) 100kg
可塑剤(トリメチロールプロパントリベンゾエート) 5kg
可塑剤(エチルフタリルエチルグリコレート) 5kg
紫外線吸収剤(チヌビン109、チバスペシャリティーケミカルズ(株)製)
1.0kg
紫外線吸収剤(チヌビン171、チバスペシャリティーケミカルズ(株)製)
1.0kg
微粒子(アエロジルR972V、日本アエロジル(株)製) 0.3kg
溶媒(酢酸メチル) 440kg
溶媒(エタノール) 110kg
上記のセルロースエステル、可塑剤、紫外線吸収剤、微粒子及び溶媒を用いてセルロースエステル溶液(ドープ)を調製した。
【0209】
即ち、溶媒を密閉容器に投入し、攪拌しながら残りの素材を順に投入し、加熱、撹拌しながら完全に溶解し、混合した。微粒子は溶媒の一部で分散して添加した。溶液を流延する温度まで下げて一晩静置し、脱泡操作を施した後、溶液を安積濾紙(株)製の安積濾紙No.244を使用して濾過し、セルロースエステル溶液を得た。
【0210】
次に、33℃に温度調整したセルロースエステル溶液を、ダイに送液して、ダイスリットからステンレスベルト上に均一に流延した。ステンレスベルトの流延部は裏面から37℃の温水で加熱した。流延後、金属支持体上のドープ膜(ステンレスベルトに流延以降はウエブという)に44℃の温風をあてて乾燥させ、剥離の残留溶媒量が120%で剥離し、剥離の際の張力をかけて1.1倍の縦延伸倍率となるように延伸し、ついで、残留溶媒量が35%から10%となる間にテンターでウェブ端部を把持し、幅手方向に1.1倍の延伸倍率となるように延伸した。延伸後、その幅を維持したまま数秒間保持した後、幅方向の張力を緩和させた後、幅保持を解放し、さらに125℃に設定された第3乾燥ゾーンで20分間搬送させて、乾燥を行い、幅1.5m、膜厚50μmのセルロースエステルフィルムを作製した。
【0211】
〔ハードコート層1の形成〕
上記セルロースエステルフィルムの表面(B面側;流延製膜法において用いられるステンレスバンド等の支持体鏡面に接した面;支持体側)上に、下記のハードコート層用塗布液1を孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層塗布液1を調製し、これをマイクログラビアコーターを用いて塗布し、90℃で乾燥の後、紫外線ランプを用い照射部の照度が100mW/cm2で、照射量を80mJ/cm2として塗布層を硬化させ、厚さ5μmのハードコート層1を形成した。
【0212】
(ハードコート層塗布液1)
下記材料を攪拌、混合しハードコート層塗布液1とした。
【0213】
アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 226質量部
イルガキュア184(チバスペシャリティケミカルズ(株)製) 25質量部
シリコーン界面活性剤;FZ2207(日本ユニカー製)10%プロピレングリコールモノメチルエーテル溶液 2質量部
プロピレングリコールモノメチルエーテル 101質量部
酢酸エチル 101質量部
〔ハードコート層2〜4の形成〕
下記のハードコート層用塗布液2〜4を用い、ハードコート層1の形成と同様にしてセルロースエステルフィルム上に、ハードコート層2〜4を形成した。
【0214】
(ハードコート層塗布液2)
下記材料を攪拌、混合しハードコート層塗布液2とした。
【0215】
アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 226質量部
イルガキュア184(チバスペシャリティケミカルズ(株)製) 25質量部
シリコーン界面活性剤;FZ2207(日本ユニカー製)10%プロピレングリコールモノメチルエーテル溶液 2質量部
酸化チタン微粒子(平均粒径約0.5μm) 塗布液の固形分の25%
プロピレングリコールモノメチルエーテル 101質量部
酢酸エチル 101質量部
(ハードコート層塗布液3)
アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 226質量部
イルガキュア184(チバスペシャリティケミカルズ(株)製) 25質量部
シリコーン界面活性剤;FZ2207(日本ユニカー製)10%プロピレングリコールモノメチルエーテル溶液 2質量部
酸化アンチモン微粒子(日本精鉱(株)製、平均粒径約0.03μm)
屈折率が1.61となる量
プロピレングリコールモノメチルエーテル 101質量部
酢酸エチル 101質量部
(ハードコート層塗布液4)
アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 226質量部
イルガキュア184(チバスペシャリティケミカルズ(株)製) 25質量部
シリコーン界面活性剤;FZ2207(日本ユニカー製)10%プロピレングリコールモノメチルエーテル溶液 2質量部
酸化チタン微粒子(平均粒径約0.05μm) 屈折率が1.61となる量
プロピレングリコールモノメチルエーテル 101質量部
酢酸エチル 101質量部
〔ハードコート層5の形成〕
上記セルロースエステルフィルムの表面(B面側;流延製膜法において用いられるステンレスバンド等の支持体鏡面に接した面;支持体側)上に、下記のハードコート層塗布液5(下層)及び前記ハードコート層塗布液3(上層)を用いて同時重層塗布、乾燥、紫外線照射してハードコート層5(2層)を形成した。
【0216】
(ハードコート層塗布液5)
前記ハードコート層塗布液3の酸化アンチモン微粒子を下記のようにして作製したシリカ系微粒子P−2(中空球状微粒子)に代え、ハードコート層塗布液5とした。
【0217】
〈シリカ系微粒子P−2の調製〉
平均粒径5nm、SiO2濃度20%のシリカゾル100gと純水1900gの混合物を80℃に加温した。この反応母液のpHは10.5であり、同母液にSiO2として0.98%のケイ酸ナトリウム水溶液9000gとAl23として1.02%のアルミン酸ナトリウム水溶液9000gとを同時に添加した。その間、反応液の温度を80℃に保持した。反応液のpHは添加直後、12.5に上昇し、その後、ほとんど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20%のSiO2・Al23核粒子分散液を調製した。(工程(a))
この核粒子分散液500gに純水1700gを加えて98℃に加温し、この温度を保持しながら、ケイ酸ナトリウム水溶液を陽イオン交換樹脂で脱アルカリして得られたケイ酸液(SiO2濃度3.5%)3000gを添加して第1シリカ被覆層を形成した核粒子の分散液を得た。(工程(b))
次いで、限外濾過膜で洗浄して固形分濃度13%になった第1シリカ被覆層を形成した核粒子分散液500gに純水1125gを加え、さらに濃塩酸(35.5%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、第1シリカ被覆層を形成した核粒子の構成成分の一部を除去したSiO2・Al23多孔質粒子の分散液を調製した(工程(c))。上記多孔質粒子分散液1500gと、純水500g、エタノール1,750g及び28%アンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO228%)104gを添加し、第1シリカ被覆層を形成した多孔質粒子の表面をエチルシリケートの加水分解重縮合物で被覆して第2シリカ被覆層を形成した。次いで、限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20%のシリカ系微粒子(P−2)の分散液を調製した。
【0218】
この中空シリカ系微粒子の第1シリカ被覆層の厚さは3nm、平均粒径は47nm、MOx/SiO2(モル比)は0.0017、屈折率は1.28であった。ここで、平均粒径は動的光散乱法により測定した。
【0219】
〔バックコート層の塗設〕
下記のバックコート層塗布液を、3μmの粒子捕捉効率が99%以上で0.5μm以下の粒子捕捉効率が10%以下のフィルターで濾過して調製した。このバックコート層塗布液を上記のハードコート層を塗設した面の反対側の面に、エクストルージョンコーターにてウエット膜厚が15μmになるように塗布し、90℃で30秒間乾燥させた。
【0220】
(バックコート層塗布液)
ジアセチルセルロース(アセチル基置換度2.4) 0.5質量部
アセトン 70質量部
メタノール 20質量部
プロピレングリコールモノメチルエーテル 10質量部
超微粒子シリカ アエロジル200V(日本アエロジル(株)製)0.002質量部
以上のようにして、バックコート層付きハードコートフィルムを作製した。
【0221】
(表面改質)
上記作製した一部のバックコート層付きハードコートフィルムのハードコート層面を、図1に記載のフレームプラズマ処理装置を用いてフレームプラズマ(FP)処理を行った。処理条件は、火炎とフィルムとの接触時間は約0.01秒、内炎最大面積に対し外炎の接触面積の比は5、及び内炎先端からの距離は5mmであった。なお、内炎最大面積とは、図2における内炎Iの中心の幅にフィルムの処理幅を乗じた値であり、外炎の接触面積とは、有効炎G(ここも外炎)の処理するフィルムに接触している幅とやはりフィルムの処理幅とを乗じた値である。
【0222】
また、一部のバックコート層付きハードコートフィルムを、50℃に加熱した1.5mol/lのNaOH水溶液に2分間浸漬しアルカリ(Alk)処理を行い、水洗後、0.5%のH2SO4水溶液に室温で30秒間浸漬し中和させ、水洗、乾燥を行った。
【0223】
〔中屈折率層/高屈折率層の形成〕
上記表面改質したバックコート層付きハードコートフィルムのハードコート層上に下記中屈折率層塗布液をバーコーターを用いて塗布し、60℃で乾燥の後、紫外線を照射して塗布層を硬化させ中屈折率層を、また、その上に、下記高屈折率層塗布液をバーコーターを用いて塗布し、60℃で乾燥の後、紫外線を照射して塗布層を硬化させ高屈折率層をそれぞれ形成した。
【0224】
(二酸化チタン分散物の調製)
二酸化チタン(一次粒子質量平均粒径:50nm、屈折率:2.70)30質量部、アニオン性ジアクリレートモノマー(PM21、日本化薬(株)製)4.5質量部、カチオン性メタクリレートモノマー(DMAEA、興人(株)製)0.3質量部及びメチルエチルケトン65.2質量部を、サンドグラインダーにより分散し、二酸化チタン分散物を調製した。
【0225】
(中屈折率層塗布液の調製)
上記二酸化チタン分散液 47質量部
導電性ITO微粒子(ELCOM V2504、ITOゾル、固形分20%、触媒化成製) 3質量部
ジペンタエリスリトールヘキサアクリレート(マトリックス) 50質量部
イルガキュア184(光重合開始剤) 3質量部
γ−メタクリロキシプロピルメトキシシラン(信越化学社製、KBM503、シランカップリング剤) 10質量部
ポリ−n−ブチルメタクリレート(マトリックス) 5質量部
プロピレングリコールモノメチルエーテル(PGME) 720質量部
イソプロピルアルコール 1470質量部
メチルエチルケトン(MEK) 250質量部
(高屈折率層塗布液の調製)
上記二酸化チタン分散液 70質量部
テトラ(n)ブトキシキチタン 1.5質量部
γ−メタクリロキシプロピルトリメトキシシラン(信越化学社製、KBM503)
3質量部
シリコーン界面活性剤;FZ2207(日本ユニカー製)10%プロピレングリコールモノメチルエーテル溶液 2質量部
イソプロピルアルコール 555質量部
プロピレングリコールモノメチルエーテル(PGME) 278質量部
メチルエチルケトン(MEK) 93質量部
〔低屈折率層1〜4の形成〕
次に、上記表面改質を行ったバックコート層付きハードコートフィルムのハードコート層上、及び中屈折率層・高屈折率層を形成したフィルムの高屈折率層面に、下記低屈折率層塗布液1〜4を押し出しコーターで塗布し、80℃で5分間乾燥させた後、さらに120℃で5分間熱硬化させ、さらに紫外線を照射して硬化させ、厚さ95nmとなるように低屈折率層1〜4を形成した。
【0226】
(低屈折率層塗布液1の調製)
Si(OCH34をマトリックスとし、シリコーン界面活性剤(FZ2207、日本ユニカー製、10%プロピレングリコールモノメチルエーテル溶液)をマトリックスに対し3.0%添加し、1.0mol/L−HClを触媒に用いて、さらに有機溶媒(プロピレングリコールモノメチルエーテル:イソプロピルアルコール=1:1混合物)で希釈した低屈折率塗布液1を調製した。
【0227】
(低屈折率層塗布液2の調製)
Si(OC254をマトリックスとし、シリコーン界面活性剤(FZ2207、日本ユニカー製、10%プロピレングリコールモノメチルエーテル溶液)をマトリックスに対し3.0%添加し、1.0mol/L−HClを触媒に用いて、さらに有機溶媒(プロピレングリコールモノメチルエーテル:イソプロピルアルコール=1:1混合物)で希釈した低屈折率塗布液2を調製した。
【0228】
(低屈折率層塗布液3の調製)
Si(OC254をマトリックスとし、シリコーン界面活性剤(FZ2207、日本ユニカー製、10%プロピレングリコールモノメチルエーテル溶液)をマトリックスに対し3.0%、前記シリカ系微粒子P−2を40%添加し、1.0mol/L−HClを触媒に用いて、さらに有機溶媒(プロピレングリコールモノメチルエーテル:イソプロピルアルコール=1:1混合物)で希釈した低屈折率塗布液3を調製した。
【0229】
(低屈折率層塗布液4の調製)
Si(OC254を50%、(CH3O)3SiC2461224Si(OCH33を50%で混合したマトリックスとし、シリコーン界面活性剤(FZ2207、日本ユニカー製、10%プロピレングリコールモノメチルエーテル溶液)をマトリックスに対し3.0%、前記シリカ系微粒子P−2を40%添加し、1.0mol/L−HClを触媒に用いて、さらに有機溶媒(プロピレングリコールモノメチルエーテル:イソプロピルアルコール=1:1混合物)で希釈した低屈折率塗布液4を調製した。
【0230】
〔低屈折率層の表面処理〕
上記作製した低屈折率層の表面を、図1、3〜5に示す、フレームプラズマ(FP)、加熱ローラー、ニクロム線ヒーターと送風、遠赤外線セラミックヒーターと送風の各加熱(冷却)手段を用いて表面処理を行った。なお、各加熱(冷却)手段の設置数は5箇所とし、加熱ローラーのみ1、2、3、5、10、20、30箇所とした。
【0231】
〔反射防止フィルムの評価〕
このようにして作製した反射防止フィルム1〜33について、下記方法で反射率の測定及び耐擦傷性(即・湿熱耐性)の評価を行った。
【0232】
(反射率)
反射防止フィルムの反射率を顕微反射分光膜厚計(大塚電子(株)製FE−3000)を用いて測定し、波長400〜700nmの範囲における平均反射率を測定した。反射率は3.0%以下であれば実用上問題ないが、2.0%以下であることが好ましく、1.5%以下であることがさらに好ましい。
【0233】
(耐擦傷性・即)
反射防止フィルムに23℃、55%RHの環境下で、#0000のスチールウール(SW)に200g/cm2の荷重をかけ、10往復したときの1cm幅当たりの傷の本数を測定した。なお、傷の本数は荷重をかけた部分の中で最も傷の本数の多い所で測定する。10本/cm以下であれば実用上問題ないが、5本/cm以下が好ましく、3本/cm以下がさらに好ましい。
【0234】
(耐擦傷性・湿熱耐性)
反射防止フィルムを60℃、90%RHのサーモ機に500時間投入して湿熱処理した後、前記の耐擦傷性・即と同様の方法で測定した。評価基準も耐擦傷性・即と同様である。
【0235】
反射率及び耐擦傷性の評価の結果を表1に示す。
【0236】
【表1】

【0237】
表1より、本発明の反射防止フィルムは耐擦傷性に優れていることが分かる。
【0238】
また、試料No.13で加熱ローラー接触直後のフィルム表面温度を測定したところ、低屈折率側=243℃、裏面側(冷却)=63℃、冷却空気温度は約50℃であった。
【0239】
さらに、加熱ローラー表面温度を変えた実験を行った結果、200℃以下では加熱効率が低く、本発明の効果が低下する。250℃では、低屈折率層との1回の接触距離(時間)を長くしていくことである程度の効果が得られる。300℃以上では、低屈折率層との1回の接触距離(時間)を調整することで本発明目的の十分な効果が得られる。高温側は、500℃以下が電熱ヒーターによる加熱ローラーの温度調節が容易で好ましい。800℃以上では、接触距離(時間)が短い状態がベスト状態となり、また温度変動(一定に調整しても上下にハンチングする)の影響を受けるため、好ましくは800℃以下が好ましいことが実験により分かった。
【0240】
実施例2
実施例1で作製した反射防止フィルムを用いて下記のようにして偏光板を作製し、それらの偏光板を液晶表示パネル(画像表示装置)に組み込み、視認性を評価した。
【0241】
下記の方法に従って、反射防止フィルムと該フィルムに支持体として用いられているセルローストリアセテートフィルム各々1枚を偏光板保護フィルムとして用いて偏光板を作製した。
【0242】
(a)偏光膜の作製
厚さ120μmの長尺のポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gの比率からなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gの比率からなる68℃の水溶液に浸漬した。これを水洗、乾燥し長尺の偏光膜を得た。
【0243】
(b)偏光板の作製
次いで、下記工程1〜5に従って、偏光膜と偏光板用保護フィルムとを貼り合わせて偏光板を作製した。
【0244】
工程1:セルローストリアセテートフィルムと反射防止フィルムを2mol/Lの水酸化ナトリウム溶液に60℃で90秒間浸漬し、次いで水洗、乾燥させた。反射防止フィルムの反射防止層を設けた面にはあらかじめ剥離性の保護フィルム(PET製)を張り付けて保護した。
【0245】
同様にセルローストリアセテートフィルムを2mol/Lの水酸化ナトリウム溶液に60℃で90秒間浸漬し、次いで水洗、乾燥させた。
【0246】
工程2:前述の偏光膜を固形分2%のポリビニルアルコール接着剤槽中に1〜2秒間浸漬した。
【0247】
工程3:工程2で偏光膜に付着した過剰の接着剤を軽く取り除き、それを工程1でアルカリ処理したセルローストリアセテートフィルムと反射防止フィルムで挟み込んで、積層配置した。
【0248】
工程4:2つの回転するローラにて20〜30N/cm2の圧力で約2m/minの速度で張り合わせた。このとき気泡が入らないように注意して実施した。
【0249】
工程5:80℃の乾燥機中にて工程4で作製した試料を2分間乾燥処理し、本発明の偏光板を作製した。
【0250】
市販の液晶表示パネル(NEC製 カラー液晶ディスプレイ MultiSync LCD1525J:型名 LA−1529HM)の最表面の偏光板を注意深く剥離し、ここに偏光方向を合わせた本発明の偏光板を張り付けた。
【0251】
上記のようにして得られた液晶パネルを床から80cmの高さの机上に配置し、床から3mの高さの天井部に昼色光直管蛍光灯(FLR40S・D/M−X 松下電器産業(株)製)40W×2本を1セットとして1.5m間隔で10セット配置した。このとき評価者が液晶パネル表示面正面にいるときに、評価者の頭上より後方に向けて天井部に前記蛍光灯がくるように配置した。液晶パネルは机に対する垂直方向から25°傾けて蛍光灯が写り込むようにして画面の見易さ(視認性)を下記のようにランク評価した。
【0252】
A:最も近い蛍光灯の移りこみから気にならず、フォントの大きさ8以下の文字もはっきりと読める
B:近くの蛍光灯の写りこみはやや気になるが、遠くは気にならず、フォントの大きさ8以下の文字もなんとかと読める
C:遠くの蛍光灯の写りこみも気になり、フォントの大きさ8以下の文字を読むのは困難である
D:蛍光灯の写りこみがかなり気になり、写り込みの部分はフォントの大きさ8以下の文字を読むことはできない
評価の結果、本発明の試料はB以上であり、比較試料より良好であった。
【図面の簡単な説明】
【0253】
【図1】フレームプラズマ処理装置の概略図である。
【図2】プラズマ処理手段の詳細図である。
【図3】加熱ローラー処理装置の概略図である。
【図4】ニクロム線加熱と送風冷却装置の概略図である。
【図5】遠赤外セラミックヒーターと送風冷却装置の概略図である。
【符号の説明】
【0254】
1 表面処理装置
2 支持体
3 搬送手段
4 塗布手段
11 回転冷却ドラム
12 プラズマ処理手段
13 電界生成手段
14 導入手段
15 前除電手段
16 後除電手段
B バーナー
C 遮蔽板
E、E′ 外炎
I 内炎
G 有効炎
R ローラー
S 有効処理孔(スリット)

【特許請求の範囲】
【請求項1】
有機ポリマーの透明基材フィルム上に直接または間接に、アルコキシシラン化合物またはその加水分解物を含有する塗布液により形成される低屈折率層を設け、該低屈折率層の表面にフレームプラズマ処理を行なうことを特徴とする反射防止フィルムの製造方法。
【請求項2】
前記透明基材フィルムと低屈折率層の間に、活性エネルギー線硬化樹脂を主成分とするハードコート層を設けることを特徴とする請求項1に記載の反射防止フィルムの製造方法。
【請求項3】
前記アルコキシシラン化合物の50%以上が、テトラエトキシシランであることを特徴とする請求項1または2に記載の反射防止フィルムの製造方法。
【請求項4】
前記アルコキシシラン化合物またはその加水分解物を含有する塗布液が、空隙を有するシリカ系微粒子を含有することを特徴とする請求項1〜3のいずれか1項に記載の反射防止フィルムの製造方法。
【請求項5】
前記空隙を有するシリカ系微粒子が、中空球状のシリカ系微粒子であることを特徴とする請求項4に記載の反射防止フィルムの製造方法。
【請求項6】
前記透明基材フィルムがセルロースエステルフィルムであることを特徴とする請求項1〜5のいずれか1項に記載の反射防止フィルムの製造方法。
【請求項7】
長尺な有機ポリマーの透明基材フィルムの片面上に直接または間接に、アルコキシシラン化合物またはその加水分解物を含有する塗布液により形成される低屈折率層を設けた後、冷却手段を有するローラー表面に少なくとも部分的に低屈折率層の反対面を巻き付けるようにしてローラー上を搬送し、巻き付けた部分またはその前後の低屈折率層表面を加熱する加熱手段を設けることを特徴とする反射防止フィルムの製造方法。
【請求項8】
長尺な有機ポリマーの透明基材フィルムの片面上に直接または間接に、アルコキシシラン化合物またはその加水分解物を含有する塗布液により形成される低屈折率層を設けた後、ローラー搬送する工程を設け、搬送中の低屈折率層表面を加熱する加熱手段を複数箇所設けることを特徴とする反射防止フィルムの製造方法。
【請求項9】
複数の前記加熱手段の間に、送風による冷却手段を有することを特徴とする請求項8に記載の反射防止フィルムの製造方法。
【請求項10】
前記加熱手段が、フレームプラズマであることを特徴とする請求項7〜9のいずれか1項に記載の反射防止フィルムの製造方法。
【請求項11】
前記加熱手段が、300〜800℃の表面温度を持つ金属性の加熱ローラーであることを特徴とする請求項7〜9のいずれか1項に記載の反射防止フィルムの製造方法。
【請求項12】
請求項1〜11のいずれか1項に記載の反射防止フィルムの製造方法により製造されることを特徴とする反射防止フィルム。
【請求項13】
請求項12に記載の反射防止フィルムを最表面に使用することを特徴とする画像表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2006−78538(P2006−78538A)
【公開日】平成18年3月23日(2006.3.23)
【国際特許分類】
【出願番号】特願2004−259429(P2004−259429)
【出願日】平成16年9月7日(2004.9.7)
【出願人】(303000408)コニカミノルタオプト株式会社 (3,255)
【Fターム(参考)】