説明

同時特性を取得するための材料測定システムおよび関連方法

材料測定システム(500)は、光パルスを放射する少なくとも1つのレーザ光源(111)を含むTHz発生器を含み、光パルスは、製造システム(100)による処理の間、材料(14)上のサンプル位置でパルスTHz放射を放射するように動作可能なTHzエミッタ(51)に結合される。受信機(52)は、光パルスを受信し、光パルスと同期して、材料(14)上のサンプル位置から反射または透過されたTHz放射を検出し、電気検出信号を供給するように動作可能である。同期光学素子(112、113、114)は、前記レーザから光パルスを受信し、受信機(52)とTHzエミッタ(51)の両方に光パルスを供給するように動作可能である。コントローラ(25)は、電気検出信号を受信し、処理された電気検出信号を供給するための少なくとも1つのプロセッサ(87)と、処理された電気検出信号から前記材料の少なくとも1つ、一般には複数の特性を決定するように動作可能なアナライザ(88)とを含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般には、プロセス制御システムに関し、より詳細には、紙などの製造される材料の品質を管理するためのテラヘルツ分光ベースの測定および制御システムに関する。
【背景技術】
【0002】
製紙工場および材料製造工場などの処理施設は一般に、プロセス制御システムおよび品質管理システム(QCS)を使用して管理される。バルブ、ポンプ、モータ、加熱/冷却装置、および他の産業機器および電子機器は一般に、処理施設内で材料を処理するのに必要な行為を実施する。諸機能の中で特に挙げると、プロセス制御システムおよびQCSはしばしば、処理施設内の産業機器の使用を管理する。
【0003】
プロセス制御システムは、分散制御システム(DCS)を備えてよい。DCSは一般に、QCSに接続され、それと連携して働き、このQCSは一般に、製造されている製品(たとえば紙)の属性を測定し、製造中の製品の品質を調整するための制御信号を産業機器に送るための装置を含む。
【0004】
コントローラはしばしば、処理施設内の産業機器の動作を制御するために使用される。コントローラは一般に、産業機器の動作を監視し、産業機器に制御信号を供給し、かつ/または不具合が検出されるとき警告を生成する。フィールド装置は、センサ(たとえば温度、圧力および流量センサ)、ならびに他の受動および/または能動素子を含むことができる。プロセスコントローラは、制御ルーチンを実施するために、フィールド装置によって行われたフィールド測定などのプロセス情報を受け取ることができる。次いで、プロセスの動作および材料の製造を制御するために、制御信号が生成され、産業機器に送られ得る。
【0005】
たとえば、紙の製造では、製紙工程の間、紙の含水率および温度を測定するために複数のフィールド装置が使用されていると知られている。このプロセスでは、紙のウェブが、移動するメッシュ製紙布上の繊維(紙料)の水性懸濁液から形成される。紙の中の水は、重力、および布を通した吸引によって流出する。次いで、ウェブは、プレス部に移され、このプレス部で、圧力および真空によってさらなる水が除去される。次いで、ウェブは、乾燥部に入り、この乾燥部で、蒸気加熱乾燥機および熱風によって乾燥プロセスが完了する。この抄紙機は本質的に、水分除去システムである。
【0006】
製紙システムの典型的な形成部は、本質的に無限の移動する製紙布またはワイヤを含み、この布またはワイヤは、テーブルロール、フォイル、真空フォイルおよびサクションボックスなど、一連の水分除去要素の上を一般に移動する。紙料は、製紙布の上面に載せて運ばれ、紙のシートを形成するために、紙料が連続脱水要素の上を移動する間に脱水される。次いで、ウェットシートは、製紙システムのプレス部に移され、このプレス部で、紙のシートを形成できるほど十分な水が除去される。多くの要因が水分除去の割合に影響し、この水分除去の割合は、生産された紙の品質に最終的な影響を及ぼす。
【0007】
製紙工程の間に行われるオンライン測定は一般に、坪量、水分およびシートのキャリパ(すなわち厚さ)を含む。測定は、生産物の品質を維持し、したがって不合格になる製品の量を最小限に抑えることを目的に、プロセス変数を制御するために使用され得る。オンラインのシート特性測定は、シート材料を端から端まで周期的に横断するスキャンセンサによってしばしば遂行される。
【0008】
図1を参照にすると、図では既知のスキャン装置17が、シート材料(たとえば紙14)を端から端まで横断し、製紙工程の間にシート材料の1つまたは複数の特性測定を行うために使用されている。スキャン装置17は、互いに隣に配置された複数のセンサS1、S2およびS3を含む。これらのセンサは、シート材料の特有の特性を測定するために各センサがそれ自体の特有のハードウェアを使用するので、互いに異なる。それぞれの特有の特性は一般に、異なる測定技術を必要とする。たとえば、S1は、位置P1で水分を測定する赤外線(IR)センサであってよく、S2は、位置P2で坪量測定する核要素であってよく、S3は、位置P3で別の材料特性を測定する光学ユニットであってよい。
【0009】
スキャン装置17は一般に、製紙工程の「ドライ」エンドに置かれ、この「ドライ」エンドでは、センサは、「ウェットエンド」に関連する極端な状態、たとえばスチームボックスの近くなど、高温または高湿度の条件にさらされない。スキャン装置17のセンサS1、S2およびS3は、「ウェットエンド」の高熱および水分環境では内蔵型電子機器が適切に動作しないことがあり、または損傷を受けることがあるので、ドライエンドにある。さらに、センサS1、S2およびS3は共に、一般にかさばる大きさであり、「ウェットエンド」内の戦略的な測定位置に容易には収まらず、または置くことができない。したがって、製紙工程の「ドライエンド」が、製紙工程の間、シート材料の特性測定を行うために一般に使用される。
【0010】
製紙工程の監視に使用される制御システムは、「ドライエンド」のそれぞれ異なる位置P1、P2およびP3で測定された紙特性、およびこれらの「最終」測定に基づいて制御プロセスパラメータを査定することができる。抄紙機のウェットエンド、プレス部、乾燥部、および仕上げ部のシステムの作動は一般に、リールの「ドライエンド」スキャナから読み取ることによってすべて制御される。たとえば、シート材料が主要乾燥部を離れるとその含水率を測定し、あるいは「ドライエンド」でスキャンセンサを使用して巻取りリールで含水率を測定することは、従来行われている。「ドライエンド」の測定は、所望のパラメータおよび性能を達成するために、製紙工程の機械動作を調整するために使用されてよい。
【発明の概要】
【発明が解決しようとする課題】
【0011】
「ドライエンド」測定制御は、製紙業にとって著しい利点をもたらしているが、いくらかの制限がある。図1に示されたスキャン装置17などの従来のスキャン装置は、紙14の上の各測定の位置(P1、P2およびP3)が異なることにより、坪量またはキャリパを正確には測定できないことがある。センサは、互いに近くにあるが、一般に、特定の位置で別個の品質特性を同時に測定することができない。さらに、スキャン装置は、たとえば、上述されたように受信センサ(S1、S2およびS3)の損傷をもたらし得る極端に高い温度および水分状態が存在する「ウェットエンド」においては、工程内のそれぞれ異なる点で測定を行うことが不可能であり得る。
【0012】
「ドライエンド」測定は一般に、製紙工程内のそれぞれ異なるプロセス点における紙の変化を捕捉するには不十分である。こうした不完全なプロセス測定は、品質の低下、およびコストの増加など、製造上の欠点をもたらすことがある。さらに、製紙工程の「ドライエンド」で行われた測定が、「ウェットエンド」の測定を推定するために使用される場合、推定の結果、誤差が生じることがある。たとえば、測定は、紙の同じスポットからのものでないことがあり、したがって、誤差は同じプロセスによるものでないことがある。誤差は、機械速度が不正確であること、測定スポットのサイズか異なること、収縮が非線形であること、および/またはシートの振揺のせいで生じることもある。さらに、「ドライエンド」で動作する従来のスキャン装置は、プレス部の高密度化を乾燥部の高密度化から分離するのが難しく、したがって一般に、紙密度の正確な測定を提供することができない。
【課題を解決するための手段】
【0013】
この概要は、発明の性質および内容を簡潔に示す発明の概要を求める連邦規則法典第37巻1.73に従うように提供されている。それは、特許請求の範囲の範囲または意味を解釈または制限するために使用されるものではないとの理解の下に提示される。
【0014】
材料測定システムが、光パルスを放射する少なくとも1つのレーザ光源を含むTHz発生器を含み、光パルスは、製造システムによる処理の間、材料上のサンプル位置でパルスTHz放射を放射するように動作可能なTHzエミッタに結合される。受信機は、光パルスを受信し、光パルスと同期して、サンプル位置から反射または透過されたTHz放射を検出し、電気検出信号を供給するように動作可能である。同期光学素子は、レーザから光パルスを受信し、受信機とTHzエミッタの両方に光パルスを供給するように動作することができる。コントローラは、電気検出信号を受信し、処理された電気検出信号を供給するための少なくとも1つのプロセッサを含む。アナライザは、処理された電気検出信号から材料の少なくとも1つの(一般には複数の)特性を決定するように動作することができる。
【0015】
本発明の一実施形態では、THzエミッタは、パルスTHz放射を放射し、アナライザは、処理された電気検出信号から時間領域分光(TDS:time−domain spectroscopy)スペクトルを生成するように動作することができる。本発明の複数の実施形態では、コントローラおよびレーザは、製造システムから離れて置かれる。本明細書で使用される際、「離れて置かれる」は、最も近くでは機械の側に置かれており、最も遠くでは抄紙機の近くの別の部屋に置かれた要素を指し、一般には機械から1メートルから50メートルである。コントローラは、多変数コントローラを備えることができる。
【0016】
THzエミッタおよび受信機は、単一のセンサモジュール内で組み合わされてよい。この実施形態では、このシステムは、センサを移動してシステムのクロス方向の複数のサンプル位置からシート材料の特性を取得するためのセンサモジュールに結合されたスキャナをさらに備えることができる。アナライザは、坪量、水分およびキャリパ(厚さ)、構成、およびサンプル位置の繊維配向のうちの2つ以上を同時に測定するように動作可能であってよい。
【0017】
被制御システムまたは形成材が、複数のアクチュエータを含む材料製造システムを備える。制御システムが、光パルスを放射するための少なくとも1つのレーザ光源を含むTHz発生器を備える材料製造システムに動作可能に結合され、光パルスは、材料マスキングシステムによって処理されている材料上のサンプル位置でパルスTHz放射を放射するように動作可能なTHzエミッタに結合される。受信機が、光パルスを受信し、光パルスに同期して、サンプル位置から反射または透過されたTHz放射を検出し、電気検出信号を供給するように動作可能である。同期光学素子が、レーザから光パルスを受信し、受信機とTHzエミッタの両方に光パルスを供給するように動作可能である。少なくとも1つのプロセッサを備えるコントローラが、電気検出信号を受信し、処理された電気検出信号を供給する。アナライザが、処理された電気検出信号から材料の少なくとも1つの特性を決定するように動作することができる。コントローラは、特性に基づいて、複数のアクチュエータのうちの少なくとも1つを使用して材料製造システムの動作を制御するように動作可能にリンクされる。
【0018】
一実施形態では、材料製造システムは、シート材料の形成を開始するためにウェットストック材料からの機械的水分除去を制御するように構成された少なくとも1つのアクチュエータを含むプレス部と、シート材料の蒸発乾燥を制御するように構成された少なくとも1つのアクチュエータを含む乾燥部と、シート材料へ圧縮圧力を制御するための少なくとも1つのアクチュエータを含むキャレンダスタックと、シート材料の連続ロールを生産するための巻取りリールとを直列接続で備える製紙システムを備えることができる。
【0019】
製造システムによって処理された材料の現場品質管理のための方法が、製造システムによって処理されている材料上のサンプル位置にTHz放射を向けるステップと、サンプル位置から反射された放射または透過された放射を測定し、そこから電気検出信号を生成するステップと、電気検出信号を受信し、処理された電気検出信号を供給するための少なくとも1つのプロセッサを備える、離れて置かれたコントローラに電気検出信号を送信するステップとを備える。材料の少なくとも1つの特性が、処理された電気検出信号から決定され、少なくとも1つのプロセスパラメータが、特性に基づいて自動的に修正される。この少なくとも1つの特性は、複数の特性を含むことができ、それらの複数の特性は、単一のサンプル位置からの反射された放射または透過された放射の同時測定から決定される。決定ステップは、処理された電気検出信号から時間領域分光(TDS)スペクトルを生成するステップを備えることができる。
【0020】
サンプル位置は、システムのウェットゾーン内にあってよい。ウェットゾーンは、本明細書では、(重量で)繊維より水の方が多い領域と定義される。一般に、ドライエンド測定は、20%未満の水分など、繊維より水の方が少ない測定を指す。
【図面の簡単な説明】
【0021】
【図1】紙の上のそれぞれ異なる位置で1つまたは複数の紙の特性を測定するための複数の別個のセンサを備える既知のセンサ装置の概略図である。
【図2】本発明の一実施形態による、紙の上の同時位置で複数の紙特性を同時に測定するための例示的なセンサ装置の概略図である。
【図3】本発明の一実施形態による、図2のセンサ装置を組み込む例示的な製紙システムの概略図である。
【図4】本発明の一実施形態による、プロセス制御のためのTHz分光ベースの制御システムを含む例示的な製紙システムの概略図である。
【図5】本発明の一実施形態による、図2のセンサ装置を組み込む例示的な高速光ファイバ反射スキャンシステムの概略図である。
【図6】本発明の一実施形態による、図5の例示的なシステムのより詳細な概略図である。
【図7】本発明の一実施形態による、図2のセンサ装置を組み込む例示的な高速光ファイバ透過スキャンシステムの概略図である。
【発明を実施するための形態】
【0022】
図2を参照すると、本発明の一実施形態による、紙14などの材料の少なくとも1つの特性、一般には複数の特性を同時に測定するための例示的なセンサ装置23が示されている。ある構成では、センサ装置23は、紙の並進経路に対して直角に、紙のクロス方向にセンサ装置23を移動するように動作可能なスキャナ27に結合されてよい。別の構成では、センサ装置23は、固定点測定を得るためにスキャナ27の長さに沿って、固定位置にとどまることができる。固定の実施形態では、センサ用の取付け装置は一般に、機械の全幅に渡るものではないが、一般に、一方の端から1または2メートルを投影する。センサ装置23は、紙14の複数の特性測定を同時に、すなわち同じ紙位置で、同じ時間に取得することができる。たとえば、センサ装置23は、坪量、水分率、繊維配向、およびキャリパなど、特性1、特性2および特性3を、示された同じ紙位置、P0で、同時に測定することができる。本明細書では、「同時」は、せいぜい10ミリ秒の時間間隔を指す。特性測定のために、テラヘルツ放射が使用され、一実施形態では、テラヘルツ/時間領域分光(THz/TDS)が用いられる。
【0023】
当技術分野で知られているように、テラヘルツ時間領域分光(THz−TDS)は、THz放射の短パルスで材料特性を検査するために一意の生成および検出方式が使用される分光技術である。この生成および検出方式は本発明人によって、シート材料などの材料の、THz放射の振幅と位相の両方に対する影響に敏感であることが分かっている。
【0024】
THz領域は、遠赤外またはサブミリメートル領域とも呼ばれることがあり、赤外線(IR)領域と電磁スペクトルのマイクロ波領域との間に位置する。THz領域の境界は正確には定義されないが、一般には30μmと1500μm波長の間、または10THzと0.2THz周波数の間、または330cm−1と7cm−1波数の間である。
【0025】
スキャナ27およびセンサ装置23は、シート材料製造プロセスなど、材料製造プロセスで使用するのに適している。一例は、図3に示された本発明の一実施形態による、システム300など、紙14の連続したシートを生産するための製紙システムである。図では、製紙システム300は、ヘッドボックス32と、スチームボックス28と、キャレンダスタック30と、巻取りリール48と、「ドライエンド」のスキャナシステム20と、「ウェットエンド」の同時センサ装置23を含むスキャナ27とを含む。センサ装置23は一般に、THzエミッタとTHz受信機とを備える。別個のモジュールとして示されているが、スキャナ27およびセンサ装置23は、スキャナ20と統合されてもよいし、それに置き換わってもよい。ヘッドボックス32では、アクチュエータが、ウェット紙料の支持ワイヤ36への放出を制御するように構成される。ワイヤ36の上部に形成する繊維材料のシートは、ローラ34と38の間で機械方向に移動するように訓練され、キャレンダスタック30を通過する。シート材料は、フィルム、ウェブまたはシートの形であってよい。
【0026】
キャレンダスタック30は、ペーパーウェブ全体に加えられる圧縮圧力を制御するアクチュエータを含む。製紙システム300は、シートから水が機械的に除去され、またウェブがまとめられるスタック30の前に、プレス部(図示せず)をも含む。その後、水は、乾燥部(図示せず)で、蒸発によって除去される。完成したシート製品14は、リール48上に集められる。図3に示された破線は、ウェットエンドをドライエンドから分離している。各ウェットエンドとドライエンドの境界は、本明細書では、乾燥部初期の、スタック30のすぐ後を指し、そこで、繊維量が初めて水分量より多くなり始める。
【0027】
スキャナ20は一般に、紙14の幅に渡る、水平に伸びたガイドトラック24の対を含む。ガイドトラックは、その反対の端で直立の支柱22によって支えられ、トラック間で紙14が移動するすき間を許容できるほど十分な距離だけ間隔を置いて垂直に配置される。従来のセンサ26は、測定が行われる間、紙14の上を前後に移動するキャリッジ24に固定される。センサ26は、最終品質(たとえば坪量、水分、キャリパ)を測定するために使用されてよい。センサ23は、既にセンサ26を有するシステムに追加されてよく、あるいはセンサ23は、センサ26に取って換わることができる。センサ26は、1つの特性を測定する1つのセンサであってよく、あるいはそれは、複数の特性を測定する複数の別個のセンサであってよい。スキャナ27は、紙14の幅に渡る水平に伸びたガイドトラック(図示せず)の対を含むことができる。センサ23もまた、測定が行われる間、紙14の上を前後に移動するスキャナ27上の小さいキャリッジ(図示せず)に固定されてよい。光ファイバケーブル39は、センサ装置23(およびシステム300の製紙部品)から離れて置かれたTHz/TDSオプトエレクトロニクス110を通信可能に接続できる通信用の一手段である。THz/TDSオプトエレクトロニクス素子110は、下記に述べられるように、レーザシステムと同期光学素子とを備える。光ファイバケーブル39は、レーザからの光パルスを送って、システム300の製紙部品の近くに置かれたものを含めてセンサ23に結合するために使用されてよい。
【0028】
オプトエレクトロニクスは、システム300からやはり離れて置かれた、関連するコントローラに通信可能に接続される(図3には図示せず、後述の図5を参照)。こうした構成では、THz/TDSオプトエレクトロニクス素子110の高感度の電子部品も、コントローラも、システム300の「ウェットエンド」の極端に高い温度および水分条件にさらされない。
【0029】
図3に示されたように、センサ装置23は、製紙工程の「ウェットエンド」で、スキャナ27上に置かれる。別の構成では、センサ装置23は、温度および湿度が「ドライエンド」の条件と比べて非常に高いスチームボックス28の近くに置かれることもできる。またセンサ装置23は、ヘッドボックス32の近くに置かれてもよいし、「ウェットエンド」の近くの他のいずれかのコンポーネントの近くに置かれてもよい。別の実施形態では、センサ装置23は、システム300のドライエンドに置かれる。スキャナ27、センサ装置23および光ファイバケーブル39は単独に、または組み合わせて、一般に十分に柔軟性があり、製紙システム300のスペースが制約された領域内のどこかに置くことができるほど小さいものである。
【0030】
「ウェットエンド」に配置されたセンサ装置23は、主要な紙品質パラメータの測定を単一の紙位置で同時にできるようにする「ウェットエンド」条件の測定を可能にする。センサ装置23に可能な小さい堅牢なフォームファクタによって、測定を妨害源に置くことが可能になり、制御およびアクチュエータが製紙工程に関連する問題を特定のときに解決できるようになる。別の実施形態では、複数のセンサ装置23が、製紙システム300内の同時位置で複数の紙品質パラメータをそれぞれが測定するために製紙システム300内の様々な位置に置かれることもできる。
【0031】
図4を参照すると、本発明の一実施形態による、プロセス制御のための例示的な制御システム10の概略図が示されている。制御システム10は、ユーザインターフェース50を備えるコントローラ25と、モデリングツール75とを含む。図では、コントローラ25は、プロセッサ(たとえば信号プロセッサ)87とアナライザ88とを含む。制御システム10は、操作パラメータを受信しかつ/または取り出し、紙プロセスモデルを取り出し、受信しかつ/または生成し、かつ/または1つまたは複数の紙プロセスまたはシステムに関する制御を実施できる他のコンポーネント、およびコンポーネントの組合せを含むことができる。コントローラ25、ユーザインターフェース50およびモデリングツール75は、別個のコンポーネントとすることができ、あるいは単一のプロセッサやコンピュータ内などで互いに統合されてもよい。
【0032】
図では、コントローラ25は、プロセス施設100の1つまたは複数の制御装置150、たとえばインターフェース175の使用によってなど、図3の製紙システムに関連する例示的な制御装置に結合され、またはそれと通信状態にある。結合または通信は、ハードウェア、光および/または無線結合を含めて、様々なコンポーネントおよび知られている技術を使用したものであってよい。制御システム10は、装置のそれぞれを直接制御し、または装置のマスタ/スレーブ構成でなど、製紙工程に関連する制御装置150のうちの1つまたは複数と直接通信する状態であってよい。示されていないが、制御システム10は、アプリケーションサーバによってプロセス施設100に結合可能である。
【0033】
制御装置150は、バルブ、ポンプ、モータ、過熱/冷却装置、および他の産業機器、ならびにセンサ(たとえば温度、圧力および流量センサ)、および他の受動および/または能動装置を含めて、施設100のプロセスに組み込まれた様々な装置であってよい。たとえば、制御装置150は、ヘッドボックス32、スチームボックス28、キャレンダスタック30、巻取りリール48、スキャナシステム20、スキャナ27、または冷却装置や加熱装置など、図3の製紙システム300の他のコンポーネントに関連する制御に対応し得る。本発明は、プロセスの制御を実施するために使用される制御装置のタイプによって制限されず、プロセスの一部で圧力および/または温度を調整するためのサブシステムなど、様々な装置および装置の組合せを含むことができる。
【0034】
インターフェース175は、製造工程の間、それぞれが紙などのシート材料の1つまたは複数の特性を同時に測定するために、1つまたは複数のセンサ装置23を1つまたは複数の制御装置150に結合することができる。実際には、コントローラ25は、少なくとも一部、THz分光を使用して複数の紙品質パラメータを評価するインターフェース175に動作可能に結合されてよい。観察される各特性によって、制御の複雑さの様々な度合いを生じさせることができる。コントローラ25は、測定された紙品質特性を考慮して製紙工程をプロセス効率およびコストを最適化するように制御するために、プロセス施設100の1つまたは複数の制御装置150を始動させることもできる。
【0035】
本発明の一態様では、コントローラ25は、製紙工程を監視して、形成からプレス、乾燥、仕上げまで、水分プロファイルをターゲットとする。コントローラ25は、製紙工程の間、センサ装置23のTHz受信コンポーネントから電気検出信号を受信する。コントローラ25は、電気検出信号を処理し、解析によって1つまたは複数の紙品質特性を決定して、たとえば水分プロファイルがどのように達成されるか、ならびに水分プロファイルが製紙工程の間、「ウェットエンド」からプレスに、また「ドライエンド」のプレスから乾燥に、どのように更新されるべきか決定することができる。当技術分野において知られているように、水分プロファイルは、シート張力プロファイル、シート破損、収縮、巻取り効率、プレスルーム操作などの変数にかなりの影響を及ぼすことがある。
【0036】
図4に示されたモデリングツール75は、最適なコスト節減を達成する制御設定を予測するために、紙品質特性を評価し、工程の間、水分プロファイルをターゲットにすることができる。モデリングツール75は、同時センサ装置23によって測定された品質特性考慮して紙品質の変化を予測し、効率向上のためにコストを削減する制御調整をオペレータに提案することもできる。ユーザインターフェース50は、測定された1つまたは複数の紙品質パラメータを提示し、1つまたは複数の制御装置150の作動の調整のための1つまたは複数の制御コマンドを受け取ることができる。一例として、コントローラ25は、希釈流量制御ヘッドボックス32上でクロス方向(CD)重量プロファイルを制御するために、同時センサ装置23によって測定された品質特性を監視することができる。そうでない場合は、こうした制御は、測定ゾーンのアクチュエータゾーンへのマッピングを変化させるウェブの振揺および非線形収縮が「ウェットエンド」で考慮されないならば、問題になろう。「ウェットエンド」で品質特性を同時に監視することは、機械方向(MD)変動成分と、CD変動成分の分離をも提供する。
【0037】
とりわけ、単一の紙位置で複数の特性を測定することによって、形成変化に関連する誤差を抑えるのに役立ち得る。たとえば、それぞれの制御装置150は、複数の紙品質特性を同時に測定するために、同時センサ装置23を備えることができる。こうした点で、制御ループが、乾燥機、プレスおよび「ウェットエンド」コンポーネントの主要な抄紙機サブプロセスの周りで形成され得る。コントローラ25は、紙品質特性を評価し、紙品質変化をその発生源で抑制しまたは取り除き、効率的で、紙品質に適した経路をターゲティングし、再生することを可能にすることができる。これは、「ドライエンド」のセンシング要素が十分に堅牢ではなく、または「ウェットエンド」で操作できるほど柔軟ではなく、また紙14上の同じ位置で同時測定を十分には取得することができない現在のリールスキャナ中心のモデルに比べて、抄紙機の制御における著しい改良をもたらすことができる。
【0038】
制御システム10は、制御されているプロセスから計算され、シミュレートされ、測定され、または別のやり方で感知された操作パラメータに基づいて決定された操作変数を格納するなど、様々な変数、データまたは他の情報のデータレポジトリの働きをする、好ましくは不揮発性の、関連する書込み可能メモリを含むことができる。メモリは、たとえばモデリングツールによって提供されたモデルを格納するための、コントローラ25、モデリングツール75、および/または制御システム10の別のコンポーネントの一部であってよい。
【0039】
次に図5を参照すると、シート材料製造プロセスの間、紙14などのシート材料の1つまたは複数の特性を同時に測定するための本発明の一実施形態による例示的なテラヘルツ時間領域分光(THz−TDS)ベースの測定システム500の概略図が示されている。示されたシステム500は、コントローラ25と、レーザと同期光学素子とを含むテラヘルツ/時間領域分光(THz/TDS)オプトエレクトロニクス素子110と、電気インターフェース175と、センサ装置23に結合されたスキャナ120とを含む。センサ装置23は、THz送信センサヘッド51(T)とTHz受信機52(R)とを含むことができる。一実施形態では、THzトランシーバは、THz送信センサヘッド51(T)と、THz受信機52(R)の両方を提供する。実際には、上述されたように、センサ装置23は、処理されているシート材料の「ウェットエンド」内のサンプル位置に置かれてよく、THz/TDSオプトエレクトロニクス110は、ウェットエンドから離れて置かれる。
【0040】
簡潔には、THz/TDSオプトエレクトロニクス110は、非常に短いレーザパルス(たとえば、約1フェムト秒続くパルス)を生成するレーザ光源(図示せず)を含む。パルスレーザ信号は、離れて置かれたTHz/TDSオプトエレクトロニクス素子110から「ウェットエンド」のサンプル位置のセンサヘッド51に光ファイバリンク115の伝送レーザ経路を通って伝達される。THzセンサヘッド51は一般に、パルスレーザ信号にさらされたときTHz放射パルスを生成する半導体材料を含む。THz放射パルスは、サンプル位置、P0に向けられる。超短レーザ信号は、光ファイバリンク115のRxレーザ経路を通ってTHz/TDSオプトエレクトロニクス素子110からTHz受信機52に伝達される。超短レーザ信号によって、サンプルから放射するTHz放射の電界の一部をTHz受信機52がいつ測定するか確立される。とりわけ、THz放射は、サンプルの1つまたは複数の特性の関数として、当てられたTHz放射パルスに応答してサンプルから発生する。電界は、サンプルの1つまたは複数の特性を識別するために評価され得る。
【0041】
光ファイバリンク115を介してTHz/TDSオプトエレクトロニクス素子110に結合されたTHzセンサヘッド51は、パルスレーザ信号の受信に応答して、サンプル位置、P0で、テラヘルツ(THz)放射パルスを生成する。一例として、THzセンサ51は、電圧が印加される半導体材料を備える光導電性エミッタであってよい。一例として、Tx電線は、THzセンサヘッド51にバイアスをかけるのに役立ち得る。半導体材料は、パルスレーザ信号にさらされるとき、THz放射パルスを放射する。事実上、半導体は、THz放射パルスの生成をもたらすパルスレーザ信号の受信に応答して、突発電流を生成する。
【0042】
THzセンサ51は、知られている様々な実施形態で提供され得る。一実施形態では、THzセンサ51は、パルスレーザ信号にさらされるとき、電圧の印加なしにTHz放射パルスを放射する透明な結晶材料を備える。別の実施形態では、THzセンサヘッド51は、ダイポールアンテナの形をしたガリウム砒素(GaAs)半導体材料に基づいてパターン化された2つの電極を備えることができる。
【0043】
THz受信機52は、シート材料上のTHzセンサヘッド51の近くに置かれており、サンプル位置から反射され、またはサンプル位置を通って透過された、放射されたTHz放射を測定する。一例として、THz受信機52は、電界がある状態で複屈折になるダイポールアンテナとして構成された結晶材料など、知られている様々な実施形態で提供され得る。
【0044】
センサ装置23を収容するスキャナ120は、時間領域電圧信号(たとえばRx電気およびTx電気)を電気インターフェース175に伝達するために、電気インターフェース175に有線または無線リンクを提供することができる。こうした点で、放射されたTHz放射に対応する電気信号、パルスレーザ信号、超短レーザ信号は、電気インターフェース175に送信される。電気インターフェース175は、超短THz信号がTHz受信機52を通過するときにTHz放射パルスの電界に一般に比例するセンサ信号を生成する。
【0045】
コントローラ25は、超短レーザパルスのタイミングを変化させるためにTHz/TDSオプトエレクトロニクス素子に制御信号を送ることができる。より具体的には、コントローラ25は、THz放射パルスをサンプリングし、その電界を時間の関数として構築するために超短パルスのタイミングを変化させることができる。すなわち、コントローラ25は、時変電界をサンプル位置、P0で構築するために、放射されたTHz放射の時領域測定を行いながら、超短THzパルスのタイミングを変化させるプロセスを繰り返す。
【0046】
センサヘッド51によって送信されたTHz放射パルスは一般に、紙14上に収束され、それが紙14を通過するとき選択吸収により歪められ、検出器にそれが到着する時間が遅くなる。超短THzパルスがTHz受信機52に到着する時間を変化させることによって、THz放射パルスの連続部分が検出され、その遅延時間または時間領域に関してTHz放射パルスの完成画像に組み込まれ得る。次いで、データは、上述されたようにTHz受信機52に到着するテラヘルツ信号の周波数へと遅延時間を変換するために、高速フーリエ変換解析によって処理されてよい。
【0047】
THz受信機52に通信可能にリンクされる信号プロセッサ87(図4参照)は、放射されたTHz放射に関連する時間領域データからサンプルのスペクトルを生成することができる。一例として、信号プロセッサ87は、スペクトルを生成するために、受信された時間領域データに対してフーリエ変換を実施することができる。プロセスからやはり離れて置かれたアナライザ88(図4参照)は、製造工程中にスペクトルから紙14の複数の特性を取得する。たとえば、アナライザ88は、紙14のそれぞれ異なる特性を識別するために、スペクトルの振幅ピークを識別し、または位相差を測定することができる。次いで、コントローラ25は、たとえば、1つまたは複数のコントローラを始動させることによって、上記に論じられたセンサ信号に応答して製造工程の1つまたは複数の側面を制御することができる。
【0048】
図5に示されたように、THz−TDSベースの測定システム500は、THz/TDSオプトエレクトロニクス110のオフプロセス(すなわち「ウェットエンド」環境の外部)の高感度エレクトロニクスを維持する光ファイバ手段を使用して、スキャン片面モードで実装されてもよいし、非スキャン片面モードで実装されてもよい。スキャンモードでは、センサ装置23は、紙に沿って超短THzパルスを移動させる。非スキャンモード(固定点モード)では、センサ装置23は、製紙工程の間、固定位置で紙特性を測定する。いずれのモードにおいても、結果は、主要な特性の測定、すなわちセンサ23を使用してすべてが同時に捕捉される重量、水分、キャリパ、構成および配向の組合せであってよい。
【0049】
一例として、反射スキャナ120は、スキャン片面THz測定を行うために3ニッププレス上の第3のニップの出口に置かれてよい。コントローラ25は、紙から現れる放射スペクトルを解析し、放射スペクトルの解析から1つまたは複数の紙品質特性を計算することができる。たとえば、コントローラ25は、放射スペクトルのピークおよび位相差を検査することによって、この特定の位置で総坪量、水重量およびキャリパを同時に測定することができる。これによって、コントローラ25は、坪量および水重量が紙の同じ場所すなわちスポット、P0から測定されるので、固形分を正確に計算することができる。コントローラ25は、坪量とキャリパの両方も紙のまさに同じスポット、P0から同時に測定されるので、紙密度を正確に測定することもできる。スキャン反射スキャナ120は、要求されるならば、固定点測定を行うために固定位置にとどまり得ることにも留意されたい。
【0050】
次に図6を参照すると、図5の例示的なTHz−TDSベースの測定システム500のより詳細な概略図が示されている。具体的には、THz/TDSオプトエレクトロニクス素子110は、レーザビームを生成するフェムト秒レーザ111などのパルスレーザと、レーザビームを送信ビームと超短レーザパルスに分割するスプリッタ112を備える同期光学素子と、スプリッタ112から送信ビーム(Tx)を受信し、光ファイバケーブル115のTxレーザ経路(図5参照)を通ってセンサヘッド51に伝えられるパルスレーザ信号を生成するチョッパ113とを備えることができる。スプリッタ112およびチョッパ13構造は、約10−15秒の長さの光の超短レーザパルスを生成することができる。同期光学素子は、超短レーザパルスのタイミングを変化させ、光ファイバリンク115のRxレーザ経路を通ってTHz受信機52に超短レーザパルスを伝える時間遅延線要素114をも含む。具体的には、コントローラ25は、時間遅延線要素114に、超短レーザパルスがパルスレーザ信号と同時に到着するように超短レーザパルスの遅延を調整するよう指示する。THz受信機52は、超短レーザパルスが、THzセンサヘッド51によって生成されたTHz放射パルスの電界が低いときに到着するか、それとも高いときに到着するかに応じて異なる電気信号を生成する。
【0051】
コントローラ25(図5参照)は、たとえばスペクトル解析によって、放射されたTHz放射から、位置、P0でサンプルの複数の特性を解析する。コントローラ25は、スペクトル解析から、坪量、含水率およびキャリパを備える同時測定を計算する。とりわけ、同時センサ装置23は、スペクトル解析から、単一位置、P0で複数の紙品質特性を測定する。測定された同時紙品質パラメータを解析すると、コントローラ25は、形成誤差を予測し、形成誤差を補償するために制御装置150を使用して1つまたは複数のプロセスパラメータを調整することができる。こうした点で、コントローラ25は、製紙工程の機械方向(MD)変化測定とクロス方向(CD)変化測定を分離することができる。
【0052】
次に図7を参照すると、両面透過スキャナ141を実装するTHz−TDSベースの測定システムが示されている。透過システム700は、下面の透過スキャナ142のせいで、反射スキャナ120(図7参照)より大きいスペースを占めるので、製紙工程内の戦略的位置に、たとえば紙14の両側に到達できるようになっているスチームボックス28またはキャレンダスタック30(図3参照)の近くに置かれ得る。
【0053】
透過スキャナ141は、製造プロセスから離れてパルスレーザ信号60および超短レーザ信号63を生成するTHz/TDSオプトエレクトロニクス110を含むことができる。スキャナ141の第1の側面のセンサヘッド61は、光ファイバリンク115のTxレーザ経路を介してパルスレーザ信号60を受信する。センサヘッド61は、パルスレーザ信号60をTHz放射パルス71に変換し、このTHz放射パルス71は、サンプル位置、P0で、シート材料を通して向けられる。スキャナ142の第2の側面のTHz受信機62は、サンプルから放射されたTHz放射72を受信する。THz受信機62は、光ファイバリンク115のTxレーザ経路を介して、サンプル測定の間、それぞれ異なるときにそれぞれがゲート制御された一連の超短レーザ信号63をも受信する。THz受信機62は、ゲート制御された信号時間に超短レーザ信号63が受信されるとき、サンプル位置から放射されたTHz放射の電界に対応する時間領域電圧信号を測定する。
【0054】
電気信号への変換に続いて、放射されたTHz放射、パルスレーザ信号および超短レーザ信号に関連する電気信号は、有線または無線接続を介して電子インターフェース175に通信される。電気インターフェース175からセンサ信号を受信するコントローラ25は、サンプル位置で、THz放射パルスの電界を時間の関数として測定するために超短レーザパルスのタイミングを変化させる。上述されたように、コントローラ25は、センサ信号から、THz放射パルス用のサンプルの透過スペクトルを生成する。コントローラ25は、製造工程の中、透過スペクトルから、シート材料の複数の特性を同時に測定する。たとえば、コントローラ25は、複数の特性から、サンプル位置のシート材料の坪量、含水率およびキャリパを計算する。
【0055】
本発明に述べられた実施形態の例は、様々な実施形態の構造についての一般的な理解を促すためのものであり、それらは、本明細書に述べられた構造を利用し得る装置およびシステムの要素および特徴のすべてについて完全に述べるためのものではない。上記説明をよく読むと、当業者には他の多くの実施形態が明らかになろう。本開示の範囲から逸脱せずに構造および論理の置換および変更が行われ得るように、他の実施形態が使用され、そこから導出され得る。また図は、単に代表的なものにすぎず、一定の比率の縮尺では描かれていないことがある。その特定の部分は誇張されることがあり、他の部分は最小化され得る。したがって、本明細書および図面は、限定的ではなく、例示的な意味で考慮されるべきである。
【0056】
したがって、本明細書では特定の実施形態について示され述べられているが、同じ目的を達成すると見込まれる任意の構成が、示された特定の実施形態の代わりに用いられてよいことを理解されたい。本開示は、様々な実施形態のすべての適応物あるいは変形物を網羅するものである。上記説明を詳しく読むと、上記実施形態の組合せ、および本明細書では具体的に示されていない他の実施形態が、当業者には明らかになろう。したがって、本発明を実施するために企図された最良のやり方として開示された特定の実施形態に限定されないが、本発明は、添付の特許請求の範囲の範囲内にあるすべての実施形態を含むことが意図されている。
【0057】
本開示の要約は、読者が本技術開示の本質を迅速に認識できるようにする要約を求める連邦規則法典第37巻1.72(b)に従うように提供されている。それは、特許請求の範囲の範囲または意味を解釈しまたは制限するためには使用されないとの理解の下、提示される。

【特許請求の範囲】
【請求項1】
光パルスを放射するための少なくとも1つのレーザ光源(111)を含み、前記光パルスは、製造システム(100)によって処理される間、前記材料(14)の上のサンプル位置でパルスTHz放射を放射するように動作可能なTHzエミッタ(51)に結合される、THz発生器と、
前記光パルスを受信し、前記光パルスと同期して、前記サンプル位置から反射されたまたは透過されたTHz放射を検出して、電気検出信号を供給するように動作可能な受信機(52)と、
前記レーザ(111)から前記光パルスを受信し、前記受信機(52)と前記THzエミッタ(51)の両方に前記光パルスを供給するように動作可能な同期光学素子(112、113および114)と、
前記電気検出信号を受信し、処理された電気検出信号を供給するための少なくとも1つのプロセッサ(87)および前記処理された電気検出信号から前記材料(14)の少なくとも1つの特性を決定するように動作可能なアナライザ(88)を備えるコントローラ(25)と、
を備える材料測定システム(500)。
【請求項2】
光ファイバ(115)をさらに備え、前記光パルスは、前記光ファイバによって前記レーザ光源(111)から前記受信機(52)および前記エミッタ(51)のうちの少なくとも1つに結合される、請求項1に記載のシステム。
【請求項3】
前記アナライザ(88)は、前記サンプル位置で前記材料(14)の複数の前記特性を同時に決定するように動作可能であり、前記複数の特性は、坪量、水分、厚さ、構成および繊維配向からなるグループから選択される、請求項1に記載のシステム。
【請求項4】
前記コントローラ(25)および前記レーザ(111)の両方は、前記製造システムから離れて置かれる、請求項1に記載のシステム。
【請求項5】
前記THzエミッタ(51)と前記受信機(52)が単一のセンサモジュール内で組み合わされる、請求項1に記載の測定システム。
【請求項6】
前記受信機(52)および前記THzエミッタ(51)は、前記材料の両側に置かれ、それによって、前記システムが透過ベースのシステムである、請求項1に記載のシステム。
【請求項7】
複数のアクチュエータを含む材料製造システム(100)と、
光パルスを放射するための少なくとも1つのレーザ光源(111)を含み、前記光パルスは、前記材料マスキングシステムによって処理される材料(14)の上のサンプル位置でパルスTHz放射を放射するように動作可能なTHzエミッタ(51)に結合される、THz発生器と、
前記光パルスを受信し、前記光パルスと同期して、前記サンプル位置から反射されたまたは透過されたTHz放射を検出して、電気検出信号を供給するように動作可能な受信機(52)と、
前記レーザから前記光パルスを受信し、前記受信機(52)と前記THzエミッタ(51)の両方に前記光パルスを供給するように動作可能な同期光学素子(112)、前記電気検出信号を受信し、処理された電気検出信号を供給するための少なくとも1つのプロセッサ(87)、および前記処理された電気検出信号から前記材料(14)の少なくとも1つの特性を決定するように動作可能なアナライザ(88)を備えるコントローラ(25)を備える、前記材料製造システム(100)に動作可能に結合された制御システム(10)と、を備え、
前記コントローラ(25)は、前記特性に基づいて前記複数のアクチュエータのうちの少なくとも1つを使用して前記材料製造の操作を制御するように動作可能にリンクされる、
被制御システムまたは形成材。
【請求項8】
光ファイバ(115)をさらに備え、
前記光パルスが前記光ファイバ(111)によって前記レーザ光源(111)から、前記受信機(52)および前記エミッタ(51)のうちの少なくとも1つに結合される、請求項7に記載のシステム。
【請求項9】
前記材料製造システム(100)は、製紙システム(300)を備え、前記製紙システムは、
シート材料(14)の形成を開始するためにウェットストック材料からの機械的水分除去を制御するように構成された少なくとも1つのアクチュエータを含むプレス部と、
前記シート材料(14)の蒸発乾燥を制御するように構成された少なくとも1つのアクチュエータを含む乾燥部と、
前記シート材料への圧縮圧力を制御するための少なくとも1つのアクチュエータを含むキャレンダスタックと、
前記シート材料(14)の連続ロールを生成するための巻取りリール(48)と、を直列接続で備える、請求項7に記載のシステム。
【請求項10】
製造システムによって処理された材料の現場品質管理のための方法であって、
前記製造システムによって処理されている材料(14)上のサンプル位置にTHz放射を向けるステップと、
前記サンプル位置から反射された放射または透過された放射を測定し、そこから電気検出信号を生成するステップと、
前記電気検出信号を受信し、処理された電気検出信号を供給するための少なくとも1つのプロセッサ(87)を備える、離れて置かれたコントローラ(25)に前記電気検出信号を送信するステップと、
前記処理された電気検出信号から前記材料(14)の少なくとも1つの特性を決定するステップと、
前記特性に基づいて少なくとも1つのプロセスパラメータを自動的に修正するステップとを備える、方法。
【請求項11】
前記少なくとも1つの特性が複数の前記特性を備え、前記複数の特性は、前記サンプル位置の単一の位置からの前記反射された放射または透過された放射の同時測定から決定される、請求項10に記載の方法。
【請求項12】
前記測定ステップが同期測定ステップを備え、前記同期測定ステップは、前記THz放射を生成するために使用されたレーザ光源(111)からの光パルスと同期され、前記光パルスファイバは、前記THz放射を生成するためのTHz発生器、および前記反射された放射または透過された放射の前記測定のための受信機に光結合される、請求項10に記載の方法。
【請求項13】
前記決定ステップは、前記処理された電気検出信号から時間領域分光(TDS)スペクトルを生成するステップを備える、請求項10に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公表番号】特表2011−503583(P2011−503583A)
【公表日】平成23年1月27日(2011.1.27)
【国際特許分類】
【出願番号】特願2010−533402(P2010−533402)
【出願日】平成20年11月14日(2008.11.14)
【国際出願番号】PCT/CA2008/002023
【国際公開番号】WO2009/062315
【国際公開日】平成21年5月22日(2009.5.22)
【出願人】(508322831)ハネウェル・アスカ・インコーポレーテッド (11)
【Fターム(参考)】