説明

吐出方法及び液滴吐出装置

【課題】基板の反りやうねりが大きいときにも、生産性良く基板に液滴を吐出する吐出方法を提供する。
【解決手段】ノズルと基板とを主走査方向に相対移動しながら、ノズルから液滴を基板の被塗布面に吐出する吐出方法にかかわる。複数の方向における被塗布面の凹凸形状を測定する反り測定工程と、凹凸形状の情報を用いて主走査方向に対する基板の向きを決定する配置方向判断工程と、決定した基板の向きに基板を移動する配置方向変更工程と、ノズルと基板とを相対移動しながら液滴を基板の被塗布面に吐出する吐出工程と、を有し、配置方向判断工程では、測定した複数の方向のうち被塗布面の凹凸の差の少ない方向を主走査方向に決定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ワークに液滴を吐出する吐出方法及び液滴吐出装置にかかわり、特に、ワークの反りやうねりに対応して吐出する方法に関するものである。
【背景技術】
【0002】
従来、ワークに対して液滴を吐出する装置として、インクジェット式の液滴吐出装置が知られている。液滴吐出装置は、基板等のワークを載置してワークを一方向に移動させるテーブルと、テーブルの上方位置において、テーブルの移動方向と直交する方向に配置されるガイドレールに沿って移動するキャリッジとを備えている。キャリッジにはインクジェットヘッド(以下、液滴吐出ヘッドと称す)が配置され、液滴吐出ヘッドからワークに対して液滴を吐出して、塗布していた。
【0003】
基板に反りやうねりがある場合には、液滴吐出ヘッドと基板との間隔が変動する。そして、液滴吐出ヘッドと基板との間隔が大きいときには、吐出された液滴が飛行中に曲がるときの影響が大きくなる。そして、液滴の着弾位置の変動が大きくなるので、着弾位置精度が悪くなる。さらに、基板に反りやうねりが大きい場合には、液滴吐出ヘッドと基板とが擦れてしまう。そして、基板や液滴吐出ヘッドが損傷する場合がある。
【0004】
液滴吐出ヘッドと基板との間隔を所定の間隔に維持しながら液滴を吐出する方法が特許文献1に開示されている。それによると、液滴吐出装置は距離計測用のセンサーを備えている。さらに液滴吐出装置は液滴吐出ヘッドと基板との間隔を変更するアクチュエーターを備えている。そして、センサーは液滴吐出ヘッドと供に移動し、液滴吐出ヘッドと基板との間隔を測定する。そして、液滴吐出装置はセンサーの検出結果を用いてアクチュエーターを駆動することにより、液滴吐出ヘッドと基板との間隔を所定の間隔に維持していた。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平11−291475号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
基板の反りやうねりが大きいときには、液滴吐出ヘッドを基板の方向に移動させる距離が大きくなる。このとき、テーブルの移動速度を低くしないと液滴吐出ヘッドと基板とが干渉する可能性がある。そこで、基板の反りやうねりが大きいときにも、生産性良く液滴吐出ヘッドから液滴を吐出可能な吐出方法が望まれていた。
【課題を解決するための手段】
【0007】
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
【0008】
[適用例1]
本適用例にかかる吐出方法は、ノズルとワークとを主走査方向に相対移動しながら、前記ノズルから液滴を前記ワークの被塗布面に吐出する吐出方法であって、複数の方向における前記被塗布面の凹凸形状を測定する測定工程と、前記凹凸形状の情報を用いて前記主走査方向に対する前記ワークの向きを決定する配置方向判断工程と、決定した前記ワークの向きに前記ワークを移動する配置方向変更工程と、前記ノズルと前記ワークとを相対移動しながら前記液滴を前記ワークの前記被塗布面に吐出する吐出工程と、を有し、前記配置方向判断工程では、前記被塗布面の凹凸の差の少ない方向を前記主走査方向に決定することを特徴とする。
【0009】
この吐出方法によれば、測定工程にて複数の方向における被塗布面の凹凸形状を測定する。そして、配置方向判断工程にて凹凸形状の情報を用いて主走査方向に対するワークの向きを決定する。このとき、被塗布面の凹凸の差の少ない方向を主走査方向に決定する。次に、配置方向変更工程では決定したワークの向きにワークを移動する。つまり、被塗布面の凹凸の差の少ない方向が主走査方向になるようにワークを移動する。次に、吐出工程にてノズルとワークとを相対移動しながら液滴をワークの被塗布面に吐出する。
【0010】
吐出工程においてノズルを主走査方向に移動するとき、被塗布面の凹凸の差が小さいときには、凹凸の差が大きいときに比べてノズルと被塗布面との間隔の変化が小さくなる。そして、制御する距離が短い方が長い場合に比べて制御にかかる時間が短くなる。従って、被塗布面の凹凸の差が小さいときには、凹凸の差が大きいときに比べてノズルと被塗布面との間隔を制御する時間を短くできる。
【0011】
本適用例では、配置方向判断工程及び配置方向変更工程にて被塗布面の凹凸の差が小さい方向を主走査方向にしている。従って、吐出工程においてノズルと被塗布面との間隔を短い時間で調整することができる。その結果、生産性良くワークに液滴を吐出することができる。
【0012】
[適用例2]
上記適用例にかかる吐出方法において、前記吐出工程は前記ノズルと前記ワークとを前記主走査方向に相対移動しながら、前記ノズルから前記液滴を前記ワークの前記被塗布面に吐出する主走査工程と、前記主走査方向と交差する副走査方向へ前記ノズルと前記ワークとを相対移動させる副走査工程と、を有し、前記副走査工程において、前記ノズルと前記ワークとの間隔とを調整し、前記主走査工程では前記ノズルと前記ワークとの間隔とを制御せずに走査することを特徴とする。
【0013】
この吐出方法によれば、副走査工程において、ノズルとワークとの間隔とを調整する。そして、ノズルとワークとを相対移動するときにノズルとワークとの間隔が所定の範囲内になるように調整する。主走査工程ではノズルとワークとの間隔とを制御せずに走査するので、ノズルを主走査方向に移動する速度をさらに早くすることができる。その結果、さらに生産性良くワークに液滴を吐出することができる。
【0014】
[適用例3]
上記適用例にかかる吐出方法において、前記測定工程では、前記被塗布面と平行な方向から光を前記ワークに照射し、前記被塗布面に遮光される場所を検出しながら、前記ワークと前記光とを相対移動することにより前記被塗布面の凹凸形状を測定することを特徴とする。
【0015】
この吐出方法によれば、被塗布面と平行な方向から光をワークに照射している。ワークに光があたるとき光が遮光される。そして、遮光される場所を検出することにより、ワークの被塗布面の場所を検出できる。次に、ワークに照射する光を移動しながら遮光される場所を検出している。そして、ワークの被塗布面の場所を複数検出することによりワークの凹凸形状を測定することができる。
【0016】
ワークに光を照射して影となる場所を検出することによりワークの凹凸形状を測定している。従って、簡便な方法にてワークの凹凸形状を測定することができる。
【0017】
[適用例4]
上記適用例にかかる吐出方法において、前記測定工程にて測定した前記被塗布面の凹凸の差と判定値とを比較して、前記ワークへの吐出を行うか否かを判断する塗布判断工程をさらに有することを特徴とする。
【0018】
この吐出方法によれば、被塗布面の凹凸の差と判定値とを比較している。ノズルと被塗布面の距離が長くなると液滴の着弾位置精度が低くなる。本適用例では被塗布面の凹凸の差が判定値より大きいときには、ワークへの吐出を行わない判断をすることにより、着弾位置精度が低くなることを防止することができる。
【0019】
[適用例5]
本適用例にかかる液滴吐出装置であって、ノズルからワークの被塗布面に液滴を吐出する吐出部と、前記ノズルと前記ワークとの間隔を所定の間隔にする間隔制御部と、前記ノズルと前記ワークとを相対移動させる移動部と、複数の方向における前記被塗布面の凹凸形状を測定する凹凸測定部と、前記凹凸形状の情報を用いて前記ワークを回転させるか否かを判断する回転判断部と、前記液滴の吐出方向を中心に前記ワークを回転させる回転部と、を有し、前記液滴を吐出するときに前記ノズルと前記ワークとを相対移動させる方向を主走査方向とするとき、前記回転判断部及び前記回転部は前記被塗布面の凹凸の差の少ない方向を前記主走査方向にすることを特徴とする。
【0020】
この液滴吐出装置によれば、凹凸測定部が複数の方向における被塗布面の凹凸形状を測定する。そして、回転判断部が被塗布面の凹凸の差の少ない方向を主走査方向に合わせる判断をする。次に、回転部が液滴の吐出方向を中心にワークを回転させて、被塗布面の凹凸の差の少ない方向を主走査方向に合わせる。続いて、間隔制御部がノズルとワークとの間隔を所定の間隔にする。そして、移動部がノズルとワークとを相対移動させながら、吐出部がノズルからワークの被塗布面に液滴を吐出する。
【0021】
本適用例では、回転判断部及び回転部が被塗布面の凹凸の差が小さい方向を主走査方向にしている。従って、間隔制御部が制御する量が小さくなるので、制御にかかる時間を短くできる。その結果、生産性良くワークに液滴を吐出することができる。
【図面の簡単な説明】
【0022】
【図1】第1の実施形態にかかわる液滴吐出装置の構成を示す概略斜視図。
【図2】(a)は、キャリッジを示す模式側面図、(b)は、キャリッジを示す模式平面図、(c)は、液滴吐出ヘッドの構造を示す要部模式断面図。
【図3】(a)は、反り測定装置を示す模式側断面図、(b)は、反り測定装置を示す模式平断面図、(c)は受光センサーの出力電圧の推移を示すタイムチャート。
【図4】液滴吐出装置の電気制御ブロック図。
【図5】描画作業を示すフローチャート。
【図6】描画作業における吐出方法を説明するための模式図。
【図7】描画作業における吐出方法を説明するための模式図。
【図8】描画作業における吐出方法を説明するための模式図。
【図9】第2の実施形態にかかわる吐出方法を説明するための模式図。
【図10】第3の実施形態にかかわり、(a)は、液滴吐出装置を示す模式平面図、(b)は、液滴吐出装置を示す模式側断面図。
【発明を実施するための形態】
【0023】
以下、具体化した実施形態について図面に従って説明する。尚、各図面における各部材は、各図面上で認識可能な程度の大きさとするため、各部材毎に縮尺を異ならせて図示している。
【0024】
(第1の実施形態)
本実施形態における特徴的な液滴吐出装置とこの液滴吐出装置を用いて液滴を吐出する方法との特徴的な例について図1〜図8に従って説明する。液滴吐出装置に関しては様々な種類の装置があるが、インクジェット法を用いた装置が好ましい。インクジェット法は微小液滴の吐出が可能であるため、微細加工に適している。尚、以下の説明に用いた各図においては、各部材を図面上で認識可能な程度の大きさとするため、各部材毎に縮尺を異ならせてある。
【0025】
(液滴吐出装置)
図1は、液滴吐出装置の構成を示す概略斜視図である。液滴吐出装置1により、膜を構成する材料を含む機能液が吐出されて塗布される。図1に示すように液滴吐出装置1は直方体形状に形成される基台2を備えている。本実施形態では、この基台2の長手方向をY方向とし、水平面内にてY方向と直交する方向をX方向とする。そして、鉛直方向をZ方向とする。
【0026】
基台2の上面2aには、Y方向に延びる一対の案内レール3a,3bが同Y方向全幅にわたり凸設されている。その基台2の上側には、一対の案内レール3a,3bに対応する図示しない直動機構を備えた移動部としてのステージ4が取付けられている。この直動機構の種類は、特に限定されないが、サーボモーターとボールネジとを組み合わせて構成することができる。他にも、リニアモーターを採用しても良い。このステージ4が移動するY方向を副走査方向4aとする。
【0027】
さらに、基台2の上面2aには、案内レール3a,3bと平行に副走査位置検出装置5が配置され、ステージ4のY方向の位置が計測できるようになっている。そのステージ4の上面には、回転部としての回転テーブル6が設置されている。回転テーブル6はモーター、角度検出装置、減速装置等からなる回転機構を備えている。回転テーブル6の上面には載置面7が形成され、その載置面7には、図示しない吸引式の基板チャック機構が設けられている。操作者が載置面7にワークとしての基板8を載置して所定の位置に位置決めする。その後、基板チャック機構により基板8は載置面7に固定される。
【0028】
基板8の形状、材質は特に限定されない。例えば、基板8の形状が長方形に形成された板の場合について説明する。基板8の長手方向を第1方向8aとし、基板8の平面方向で第1方向8aと直交する方向を第2方向8bとする。基板8において載置面7の側と反対側の面が機能液を塗布される面であり、この面を被塗布面8cとする。
【0029】
基台2のX方向両側には、一対の支持台9a,9bが立設されている。その一対の支持台9a,9bには、X方向に延びる案内部材10が架設されている。案内部材10は、その長手方向の幅がステージ4のX方向よりも長く形成され、その一端が支持台9a側に張り出すように配置されている。案内部材10の下側には、X方向に延びる案内レール11がX方向全幅にわたり凸設されている。そして、案内レール11に沿って略角柱状に形成された移動部としてのキャリッジ12が配置されている。キャリッジ12は直動機構を備え、X方向に走査可能となっている。この直動機構の種類は、特に限定されないが、例えば、リニアモーターを採用することができる。キャリッジ12が走査するX方向を主走査方向12aとする。案内部材10とキャリッジ12との間には、主走査位置検出装置13が配置され、キャリッジ12の位置が計測可能になっている。
【0030】
キャリッジ12の基板8側にはヘッドユニット14と一対の硬化ユニット15が配置されている。ヘッドユニット14の基板8側には液滴を吐出する液滴吐出ヘッドが凸設されている。硬化ユニット15には吐出された液滴を硬化させる紫外線を照射する装置が配置されている。硬化ユニット15は主走査方向12aにおいてヘッドユニット14を挟んだ位置に配置されている。
【0031】
キャリッジ12の図中上側には収容タンク16が配置されている。収容タンク16には機能液が収容されている。ヘッドユニット14の液滴吐出ヘッドと収容タンク16とは図示しないチューブにより接続され、収容タンク16内の機能液がチューブを介して液滴吐出ヘッドに供給される。
【0032】
機能液は樹脂材料、光重合開始剤、溶媒を主材料とする。この主材料に顔料または染料等の色素や、親液性または撥液性等の表面改質材料等の機能性材料を添加することにより固有の機能を有する機能液を形成することができる。機能液の樹脂材料は樹脂膜を形成する材料である。樹脂材料としては、常温で液状であり、重合させることによりポリマーとなる材料であれば特に限定されない。さらに、粘性の小さい樹脂材料が好ましく、オリゴマーの形態であるのが好ましい。モノマーの形態であればさらに好ましい。光重合開始剤はポリマーの架橋性基に作用して架橋反応を進行させる添加剤であり、例えば、光重合開始剤としてベンジルジメチルケタールを用いることができる。溶媒は樹脂材料の粘度を調整するものである。機能液を液滴吐出ヘッドから吐出し易い粘度にすることにより、液滴吐出ヘッドは安定して機能液を吐出することができる。
【0033】
基台2の図中左側の側面であって案内部材10と対向する場所には保守装置17が配置されている。この保守装置17には液滴吐出ヘッドをクリーニングする機構が配置されている。そして、保守装置17が液滴吐出ヘッドをクリーニングすることにより、液滴吐出ヘッドから液滴を正常に吐出可能な状態に保つことが可能になっている。
【0034】
支持台9a,9bのY方向側には反り測定装置18が配置されている。反り測定装置18は被塗布面8cの凹凸を測定する装置である。反り測定装置18は光照射部18aと受光部18bと備えている。光照射部18aは受光部18bに向けて帯状の光を照射し、受光部18bが受光する。ステージ4がY方向に移動するとき、基板8が光の一部を遮蔽する。反り測定装置18は遮蔽された光の場所を検出することにより被塗布面8cの凹凸を検出する。
【0035】
図2(a)は、キャリッジを示す模式側面図である。図2(a)に示すようにヘッドユニット14の基板8側の面14aには3個の吐出部としての液滴吐出ヘッド19が配置されている。液滴吐出ヘッド19の個数は特に限定されず、吐出する機能液の種類に合わせて設定できる。ヘッドユニット14と硬化ユニット15との間には一対のヘッド昇降装置20が配置されている。ヘッド昇降装置20はキャリッジ12に対してヘッドユニット14を昇降させる装置である。液滴吐出ヘッド19と基板8との隙間をワークヘッド間距離19aとする。ヘッド昇降装置20はヘッドユニット14を昇降させることによりワークヘッド間距離19aを制御することができる。
【0036】
ヘッド昇降装置20はヘッドユニット14の移動方向を限定するガイドレールと直動機構とを備えている。直動機構は特に限定されないが、例えば、本実施形態ではボールねじとステップモーター等から構成されている。そして、ステップモーターに駆動パルス信号が入力されるとき、ステップモーターはボールねじを回転してヘッドユニット14をZ方向に昇降させる。
【0037】
図2(b)は、キャリッジを示す模式平面図である。図2(b)に示すようにキャリッジ12に配置されたヘッドユニット14には3個の液滴吐出ヘッド19が配置され、液滴吐出ヘッド19の下面には、それぞれノズルプレート23が備えられている。そのノズルプレート23には、それぞれ複数のノズル24がY方向に所定の間隔で配列されている。
【0038】
硬化ユニット15の基板8と対向する面には吹出口25と照射窓26とが配置されている。硬化ユニット15の内部には送風装置と紫外光照射装置とが配置されている。送風装置は気流を形成する装置である。送風装置と吹出口25とが流路によって接続され、送風装置によって形成された気流は吹出口25に流動する。そして、吹出口25から基板8に着弾した液滴に向けて気流が吹出される。そして、着弾した液滴の表面が乾燥される。紫外光照射装置は紫外光を照射する装置である。紫外光は照射窓26を通過して基板8に着弾した液滴に向けて照射される。そして、着弾した液滴が硬化される。
【0039】
図2(c)は、液滴吐出ヘッドの構造を示す要部模式断面図である。図2(c)に示すように、ノズルプレート23の上側であってノズル24と相対する位置には、キャビティ27が形成されている。そして、キャビティ27には収容タンク16に貯留されている液状体としての機能液28が供給される。キャビティ27の上側には、上下方向に振動して、キャビティ27内の容積を拡大縮小する振動板29と、上下方向に伸縮して振動板29を振動させる圧電素子30が配設されている。
【0040】
液滴吐出ヘッド19が圧電素子30を制御駆動するためのノズル駆動信号を受けると、圧電素子30が上下方向に伸縮する。そして、圧電素子30は振動板29を振動させるので、振動板29と隣接するキャビティ27の容積が拡大縮小する。それにより、キャビティ27内に供給された機能液28のうち縮小した容積分の機能液28がノズル24を通り、液滴31となって吐出される。液滴31が吐出される方向を吐出方向31aとする。液滴吐出装置1はステージ4とキャリッジ12とを走査する。そして、ノズル24が所定の場所に位置するときに液滴31を吐出することにより、所望のパターンを描画することができる。
【0041】
図3(a)は、反り測定装置を示す模式側断面図である。図3(b)は、反り測定装置を示す模式平断面図であり、図3(a)においてA−A’方向から見た図である。図3(a)及び図3(b)に示すように、光照射部18aはケース33を備えている。そして、ケース33の内部には支持台34を介してレーザー光源35が配置されている。レーザー光源35は内部に半導体レーザーを備え、半導体レーザーに電圧を印加することにより光としてのレーザー光36を発光する。
【0042】
レーザー光源35が発光するレーザー光36の光軸方向には回転ミラー37が配置されている。回転ミラー37はミラー回転部38の回転軸に固定されている。そして、ミラー回転部38はケース33に配置されている。回転ミラー37は三角柱状に形成され、三角形の各辺に相当する場所が鏡になっている。そして、回転ミラー37のXZ平面における断面は正三角形に形成されている。その正三角形の重心を通って、Y方向にミラー回転部38の回転軸が配置されている。従って、回転ミラー37はZ方向を軸に図中反時計回りに回転する。回転ミラー37が回転するとき、回転ミラー37を照射するレーザー光36はXZ平面方向に反射される。
【0043】
レーザー光源35及び回転ミラー37のZ方向には凹面鏡39が配置されている。そして、回転ミラー37にて反射したレーザー光36は凹面鏡39を照射する。凹面鏡39を照射するレーザー光36がX方向に進行するように凹面鏡39が形成されている。回転ミラー37が回転することにより凹面鏡39にはXZ平面上で放射状に広がるレーザー光36が照射される。そして、凹面鏡39で反射したレーザー光36は帯状となって図中右の方向に進行する。
【0044】
凹面鏡39の図中右側にはマスク40及びフィルター41が配置されている。そして、レーザー光36はマスク40を通過する。マスク40にはレーザー光36の一部を遮光してスリットの機能を有する図形が形成され、マスク40を通過したレーザー光36はマスク40に形成された図形に対応する光度分布となる。
【0045】
マスク40を通過したレーザー光36はフィルター41を通過する。フィルター41はレーザー光36に対して光の波長の分布を変更したり、光の偏光特性を変更する光学素子である。フィルター41は、受光部18bが受光し易い光にするために配置する。従って、受光部18bの特性に合わせて設定するのが望ましい。そして、フィルター41を通過したレーザー光36は光照射部18aの外に出射し、Z方向に走査しながら基板8及び回転テーブル6に向かって進行する。このとき、レーザー光36は回転テーブル6から離れた場所から回転テーブル6に近づく方向に走査する。そして、光照射部18aが照射するレーザー光36の一部は基板8により遮光される。載置面7と被塗布面8cとの距離を反り含み厚み8dとする。反り含み厚み8dは基板8の厚みと基板8の反りやうねりによる変形とを加えた量である。従って、反り含み厚み8dは測定する基板8の場所によって変わる量である。
【0046】
光照射部18aのX方向には受光部18bが配置されている。受光部18bはケース42を備え、光照射部18aと対向する場所にフィルター43が配置されている。そして、光照射部18aが照射するレーザー光36のうち基板8により遮光されなかったレーザー光36はフィルター43を照射する。次に、フィルター43と対向する光軸方向(X方向)の場所にはマスク44が配置されている。マスク44にはレーザー光36の一部を遮光してスリットの機能を有する図形が形成されている。そして、フィルター43及びマスク44は光照射部18a以外の方向から照射される外乱光の影響を減少させる。
【0047】
フィルター43及びマスク44に入射する光の光軸方向(X方向)には凹面鏡45が配置されている。図3(a)において凹面鏡45の図中左下には受光センサー46が配置されている。この受光センサー46は支持台47を介してケース42に設置されている。そして、X方向に進行するレーザー光36が凹面鏡45にて反射した後受光センサー46を照射するように凹面鏡45が形成されている。従って、光照射部18aが照射するレーザー光36は総て受光センサー46を照射する。受光センサー46にはフォトトランジスターが内蔵され、フォトトランジスターは受光する光量に応じた電圧を出力する。
【0048】
図3(c)は受光センサーの出力電圧の推移を示すタイムチャートである。図3(c)において、縦軸は受光センサーが出力する出力電圧を示し、図中上側が下側より高い電圧を示している。横軸は時間の経過を示し、時間は図中左から右へ推移する。上段の第1出力推移線48は載置面7上に基板8が載置されていないときの状態をしめしている。第1出力推移線48において第1高電圧部48aはレーザー光36が遮光されずに光照射部18aと受光部18bとの間を通過する状態を示している。第1低電圧部48bはレーザー光36が回転テーブル6によって遮光されている状態を示している。
【0049】
下段の第2出力推移線49は載置面7上に基板8が載置されているときの状態をしめしている。第2出力推移線49において第2高電圧部49aはレーザー光36が遮光されずに光照射部18aと受光部18bとの間を通過する状態を示している。このとき、レーザー光36は被塗布面8cのZ方向を通過する。第2低電圧部49bはレーザー光36が基板8によって遮光されている状態を示している。第1高電圧部48aが占める時間と第2高電圧部49aが占める時間の差を遮光時間50とする。このとき、遮光時間50は反り含み厚み8dと比例する。従って、反り含み厚み8dは遮光時間50を測定し所定の係数を乗算することにより算出することができる。
【0050】
図4は、液滴吐出装置の電気制御ブロック図である。図4において、液滴吐出装置1は液滴吐出装置1の動作を制御する制御部としての制御装置52を備えている。そして、制御装置52はプロセッサーとして各種の演算処理を行うCPU(中央演算処理装置)53と、各種情報を記憶するメモリー54とを備えている。
【0051】
主走査駆動装置55、主走査位置検出装置13、副走査駆動装置56、副走査位置検出装置5、回転駆動装置57、角度検出装置58は、入出力インターフェイス59及びデータバス60を介してCPU53に接続されている。さらに、液滴吐出ヘッド19を駆動するヘッド駆動回路61、ヘッド昇降装置20、反り測定装置18、入力装置62、表示装置63、保守装置17も入出力インターフェイス59及びデータバス60を介してCPU53に接続されている。
【0052】
主走査駆動装置55はキャリッジ12を駆動する装置であり、副走査駆動装置56はステージ4を駆動する装置である。主走査位置検出装置13がキャリッジ12の位置を検出し、主走査駆動装置55がキャリッジ12を駆動することにより、キャリッジ12を所望の速度にて走査することが可能となっている。同じく、副走査位置検出装置5がステージ4の位置を検出し、副走査駆動装置56がステージ4を駆動することにより、ステージ4を所望の速度にて走査することが可能になっている。回転駆動装置57は回転テーブル6を駆動する装置である。角度検出装置58は回転テーブル6の角度を検出する装置である。角度検出装置58が回転テーブル6の角度を検出し、回転駆動装置57が回転テーブル6を駆動することにより、回転テーブル6を所望の角度まで回転して停止することができる。
【0053】
ヘッド駆動回路61は液滴吐出ヘッド19を駆動する回路である。そして、CPU53が指示する駆動電圧、吐出数、吐出間隔等の吐出条件に従って、ヘッド駆動回路61は液滴吐出ヘッド19を駆動する。ヘッド昇降装置20はキャリッジ12に対してヘッドユニット14を昇降させる装置である。ヘッド昇降装置20はCPU53の指示信号を受信し、指示信号に従って基板8とノズルプレート23との距離を制御する。反り測定装置18はCPU53の指示信号を受信し、指示信号に従って反り含み厚み8dを検出する。そして、反り測定装置18は検出した反り含み厚み8dのデータをメモリー54に出力する。
【0054】
入力装置62は液滴31を吐出する各種加工条件を入力する装置であり、例えば、基板8に液滴31を吐出する座標を図示しない外部装置から受信し、入力する装置である。表示装置63は加工条件や作業状況を表示する装置であり、表示装置63に表示される情報を基に、操作者は入力装置62を用いて操作を行う。保守装置17はCPU53の指示信号に従って液滴吐出ヘッド19の保守を行う装置である。保守装置17は液滴吐出ヘッド19内の機能液28を吸引したり、ノズルプレート23を拭き取る機能を備えている。CPU53はキャリッジ12を保守装置17と対向する場所に移動させた後、保守装置17に保守作業を行う指示信号を出力する。保守装置17は指示信号を入力し、指示信号に従って液滴吐出ヘッド19の保守を行う。
【0055】
メモリー54は、RAM、ROM等といった半導体メモリーや、ハードディスク、DVD−ROMといった外部記憶装置を含む概念である。機能的には、液滴吐出装置1の動作の制御手順が記述されたプログラムソフト64を記憶する記憶領域や、基板8上に吐出する液滴31の着弾位置の座標データである吐出位置データ65を記憶するための記憶領域が設定される。他にも、液滴吐出ヘッド19を駆動するときの駆動信号である駆動信号データ66を記憶するための記憶領域や、反り測定装置18が測定した反り含み厚み8dのデータである反り測定データ67の記憶領域が設定される。他にも、ワークヘッド間距離19aの許容範囲と設定データであるヘッド間隔データ68を記憶するための記憶領域や、基板8の反り状況から塗布可能か否かを判断するためのデータである塗布判断データ69の記憶領域が設定される。他にも、基板8の反りやうねりの分布から基板8を配置する方向を判断するためのデータである回転判断データ70を記憶するための記憶領域が設定される。他にも、CPU53のためのワークエリアやテンポラリーファイル等として機能する記憶領域やその他各種の記憶領域が設定される。
【0056】
CPU53は、メモリー54内に記憶されたプログラムソフト64に従って、基板8の表面の所定位置に液滴31を吐出するための制御を行うものである。具体的な機能実現部として液滴吐出ヘッド19から液滴31を吐出するための演算を行う吐出演算部72を有する。
【0057】
吐出演算部72を詳しく分割すれば、キャリッジ12を主走査方向12aへ所定の速度で走査移動させるための制御を演算する主走査制御部73と、基板8を副走査方向4aへ所定の副走査量で移動させるための制御を演算する副走査制御部74を有する。さらに、吐出演算部72は液滴吐出ヘッド19内の複数あるノズル24から液滴31を吐出させるノズル24を選択する吐出制御部75等を有する。吐出制御部75は選択したノズル24に対応する圧電素子30を作動させて液滴31を吐出させる。
【0058】
他にも、CPU53はビットマップ演算部76を有する。ビットマップは基板8上に着弾する液滴31の位置データを示す。そして、ビットマップ演算部76は載置面7における基板8の位置とステージ4及びキャリッジ12の移動速度のデータを用いてビットマップの演算を行う。他にも、CPU53は反り測定制御部77を有する。反り測定制御部77は反り測定装置18、副走査駆動装置56及び回転駆動装置57を駆動して基板8の反りやうねりを複数の方向から測定する制御を行う。反り測定制御部77及び反り測定装置18等により凹凸測定部が構成されている。他にも、CPU53は塗布判断部78を有する。塗布判断部78は基板8の反りやうねりの測定データから液滴31の着弾位置精度の推定を行う。そして、塗布判断部78は基板8に機能液28を塗布するか否かを判断する演算を行う。
【0059】
他にも、CPU53は回転判断部79及び回転制御部80を有する。回転判断部79は基板8の反りやうねりの測定データを参照し第1方向8aと第2方向8bとのうちどちらを主走査方向12aにするかを判断する演算を行う。そして、回転判断部79の演算結果に基づき回転制御部80は回転駆動装置57を駆動して回転テーブル6を回転させる。そして、基板8の第1方向8aと第2方向8bとを所定の方向に回転させる。他にも、CPU53はヘッド間隔制御部81を有する。ヘッド間隔制御部81はヘッド昇降装置20を駆動してワークヘッド間距離19aを所定の距離に設定する。ヘッド間隔制御部81及びヘッド昇降装置20等により間隔制御部が構成されている。他にも、CPU53は保守装置17を制御する保守装置制御部82を有する。
【0060】
尚、本実施形態では、上記の各機能がCPU53を用いてプログラムソフトで実現することとしたが、上記の各機能がCPUを用いない単独の電子回路(ハードウェア)によって実現できる場合には、そのような電子回路を用いることも可能である。
【0061】
(液滴の吐出方法)
次に、上述した液滴吐出装置1を用いて、描画作業における液滴の吐出方法について図5〜図8にて説明する。図5は、描画作業を示すフローチャートである。図6〜図8は、描画作業における吐出方法を説明するための模式図である。
【0062】
図5に示すフローチャートにおいて、ステップS1は、給材工程に相当する。この工程は、載置面に基板を載置して固定する工程である。次にステップS2に移行する。ステップS2は反り測定工程に相当する。反り測定装置を用いて基板の凹凸形状を検出する工程である。次にステップS3に移行する。ステップS3は、塗布判断工程に相当する。この工程は、基板の反りやうねりの量を検出した結果を用いて、基板への塗布を行うか否かを判断する工程である。基板の反りやうねりの量が判定値より大きく、基板への塗布をしない判断をするとき、ステップS10に移行する。基板の反りやうねりの量が判定値より小さく、基板への塗布を行う判断をするとき、ステップS4に移行する。
【0063】
ステップS4は、配置方向判断工程に相当する。この工程は、基板の凹凸形状の凹凸の量を検出した結果を用いて、主走査方向に対して基板を配置する方向を決定する工程である。基板の凹凸の変化量が小さい方向を主走査方向にする。そして、判断した結果、基板を回転するとき、ステップS5に移行する。基板を回転しないとき、ステップS6に移行する。ステップS5は、配置方向変更工程に相当する。この工程は、回転テーブルを駆動して基板を回転させて、基板の配置方向を変更する工程である。次にステップS6に移行する。
【0064】
ステップS6はヘッド準備工程に相当する。基板への塗布を開始する場所へ液滴吐出ヘッドを移動し、ワークヘッド間距離を調整する工程である。次にステップS7に移行する。ステップS7は、主走査工程に相当する。この工程は、液滴吐出ヘッドと基板とを主走査方向に相対移動させながらノズルから液滴を吐出する工程である。次にステップS8に移行する。ステップS8は、塗布終了判断工程に相当する。この工程は、塗布作業を終了するかの判断をする工程である。塗布する予定の範囲内に塗布していない場所があるときステップS9に移行する。予定した総ての場所を塗布したときステップS10に移行する。ステップS9は、副走査工程に相当する。この工程は、液滴吐出ヘッドと基板とを副走査方向に相対移動させて改行する工程である。次にステップS7に移行する。ステップS6〜ステップS9がステップS11の吐出工程であり、基板に機能液を塗布する工程である。ステップS10は、除材工程に相当する。この工程は、載置面から基板を除去する工程である。ステップS10が終了するとき、描画作業を終了する。
【0065】
次に、図6〜図8を用いて、図5に示したステップと対応させて、描画作業における液滴の吐出方法を詳細に説明する。図6(a)及び図6(b)は、ステップS1の給材工程及びステップS2の反り測定工程に対応する図である。図6(a)に示すように、ステップS1において載置面7上に基板8を載置する。そして、基板チャック機構を作動させることにより、基板8を載置面7上に固定させる。
【0066】
次にステップS2において被塗布面8cの凹凸形状を測定する。まず、基板8の第1方向8aをステージ4の移動方向である副走査方向4aと合わせる。続いて、反り測定制御部77は反り測定装置18を駆動して、光照射部18aから被塗布面8cと平行な方向にレーザー光36を照射させる。そして、受光部18bはレーザー光36を受光して基板8により遮光される場所を検出する。このように、反り測定制御部77は反り測定装置18に基板8の凹凸形状を検出させながら、副走査駆動装置56を駆動することによりステージ4を移動させる。そして、反り測定制御部77は被塗布面8cにおいて第1方向8aの総ての範囲で凹凸を測定する。
【0067】
次に、図6(b)に示すように、反り測定制御部77は回転駆動装置57を駆動させることにより回転テーブル6を回転させる。そして、基板8の第2方向8bをステージ4の移動方向である副走査方向4aと合わせる。続いて、反り測定制御部77は反り測定装置18に基板8の凹凸形状を検出させながら、副走査駆動装置56を駆動することによりステージ4を移動させる。そして、反り測定制御部77は被塗布面8cにおいて第2方向8bの総ての範囲で凹凸を測定する。反り測定制御部77は測定した反り測定データ67をメモリー54に出力して記憶させる。
【0068】
図6(c)及び図6(d)はステップS3の塗布判断工程に対応する図である。図6(c)はヘッド間隔上限値と着弾位置精度の関係を示している。ヘッド間隔上限値は被塗布面8cとノズルプレート23との間隔の上限の設定値を示している。縦軸はヘッド間隔上限値を示し、上側が下側より長くなっている。横軸は液滴31の着弾位置精度を示し、右側が左側より着弾位置精度が高くなっている。着弾位置精度が高いとき、目標とする着弾位置に対する変動が小さくなる。そして、ヘッド間隔精度相関線83は着弾位置精度とヘッド間隔上限値との相関関係を示している。
【0069】
ヘッド間隔精度相関線83が示すように、ヘッド間隔上限値が長くなる程、着弾位置精度が低くなる。ヘッド間隔上限値が長くなるとき、液滴31が飛行する距離が長くなる。そして、液滴31が曲がって飛行するときには着弾位置がノズル24と対向する場所から離れる。その結果、ヘッド間隔上限値が長くなると着弾位置が目標とする場所から離れる確率が高くなる為、着弾位置精度が低くなる。
【0070】
着弾位置精度が予め設定されているときには、ヘッド間隔精度相関線83を用いてヘッド間隔上限値が算出される。被塗布面8cとノズルプレート23との間隔の下限の設定値をヘッド間隔下限値とする。ヘッド間隔下限値は、被塗布面8cに着弾した液滴31がノズルプレート23に接触しない間隔に設定される。このように、ヘッド間隔上限値とヘッド間隔下限値とが設定される。
【0071】
図6(d)はステップS2にて測定した基板8の凹凸形状の例を示す。縦軸は反り含み厚み8dを示し、上側が下側より厚くなっている。基板8に反りやうねりが大きいとき、反り含み厚み8dが厚くなる。横軸は基板8の第1方向8aにおける位置を示し、右側が第1方向8aとなっている。第1形状線84は反りやうねりが大きい基板8における測定結果の例を示し、第1凹凸差84aは第1形状線84における凹凸の差を示している。第2形状線85は反りやうねりが小さい基板8における測定結果の例を示し、第2凹凸差85aは第2形状線85における凹凸の差を示している。判定範囲86はヘッド間隔上限値とヘッド間隔下限値との間の範囲を示す。
【0072】
ステップS3において、まず、塗布判断部78は基板8の第1方向8aにおける反り含み厚み8dの測定値を用いて、基板8に機能液28を塗布するか否かの判断を行う。反り含み厚み8dの凹凸差が判定範囲86に入っているときには、塗布判断部78は基板8に機能液28を塗布する判断をし、ステップS4に移行する。反り含み厚み8dの凹凸差が判定範囲86に入っていないときには、塗布判断部78は第1方向8aでは基板8に機能液28を塗布しない判断をする。第1形状線84の第1凹凸差84aは判定範囲86に入らないので、塗布判断部78は第1形状線84の基板8に機能液28を塗布しない判断をする。第2形状線85の第2凹凸差85aは判定範囲86に入るので、塗布判断部78は第2形状線85の基板8に機能液28を塗布する判断をする。
【0073】
塗布判断部78が第1方向8aでは基板8に機能液28を塗布しない判断をしたとき、次に、塗布判断部78は基板8の第2方向8bにおける反り含み厚み8dの測定値を用いて、基板8に機能液28を塗布するか否かの判断を行う。この方法は、基板8の第1方向8aにおける判断方法と同様の方法であり、説明を省略する。そして、塗布判断部78が第1方向8a及び第2方向8bにおいて基板8に機能液28を塗布しない判断をしたときステップS10に移行する。
【0074】
図7(a)はステップS4の配置方向判断工程に対応する図である。図7(a)に示すように、ステップS4において、載置面7に基板8が載置されている。そして、回転判断部79は第1方向8aにおける反り含み厚み8dの変化の差と第2方向8bにおける反り含み厚み8dの変化の差とを比較する。そして、回転判断部79は反り含み厚み8dの変化の差が小さい方を主走査方向12aに合わせる判断をする。図に示す基板8の例では、第2方向8bにおける反り含み厚み8dの変化の差が第1方向8aにおける反り含み厚み8dの変化の差より小さいので、第2方向8bを主走査方向12aに設定する。図中基板8は中央が凸状に反っている例を示したが、中央が凹状に反っている場合にも同様の方法にて基板8を配置する方向を判断する。
【0075】
図7(b)はステップS5の配置方向変更工程に対応する図である。図7(b)に示すように、ステップS5において、回転制御部80は回転駆動装置57を駆動することにより、回転テーブル6を回転させる。そして、基板8の第2方向8bを主走査方向12aに合わせる。回転制御部80が回転テーブル6を回転させる前に、第2方向8bが主走査方向12aに合っている場合には回転テーブル6を回転しなくとも良い。
【0076】
図7(c)及び図8(a)はステップS6のヘッド準備工程に対応する図である。図7(c)に示すように、ステップS6において、基板8に機能液28を塗布する領域を塗布領域8eとするとき、吐出演算部72はノズル24を塗布領域8eと対向する場所の外に移動させる。そして、液滴31を最初に着弾させる予定の場所の主走査方向12aの場所と対向する場所へノズル24を移動させる。次に、図8(a)に示すようにヘッド間隔制御部81はヘッド昇降装置20を駆動することにより、ヘッドユニット14を昇降させる。そして、ワークヘッド間距離19aが適正な距離となる場所にヘッドユニット14を移動させる。この適正な距離は、キャリッジ12が主走査方向12aに移動するとき液滴吐出ヘッド19が基板8と接触しない距離を示す。
【0077】
図8(b)はステップS7の主走査工程に対応する図である。図8(b)に示すように、ステップS7において、主走査制御部73は主走査駆動装置55を駆動することにより液滴吐出ヘッド19を主走査方向12aに移動させる。そして、吐出制御部75はヘッド駆動回路61を駆動することにより、ノズル24から液滴31を吐出させる。ビットマップ演算部76が算出した吐出位置データ65に従って、吐出制御部75が液滴吐出ヘッド19に液滴31を吐出させることにより所望のパターンに描画することができる。液滴31の吐出と並行して、硬化ユニット15が吹出口25から気流87を着弾した液滴31に吹きつける。さらに、硬化ユニット15は照射窓26から紫外光88を着弾した液滴31に照射する。
【0078】
この工程ではヘッド昇降装置20はヘッドユニット14を昇降させずに保持した状態にて走査する。ステップS6においてワークヘッド間距離19aが調整されているので、走査中に液滴吐出ヘッド19は基板8と接触しない。
【0079】
着弾した液滴31は気流87が吹き付けられることにより、液滴31に含まれる溶媒が揮発するので乾燥して硬化し易くなる。さらに、着弾した液滴31は紫外光88が照射されることにより、液滴31に含まれる樹脂が硬化する。従って、着弾した液滴31は濡れ広がることなく定着される。
【0080】
ステップS8の塗布終了判断工程において機能液28を塗布する予定の場所と既に塗布した場所とを比較する。そして、塗布していない場所があるとき、ステップS9に移行する。
【0081】
図8(c)はステップS9の副走査工程に対応する図である。図8(c)に示すように、ステップS9において、ヘッド間隔制御部81はヘッド昇降装置20を駆動することにより、ヘッドユニット14を昇降させる。そして、ステップS6と同様にワークヘッド間距離19aが適正な距離となる場所にヘッドユニット14を移動させる。次に、副走査制御部74は副走査駆動装置56を駆動することにより、液滴31を着弾させる予定の場所の主走査方向12aの場所と対向する場所へノズル24を移動させる。
【0082】
図8(d)はステップS7の主走査工程に対応する図である。図8(d)に示すように、ステップS7において、吐出演算部72は、液滴吐出ヘッド19を主走査方向12aに移動させながら、ノズル24から液滴31を吐出させる。そして、液滴31の吐出と並行して、着弾した液滴31に気流87の吹きつけと紫外光88の照射を行う。
【0083】
ステップS8の塗布終了判断工程にて予定した総ての場所を塗布したとき、ステップS10の除材工程に移行する。そして、ステップS10において基板8を載置面7から移動して、描画作業を終了する。
【0084】
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、ステップS4の配置方向判断工程及びステップS5の配置方向変更工程にて被塗布面8cの凹凸の差が小さい方向を主走査方向12aにしている。そして、ステップS6のヘッド準備工程及びステップS9の副走査工程にてヘッド昇降装置20を駆動してワークヘッド間距離19aを調整している。ステップS7の主走査工程においてヘッド昇降装置20を駆動せずに液滴31を基板8に吐出している為、ノズルを主走査方向12aに移動する速度を早くすることができる。その結果、生産性良くワークに液滴を吐出することができる。
【0085】
(2)本実施形態によれば、基板8にレーザー光36を照射して影となる場所を検出することにより基板8の凹凸形状を測定している。従って、簡便な方法にて基板8の凹凸形状を測定することができる。
【0086】
(3)本実施形態によれば、ステップS3の塗布判断工程にて、基板8の反り含み厚み8dの差と判定範囲86とを比較している。反り含み厚み8dの差が判定範囲86より大きいときには、基板8への吐出を行わない判断をすることにより、着弾位置精度を維持することができる。
【0087】
(4)本実施形態によれば、被塗布面8cの凹凸の差の少ない方向を主走査方向12aにしている。そして、ノズル24から吐出された液滴31が被塗布面8cに着弾するまでの距離を短く設定している。従って、液滴31がノズル24から曲がって飛行する場合にも、着弾位置精度を良くすることができる。
【0088】
(第2の実施形態)
次に、吐出方法の一実施形態について図9の吐出方法を説明するための模式図を用いて説明する。本実施形態が第1の実施形態と異なるところは、ノズルプレート23と被塗布面8cとの距離を制御しながら液滴31を吐出する点にある。尚、第1の実施形態と同じ点については説明を省略する。
【0089】
すなわち、本実施形態では、図9に示したように液滴吐出装置91はヘッドユニット92を備えている。そして、ヘッドユニット92は被塗布面8cと対向する場所に近接センサー93を備えている。近接センサー93は被塗布面8cとの距離であるワークセンサー間距離93aを測定できれば良く、センサーの形態には限定されない。近接センサー93には静電容量式、光学式、磁場式等の各種センサーを用いることができる。静電容量式は、センサーと被測定物との間に静電気を蓄電し、蓄電した静電気の容量から距離を測定する。磁場式は、センサーと被測定物との間に磁場を形成し、磁気が漏洩する量から距離を測定する。光学式はセンサーから被測定物に光を照射して反射光を受光し、三角測量を用いて距離を測定する。本実施形態では、例えば、光学式のセンサーを採用している。
【0090】
ステップS7の主走査工程において、吐出演算部72は液滴吐出ヘッド19を主走査方向12aに移動させながらノズル24から液滴31を吐出させる。そして、液滴31の吐出と並行して、着弾した液滴31に気流87の吹きつけと紫外光88の照射とを行う。このとき、ヘッド間隔制御部81は近接センサー93が出力するワークセンサー間距離93aの検出値を入力する。そして、ヘッド間隔制御部81はヘッド昇降装置20を駆動することにより、ワークヘッド間距離19aを所定の距離となるように維持する。従って、ワークヘッド間距離19aが所定の距離に維持された状態でノズル24から液滴31を吐出させる。
【0091】
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、被塗布面8cの凹凸の差の少ない方向を主走査方向12aにしている。そして、ノズル24と基板8とを相対移動しながら液滴31を被塗布面8cに吐出する。ステップS7の主走査工程においてノズル24を主走査方向12aに移動するとき、被塗布面8cの凹凸の差が大きいときには、凹凸の差が小さいときに比べてノズル24と被塗布面8cとの間隔を制御する距離が長くなる。そして、制御する距離が長い方が短い場合に比べて制御する時間が長くなる。従って、被塗布面8cの凹凸の差が大きいときには、凹凸の差が小さいときに比べてノズル24を主走査方向12aに移動する速度を遅くする必要がある。
【0092】
本実施形態では、被塗布面8cの凹凸の差が小さい方向を主走査方向12aにしている。従って、ステップS7の主走査工程においてノズル24を主走査方向12aに移動する速度を早くすることができる。その結果、生産性良く基板8に液滴31を吐出することができる。
【0093】
(2)本実施形態によれば、ヘッド間隔制御部81がワークヘッド間距離19aを所定の間隔に制御しながら吐出演算部72がノズル24から液滴31を吐出させている。従って、位置精度良く液滴31を着弾させることができる。
【0094】
(第3の実施形態)
次に、液滴吐出装置の一実施形態について図10(a)の液滴吐出装置を示す模式平面図及び図10(b)の液滴吐出装置を示す模式側断面図を用いて説明する。図10(b)は図10(a)におけるB−B’から見た図を示している。本実施形態が第1の実施形態と異なるところは、基板8の反り含み厚み8dを測定するのに近接センサーを用いる点にある。尚、第1の実施形態と同じ点については説明を省略する。
【0095】
すなわち、本実施形態では、図10に示したように液滴吐出装置96は支持台9aと支持台9bとの間に架橋部97を備えている。架橋部97には主走査方向12aに延在する案内レール98と案内レール98に沿って移動する移動テーブル99とが配置されている。移動テーブル99はキャリッジ12と同様な直動機構と位置検出装置と備えている。そして、移動テーブル99は主走査方向12aに走査し、位置情報をCPU53に出力することが可能になっている。移動テーブル99には近接センサー100が配置され、近接センサー100はワークセンサー間距離100aを測定することができる。近接センサー100は第2の実施形態における近接センサー93と同様なセンサーであり、説明を省略する。そして、反り測定制御部77はステージ4と移動テーブル99とを移動させながら、ワークセンサー間距離100aを測定することにより被塗布面8cの凹凸形状を測定することが可能になっている。
【0096】
ステップS2の反り測定工程では、基板8に対して近接センサー100を主走査方向12aと副走査方向4aとに走査して、被塗布面8cの凹凸形状を測定する。そして、被塗布面8cの各場所における凹凸形状を検出することが可能になっている。
【0097】
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、基板8の各場所における凹凸形状を検出することができる。従って、ステップS3の塗布判断工程及びステップS4の配置方向判断工程では精度良く判断することができる。
【0098】
尚、本実施形態は上述した実施形態に限定されるものではなく、種々の変更や改良を加えることも可能である。変形例を以下に述べる。
(変形例1)
前記第1〜第3の実施形態では、ステージ4が基板8を副走査方向4aに移動し、キャリッジ12が液滴吐出ヘッド19を主走査方向12aに移動した。基板8と液滴吐出ヘッド19とを相対移動させる手段はこれに限定されない。ステージ4が基板8を主走査方向に移動し、キャリッジ12が液滴吐出ヘッド19を副走査方向に移動しても良い。他にも、液滴吐出装置にXYステージを配置して、XYステージが基板8を主走査方向及び副走査方向に移動させても良い。また、基板8を固定してXYステージが液滴吐出ヘッド19を主走査方向及び副走査方向に移動させても良い。
【0099】
(変形例2)
前記第1の実施形態では、ステップS9の副走査工程にて毎回ワークヘッド間距離19aを調整した。ワークヘッド間距離19aの調整を行う頻度は毎回に限定されない。反り含み厚み8dの副走査方向4aにおける変化と対応して設定しても良い。従って、副走査工程におけるワークヘッド間距離19aの調整の割合は2回以上に1回でも良い。調整頻度が少ない方が生産性良く基板8に描画することができる。
【0100】
(変形例3)
前記第1の実施形態では、ステップS9の副走査工程にて毎回ワークヘッド間距離19aを調整した。そして、ステップS7の主走査工程では、ワークヘッド間距離19aを調整しなかったが、ステップS7の途中においてワークヘッド間距離19aを調整しても良い。特定の場所において凹凸の差が大きい場合には、ワークヘッド間距離19aを調整することにより、液滴31の着弾精度を上げることができる。
【0101】
(変形例4)
前記第1〜第3の実施形態では基板8に描画したが、基板8以外のワークに描画しても良い。例えば、基板に半導体のパッケージが実装されている実装基板のパッケージ上に描画しても良い。このときパッケージ上の面を被塗布面に設定する。この場合にも、前記実施形態の方法にて描画することにより生産性良く描画することができる。
【0102】
(変形例5)
前記第1の実施形態〜前記第3の実施形態では、キャビティ27を加圧する加圧手段に、圧電素子30を用いたが、他の方法でも良い。例えば、コイルと磁石とを用いて振動板29を変形させて、加圧しても良い。他に、キャビティ27内にヒーター配線を配置して、ヒーター配線を加熱することにより、機能液28を気化させたり、機能液28に含む気体を膨張させたりして加圧しても良い。他にも、静電気の引力及び斥力を用いて振動板29を変形させて、加圧しても良い。液滴吐出ヘッド19には各種の駆動方式を採用することができる。
【0103】
(変形例6)
前記第1の実施形態〜前記第3の実施形態では、基板8の反りやうねりによる凹凸のある基板8に描画をした。反りやうねり以外にも、本来、凹凸のある基板8に対して、前記の方法にて描画しても良い。この場合にも、前記の実施形態の方法にて描画することにより生産性良く描画することができる。
【0104】
(変形例7)
前記第1の実施形態〜前記第3の実施形態では、ステップS7の主走査工程において液滴31の吐出と硬化とを並行して実施したが、吐出と硬化とを別の工程にて行っても良い。別の工程にすることにより製造し易い場合にはその方法を採用しても良い。
【0105】
(変形例8)
前記第1の実施形態〜前記第3の実施形態では、機能液28は光重合開始剤を含み、光硬化性の液状体とした。機能液28は光重合開始剤を含まずに他の方法にて硬化させても良い。加熱により重合させても良く。乾燥により硬化または固化させても良い。
【符号の説明】
【0106】
4…移動部としてのステージ、4a…副走査方向、6…回転部としての回転テーブル、8…ワークとしての基板、8c…被塗布面、12…移動部としてのキャリッジ、12a…主走査方向、18…凹凸測定部としての反り測定装置、19…吐出部としての液滴吐出ヘッド、20…間隔制御部としてのヘッド昇降装置、24…ノズル、31…液滴、31a…吐出方向、36…光としてのレーザー光、77…凹凸測定部としての反り測定制御部、79…回転判断部。

【特許請求の範囲】
【請求項1】
ノズルとワークとを主走査方向に相対移動しながら、前記ノズルから液滴を前記ワークの被塗布面に吐出する吐出方法であって、
複数の方向における前記被塗布面の凹凸形状を測定する測定工程と、
前記凹凸形状の情報を用いて前記主走査方向に対する前記ワークの向きを決定する配置方向判断工程と、
決定した前記ワークの向きに前記ワークを移動する配置方向変更工程と、
前記ノズルと前記ワークとを相対移動しながら前記液滴を前記ワークの前記被塗布面に吐出する吐出工程と、を有し、
前記配置方向判断工程では、前記被塗布面の凹凸の差の少ない方向を前記主走査方向に決定することを特徴とする吐出方法。
【請求項2】
請求項1に記載の吐出方法であって、
前記吐出工程は前記ノズルと前記ワークとを前記主走査方向に相対移動しながら、前記ノズルから前記液滴を前記ワークの前記被塗布面に吐出する主走査工程と、
前記主走査方向と交差する副走査方向へ前記ノズルと前記ワークとを相対移動させる副走査工程と、を有し、
前記副走査工程において、前記ノズルと前記ワークとの間隔とを調整し、
前記主走査工程では前記ノズルと前記ワークとの間隔とを制御せずに走査することを特徴とする吐出方法。
【請求項3】
請求項2に記載の吐出方法であって、
前記測定工程では、前記被塗布面と平行な方向から光を前記ワークに照射し、前記被塗布面に遮光される場所を検出しながら、前記ワークと前記光とを相対移動することにより前記被塗布面の凹凸形状を測定することを特徴とする吐出方法。
【請求項4】
請求項3に記載の吐出方法であって、
前記測定工程にて測定した前記被塗布面の凹凸の差と判定値とを比較して、前記ワークへの吐出を行うか否かを判断する塗布判断工程をさらに有することを特徴とする吐出方法。
【請求項5】
ノズルからワークの被塗布面に液滴を吐出する吐出部と、
前記ノズルと前記ワークとの間隔を所定の間隔にする間隔制御部と、
前記ノズルと前記ワークとを相対移動させる移動部と、
複数の方向における前記被塗布面の凹凸形状を測定する凹凸測定部と、
前記凹凸形状の情報を用いて前記ワークを回転させるか否かを判断する回転判断部と、
前記液滴の吐出方向を中心に前記ワークを回転させる回転部と、を有し、
前記液滴を吐出するときに前記ノズルと前記ワークとを相対移動させる方向を主走査方向とするとき、
前記回転判断部及び前記回転部は前記被塗布面の凹凸の差の少ない方向を前記主走査方向にすることを特徴とする液滴吐出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2011−62590(P2011−62590A)
【公開日】平成23年3月31日(2011.3.31)
【国際特許分類】
【出願番号】特願2009−213004(P2009−213004)
【出願日】平成21年9月15日(2009.9.15)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】