説明

埋設物探知センサ

【課題】 磁気センサと電波センサとを併用して検出感度を向上させる複合型の埋設物探知センサを提供する。
【解決手段】 埋設物探知センサ10は、電波センサ14を構成する複数のアンテナ要素を円周上に配置し、前記電波センサ14の中央部に磁気センサ12の内側コイル16を配設するとともに前記電波センサ14の周囲に前記磁気センサ12の外側コイル18を配設した埋設物探知センサ10であって、前記電波センサ14は、前記各アンテナ要素を分離するスリット20を有するとともに、隣り合う前記アンテナ要素間の前記スリット20を金属箔36で接続した構成である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は埋設物探知センサに係り、特に複合センサにより地上から埋設物の探知を行う埋設物探知センサに関する。
【背景技術】
【0002】
埋設物を地上から探知するには、磁気センサや電波センサを用いた探知装置が利用されている。磁気センサを用いた探知装置は、磁気を発受信するコイルを有し、比較的浅い部分に埋設された物の探査に適している。一方、電波センサを用いた探知装置は、電波を発受信するアンテナを有し、磁気センサを用いた場合と比較して深度の深い部分に埋設された物の探査に適している。このことから、磁気センサと電波センサとの両方の特徴が得られる、磁気センサと電波センサとのいずれも用いた複合型探知装置が提案されている。
【0003】
この複合型探知装置として、特許文献1に係る発明が挙げられる。特許文献1に開示された複合型探知装置は、磁気センサとなるリング形状の探知コイルと、この探知コイルの中心側に電波センサとなるアンテナとを備えた構成である。そして探知コイルは、電流が供給されると磁界を発生させ、地中に埋設されている金属物に誘導起電力を発生させる。探知コイルは、この誘導起電力により発生される磁界を感知して、埋設物の有無を探査する。また電波センサは、電流が供給されるとアンテナから電波を発生させる。埋設物はこの電波を反射するので、アンテナは反射電波を感知して、埋設物の有無を探査する。このように両センサを複合的に用いることにより埋設物の探知を行っている。
【特許文献1】特開2001−242263号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
ところで磁気センサと電波センサとを用いた複合型探知センサにおいて、電波センサの中央に磁気センサの送信コイルを設けるとともに、電波センサの周囲に受信コイルが設けられた構成の場合、送信コイルに電流を供給すると、送信コイルで発生した磁界によって電波センサに渦電流が発生する。この渦電流は、電波センサ全体にループを形成するので電波センサから磁束が発生するが、この磁束は磁気センサの性能を落す方向に働く。すなわち電波センサで発生した磁束は磁気センサの受信コイルで受信されるので、受信コイルはオフセット値を持つことになる。受信コイルは一定のダイナミックレンジを有しているので、このオフセット値を持つ状態で埋設物による磁界の変化分を検知すると、信号対雑音比が落ちることになる。この磁気センサおよび電波センサを用いた複合型探知装置の場合における磁気センサの受信レベルは、磁気センサのみを用いた探知装置の受信レベルを1とすると、1/10以下となる。
【0005】
本発明は、磁気センサと電波センサとを併用して検出感度を向上させる複合型の埋設物探知センサを提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するために、本発明に係る埋設物探知センサは、電波センサを構成する複数のアンテナ要素を円周上に配置し、前記電波センサの中央部を中心位置として磁気センサを配設した埋設物探知センサであって、前記電波センサは、前記各アンテナ要素を分離するスリットを有するとともに、隣り合う前記アンテナ要素間の前記スリットを金属箔で接続した、ことを特徴としている。この場合、電波センサと磁気センサとは同一平面上に配置されている。ここで電波センサと磁気センサとは、完全な同一平面上に配置されるばかりでなく、探知結果の処理上、同一平面上とみなせる配置であってもよい。
【0007】
また前記磁気センサは、前記電波センサの中央部に配設されたコイルと、前記電波センサの周囲に配設されたコイルとを備えたことを特徴としている。
【発明の効果】
【0008】
上記構成によれば、スリットにより電波センサを複数のアンテナ要素に分割することができるので、磁気センサから発生する磁界によって電波センサに渦電流が発生したとしても、各アンテナ要素において渦電流の小さなループが発生し、電波センサ全体に渦電流の大きなループが発生することはない。したがって小さな渦電流のループから発生する磁束は小さいので、この磁束によって磁気センサから発生する磁束の打ち消される量が小さくなり、磁気センサの探知性能を向上することができる。
【0009】
また金属箔は、アンテナ要素に発生する渦電流を導通させることはないが、隣り合うアンテナ要素を電気的に接続させることのできるものである。したがって各アンテナ要素を同じ電位に(接地)することができ、スリットを設けても電波センサの探知性能を維持することができる。
【0010】
さらに電波センサと、磁気センサの送信・受信コイルを同心配置した構成の埋設物探知センサであっても、電波センサのアンテナ要素を個々に分割するスリットと、隣り合うアンテナ要素を接続する金属箔とを設ければ、上述した効果を得ることができる。
【発明を実施するための最良の形態】
【0011】
以下に、本発明に係る埋設物探知センサの最良の実施形態について説明する。図1は埋設物探知センサにおけるセンサ部分の平面図である。また図2は埋設物探知センサにおけるセンサ部分の分解斜視図である。埋設物探知センサ10は、磁気センサ12と電波センサ14とから構成されている。
【0012】
前記磁気センサ12は、内側コイル16と外側コイル18との2つのコイルから構成され、これらが送信コイルと受信コイルになっている。2つのコイル16,18は、導電線(不図示)が周方向に巻き重ねされた構成であり、これらのコイルは同一平面上に形成されている。なお完全に同一平面上になくとも、磁気センサ12を用いた探知上、同一とみなせる位置であればよい。そして外側コイル18がリング形状となり、内側コイル16がリング形状の中心部に配置されている。このような磁気センサ12では、外側コイル18が受信コイルで内側コイル16が送信コイルであってもよく、外側コイル18が送信コイルで内側コイル16が受信コイルであってもよい。
【0013】
また外側コイル18の内側に、電波センサ14が配設されている。この電波センサ14は、磁気センサ12の内側コイル16や外側コイル18と同一平面上に形成されている。なお完全に同一平面上になくとも、磁気センサ12を用いた探知上、同一とみなせる位置であればよい。この電波センサ14は内側コイル16の周囲に設けられた3素子型レーダセンサであり、電波センサ14の中央部から側縁方向に向けて矩形波状のスリット20が3つ形成されている。電波センサ14は、このスリット20により、3つのレーダアンテナ部22(アンテナ要素)に分割されている。このレーダアンテナ部22は、レーダアンテナ部22の外側におけるある点を基準とした円周上においてずらして配置されており、本実施形態ではある点を基準として回転方向に120度ずつずらした状態で配置されている。
【0014】
このレーダアンテナ部22は複数層によって構成され、アンテナ基盤24が最下層に配置されている。このアンテナ基盤24にはその中央に三角状の金属板をエレメントとし、その頂点を対向させることで構成されたレーダアンテナ26が設けられている。このレーダアンテナ26に給電端子28が設けられ、この給電端子28を介して電波センサ14に設けられた給電モジュール(不図示)からレーダアンテナ26へ電波エネルギが給電される。アンテナ基盤24の上方には、スペーサ30を介して電波吸収材32が被せられている。この電波吸収材32は、レーダアンテナ26から上方へ放射された電波を吸収するものである。そして電波吸収材32の上方には、上蓋34が被せられている。
【0015】
またレーダアンテナ部22の間に形成されたスリット20は、金属箔36によって覆われている。この金属箔36は、磁気センサ12で発生される磁束によって各レーダアンテナ部22に生じる渦電流が導通しない厚さであるとともに、各レーダアンテナ部22同士の接地が可能な厚さにすればよい。なお磁気センサ12は、例えば1kHz程度の低周波帯域を使用し、電波センサ14は、例えば2GHz程度の高周波帯域を使用しているので、各センサが使用する各周波数帯域や、金属箔36の材料によって適宜金属箔36の厚さ設定すればよい。これにより渦電流は金属箔36を導通しなくても、各レーダアンテナ部22同士を導通接地させることが可能となる。
【0016】
図3は3素子型レーダアンテナシステムの説明図である。このシステム40には、偏波切換用パルスを発生し全体の制御を行うレーダコントローラ42と、電波を送信する送波回路44と、地中から反射波を復調する受波回路46と、アンテナ26a,26b,26cの中から1つを送波回路44に、他の一つを受波回路46に接続する偏波切換回路48と、レーダコントローラ42と受波回路46の双方から供給された信号をもとに散乱行列要素を求める演算を行う信号処理器50とを備えている。
【0017】
次に、埋設物探知センサ10の作用について説明する。磁気センサ12は、例えば内側コイル16を送信コイルとし、外側コイル18を受信コイルとすると、電源から内側コイル16に電流が供給されると、内側コイル16の断面を回るように磁束が発生する。このとき磁束は、レーダアンテナ部22によって一部分断されるので、各レーダアンテナ部22には渦電流が発生する。この渦電流は、各レーダアンテナ部22において発生するが、各レーダアンテナ部22間にスリット20が設けられているので複数のレーダアンテナ部22に跨って発生することはない。そして内側コイル16から発生した磁界によって、地中に埋設されている金属物に誘導起電力が発生する。この誘導起電力によって発生される磁界を外側コイル18が感知して、埋設物の探知を行っている。
【0018】
また電波センサ14は、前記給電モジュールからレーダアンテナ26へ電流が供給されると、このレーダアンテナ26は電波を発生させる。この電波は下方に向けて放射され、埋設物で反射する。そして電波センサ14は、この反射波を感知して、埋設物の探知を行っている。具体的には、まずレーダコントローラ42は3つの偏波切換パルスを順次発生させる。このパルスは、偏波切換回路48に供給され、偏波切換回路48はアンテナ26(26a,26b,26c)のうち2つのアンテナを順次選択し、一つを受信用、他の一つを送信用としている。切換パルスが発生する度に、送信アンテナと受信アンテナが切り換えられる。このように送信の偏波が120度おきに回転し、受信の偏波もこれと120度の位相差をもって120度おきに回転するので、あらゆる方向に電波が送信され、またあらゆる方向から反射波が受信されることになる。偏波方向が固定されていると埋設物の埋設方向によっては検出が難しい場合があるが、このシステムは偏波方向が刻々と変わるのでどのような埋設方向の埋設物でも検出可能となる。
【0019】
受波回路46で復調された反射波は信号処理器50に供給され、信号処理器50では以下のようにして散乱行列を求めて演算を行う。地表面に直交するx軸、y軸を想定すると、レーダの送信および受信信号は数式1の散乱行列の関係にある。
【数1】

ここでS11はx方向偏波の電波を出しx方向偏波の反射波を検出した成分、S12はx方向偏波の電波を出しy方向偏波の反射波を検出した成分、S21はy方向偏波の電波を出しx方向偏波の反射波を検出した成分、S22はy方向偏波の電波を出しy方向偏波の反射波を検出した成分である。このようにして求められた散乱行列の各成分のうち、送信と受信信号の偏波方向が同じであるS11(t)、S22(t)は地中において埋設物が特定方向成分を持たないもの、すなわち地層または空洞のように全方向成分を有するものの測定に適している。また送信と受信信号の偏波方向が直交するS12(t)、S21(t)は地中における埋設物が特定の方向成分を有するもの、すなわち埋設管のようなものの測定に適している。
【0020】
そしてアンテナをコイルの中心側に配置することによって、アンテナにとってコイルは全方向成分を有するものとなる。したがって上記の散乱行列を算出することにより、磁気センサ12のコイルの影響を排除して埋設物の探知が可能となるのである。
【0021】
このような埋設物探知センサ10を用いてブラインドテストを行った場合、埋設物の探知率は100%であった。ここでブラインドテストは、90cm四方の領域に埋設物を0cmと10cmの深さに埋めてテストを行ったものである。なお0cmの位置であっても土を被せてテストをしている。
【0022】
このように埋設物探知センサ10は、電波センサ14にスリット20を設けて複数のレーダアンテナ部22に分割したので、磁気センサ12によって発生される磁界に起因して渦電流がレーダアンテナ部22に発生しても、この渦電流はそれぞれのレーダアンテナ部22毎に発生し、複数のレーダアンテナ部22に跨って発生することはない。したがって本実施形態に係る電波センサ14は、従来技術に係る電波センサのように渦電流ループが電波センサ全体を囲むループを形成しないので、この渦電流から発生する磁界を弱めることができ、この磁界によって送信コイルから発生される磁界の打ち消し作用を少なくすることができる。なお本実施形態に係る磁気センサ12は、電波センサ14にスリット20を設けたことにより、受信レベルを1/10から1/2に向上させることができ、従来技術に係る埋設物探知センサに比べて受信レベルを向上させることができた。なお磁気センサ12のみを用いた探知装置の受信レベルを1としている。また磁気センサ12の受信コイルで受ける磁界のレベルが大きいと、それだけ埋設物の探知性能が向上するので、本実施形態に係る埋設物探知センサ10は、従来技術に係る埋設物探知センサに比べて探知性能を向上させることができる。
【0023】
また電波センサ14に形成されたスリット20間は金属箔36で接続されているので、電波センサ14が使用する周波数帯域では各レーダアンテナ部22を導通させることができる。したがって電波センサ14は、レーダアンテナ部22同士を電気的に接続させて、各レーダアンテナ部22の電位を同じにすることができる。これにより電波センサ14の性能を維持することができる。
【0024】
また磁気センサ12と電波センサ14とは同一平面上に配設されているので、一方のセンサが他方のセンサに干渉して探知性能を低下させることはない。これは、例えば電波センサ14が磁気センサ12の外側コイル18に比べて上方にある場合、電波センサ14から放射された電波が外側コイル18に反射して、この反射波が電波センサ14で感知されることになり、電波センサ14の探知性能を低下させてしまう。また磁気センサ12が電波センサ14よりも上方にある場合、磁気センサ12から発生される磁束が電波センサ14の金属部分に誘導起電力を発生させ、この誘導起電力によって発生する磁界を受信コイルが感知することになり、磁気センサ12の探知性能を低下させてしまう。しかしながら本実施形態に係る埋設物探知センサ10は、磁気センサ12と電波センサ14とが同一平面上に配設されているので、上述したようなセンサの探知性能の低下が生じることはない。
【0025】
また磁気センサ12の外側コイル18の中心位置と内側コイル16の中心位置とを一致または一致とみなせるように配置しているとともに、これらの中心位置に電波センサ14の中心位置を一致または一致とみなせるように配置しているので、プログラムにより磁気センサ12と電波センサ14との位置ズレを補正する処理がいらなくなる。これは電波センサ14の中心位置と、磁気センサ12の中心位置とが一致していない場合に、電波センサ14と磁気センサ12とで同じ埋設物を検知すると、電波センサ14で検知した埋設物の位置と、磁気センサ12で検知した埋設物の位置とがズレて示されるので、このズレを補正するためには、プログラムで補正する必要がある。本実施形態に係る埋設物探知センサ10は、電波センサ14と磁気センサ12との中心位置を一致させているので、プログラムで補正する必要がない。
また本実施形態に係る埋設物探知センサ10は、作業員が支持して移動しながら埋設物の探知を行うのに好適となっている。
【0026】
なお上述した実施形態ではスリット20を矩形波形状として説明したが、アンテナを複数のアンテナ要素に分割するものであれば如何なる形状であってもよく、例えば三角波形状や直線形状等の形状であってもよい。そしてスリット20の本数は任意の本数であればよく、上述した実施形態で説明したように各分割箇所に1本のスリット20を設けるばかりでなく、複数本のスリット20を設けてもよい。
【0027】
また上述した実施形態では、電波センサ14は3素子型レーダセンサとしているが、レーダアンテナ部22の数は3つに限定されることはない。すなわち、例えばレーダアンテナ部22の外側におけるある点を基準として回転方向に180度ずつずらせば2素子型レーダセンサとなり、90度ずつずらせば4素子型レーダセンサとなる。そしてレーダアンテナ部22の数を3つ以外とした場合でも、レーダアンテナ部間にスリットを設ければよい。
【0028】
また隣り合うレーダアンテナ部22同士は、スリット20を金属箔36で覆って電気的に接続されるばかりでなく、金属箔36により電気的に接続されればよい。例えば隣り合うレーダアンテナ部22同士は、スリットの側面同士を金属箔36で接続されればよい。また隣り合うレーダアンテナ部22間の電気的接続に金属箔36を用いるばかりでなく、導電性の薄膜を用いることもできる。
【0029】
また磁気センサ12の内側コイル16と外側コイル18の形状は、リング形状に限定されることはなく、任意の形状にすることができる。
【図面の簡単な説明】
【0030】
【図1】埋設物探知センサにおけるセンサ部分の平面図である。
【図2】埋設物探知センサにおけるセンサ部分の分解斜視図である。
【図3】3素子型レーダアンテナシステムの説明図である。
【符号の説明】
【0031】
10………埋設物探知センサ、12………磁気センサ、14………電波センサ、16………内側コイル、18………外側コイル、20………スリット、22………レーダアンテナ部、36………金属箔。

【特許請求の範囲】
【請求項1】
電波センサを構成する複数のアンテナ要素を円周上に配置し、前記電波センサの中央部を中心位置として磁気センサを配設した埋設物探知センサであって、
前記電波センサは、前記各アンテナ要素を分離するスリットを有するとともに、隣り合う前記アンテナ要素間の前記スリットを金属箔で接続した、
ことを特徴とする埋設物探知センサ。
【請求項2】
前記磁気センサは、前記電波センサの中央部に配設されたコイルと、前記電波センサの周囲に配設されたコイルとを備えたことを特徴とする請求項1に記載の埋設物探知センサ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2006−71408(P2006−71408A)
【公開日】平成18年3月16日(2006.3.16)
【国際特許分類】
【出願番号】特願2004−254045(P2004−254045)
【出願日】平成16年9月1日(2004.9.1)
【出願人】(000005902)三井造船株式会社 (1,723)
【Fターム(参考)】